blob: fe36113fd78f7db45d1495f127be7425024fc182 [file] [log] [blame]
/* SPDX-License-Identifier: GPL-2.0-only */
/* How much nesting do we support? */
#define ACPIGEN_LENSTACK_SIZE 10
/* If you need to change this, change acpigen_pop_len too */
#define ACPIGEN_RSVD_PKGLEN_BYTES 3
#include <lib.h>
#include <string.h>
#include <acpi/acpigen.h>
#include <assert.h>
#include <commonlib/helpers.h>
#include <console/console.h>
#include <device/device.h>
#include <device/soundwire.h>
#include <types.h>
static char *gencurrent;
char *len_stack[ACPIGEN_LENSTACK_SIZE];
int ltop = 0;
void acpigen_write_len_f(void)
{
ASSERT(ltop < (ACPIGEN_LENSTACK_SIZE - 1))
len_stack[ltop++] = gencurrent;
/* Reserve ACPIGEN_RSVD_PKGLEN_BYTES bytes for PkgLength. The actual byte values will
be written later in the corresponding acpigen_pop_len call. */
for (size_t i = 0; i < ACPIGEN_RSVD_PKGLEN_BYTES; i++)
acpigen_emit_byte(0);
}
void acpigen_pop_len(void)
{
size_t len;
ASSERT(ltop > 0)
char *p = len_stack[--ltop];
len = gencurrent - p;
const size_t payload_len = len - ACPIGEN_RSVD_PKGLEN_BYTES;
if (len <= 0x3f + 2) {
/* PkgLength of up to 0x3f can be encoded in one PkgLength byte instead of the
reserved 3 bytes. Since only 1 PkgLength byte will be written, the payload
data needs to be moved by 2 bytes */
memmove(&p[ACPIGEN_RSVD_PKGLEN_BYTES - 2],
&p[ACPIGEN_RSVD_PKGLEN_BYTES], payload_len);
/* Adjust the PkgLength to take into account that we only use 1 of the 3
reserved bytes */
len -= 2;
/* The two most significant bits of PkgLength get the value of 0 to indicate
there are no additional PkgLength bytes. In this case the single PkgLength
byte encodes the length in its lower 6 bits */
p[0] = len;
/* Adjust pointer for next ACPI bytecode byte */
acpigen_set_current(p + len);
} else if (len <= 0xfff + 1) {
/* PkgLength of up to 0xfff can be encoded in 2 PkgLength bytes instead of the
reserved 3 bytes. Since only 2 PkgLength bytes will be written, the payload
data needs to be moved by 1 byte */
memmove(&p[ACPIGEN_RSVD_PKGLEN_BYTES - 1],
&p[ACPIGEN_RSVD_PKGLEN_BYTES], payload_len);
/* Adjust the PkgLength to take into account that we only use 2 of the 3
reserved bytes */
len -= 1;
/* The two most significant bits of PkgLength get the value of 1 to indicate
there's a second PkgLength byte. The lower 4 bits of the first PkgLength
byte and the second PkgLength byte encode the length */
p[0] = (0x1 << 6 | (len & 0xf));
p[1] = (len >> 4 & 0xff);
/* Adjust pointer for next ACPI bytecode byte */
acpigen_set_current(p + len);
} else if (len <= 0xfffff) {
/* PkgLength of up to 0xfffff can be encoded in 3 PkgLength bytes. Since this
is the amount of reserved bytes, no need to move the payload in this case */
/* The two most significant bits of PkgLength get the value of 2 to indicate
there are two more PkgLength bytes following the first one. The lower 4 bits
of the first PkgLength byte and the two following PkgLength bytes encode the
length */
p[0] = (0x2 << 6 | (len & 0xf));
p[1] = (len >> 4 & 0xff);
p[2] = (len >> 12 & 0xff);
/* No need to adjust pointer for next ACPI bytecode byte */
} else {
/* The case of PkgLength up to 0xfffffff isn't supported at the moment */
printk(BIOS_ERR, "%s: package length exceeds maximum of 0xfffff.\n", __func__);
}
}
void acpigen_set_current(char *curr)
{
gencurrent = curr;
}
char *acpigen_get_current(void)
{
return gencurrent;
}
void acpigen_emit_byte(unsigned char b)
{
(*gencurrent++) = b;
}
void acpigen_emit_ext_op(uint8_t op)
{
acpigen_emit_byte(EXT_OP_PREFIX);
acpigen_emit_byte(op);
}
void acpigen_emit_word(unsigned int data)
{
acpigen_emit_byte(data & 0xff);
acpigen_emit_byte((data >> 8) & 0xff);
}
void acpigen_emit_dword(unsigned int data)
{
acpigen_emit_byte(data & 0xff);
acpigen_emit_byte((data >> 8) & 0xff);
acpigen_emit_byte((data >> 16) & 0xff);
acpigen_emit_byte((data >> 24) & 0xff);
}
char *acpigen_write_package(int nr_el)
{
char *p;
acpigen_emit_byte(PACKAGE_OP);
acpigen_write_len_f();
p = acpigen_get_current();
acpigen_emit_byte(nr_el);
return p;
}
void acpigen_write_byte(unsigned int data)
{
acpigen_emit_byte(BYTE_PREFIX);
acpigen_emit_byte(data & 0xff);
}
void acpigen_write_word(unsigned int data)
{
acpigen_emit_byte(WORD_PREFIX);
acpigen_emit_word(data);
}
void acpigen_write_dword(unsigned int data)
{
acpigen_emit_byte(DWORD_PREFIX);
acpigen_emit_dword(data);
}
void acpigen_write_qword(uint64_t data)
{
acpigen_emit_byte(QWORD_PREFIX);
acpigen_emit_dword(data & 0xffffffff);
acpigen_emit_dword((data >> 32) & 0xffffffff);
}
void acpigen_write_zero(void)
{
acpigen_emit_byte(ZERO_OP);
}
void acpigen_write_one(void)
{
acpigen_emit_byte(ONE_OP);
}
void acpigen_write_ones(void)
{
acpigen_emit_byte(ONES_OP);
}
void acpigen_write_integer(uint64_t data)
{
if (data == 0)
acpigen_write_zero();
else if (data == 1)
acpigen_write_one();
else if (data <= 0xff)
acpigen_write_byte((unsigned char)data);
else if (data <= 0xffff)
acpigen_write_word((unsigned int)data);
else if (data <= 0xffffffff)
acpigen_write_dword((unsigned int)data);
else
acpigen_write_qword(data);
}
void acpigen_write_name_byte(const char *name, uint8_t val)
{
acpigen_write_name(name);
acpigen_write_byte(val);
}
void acpigen_write_name_dword(const char *name, uint32_t val)
{
acpigen_write_name(name);
acpigen_write_dword(val);
}
void acpigen_write_name_qword(const char *name, uint64_t val)
{
acpigen_write_name(name);
acpigen_write_qword(val);
}
void acpigen_write_name_integer(const char *name, uint64_t val)
{
acpigen_write_name(name);
acpigen_write_integer(val);
}
void acpigen_write_name_string(const char *name, const char *string)
{
acpigen_write_name(name);
acpigen_write_string(string);
}
void acpigen_write_name_unicode(const char *name, const char *string)
{
const size_t len = strlen(string) + 1;
acpigen_write_name(name);
acpigen_emit_byte(BUFFER_OP);
acpigen_write_len_f();
acpigen_write_integer(2 * len);
for (size_t i = 0; i < len; i++) {
const signed char c = string[i];
/* Simple ASCII to UTF-16 conversion, replace non ASCII characters */
acpigen_emit_word(c >= 0 ? c : '?');
}
acpigen_pop_len();
}
void acpigen_emit_stream(const char *data, int size)
{
int i;
for (i = 0; i < size; i++)
acpigen_emit_byte(data[i]);
}
void acpigen_emit_string(const char *string)
{
acpigen_emit_stream(string, string ? strlen(string) : 0);
acpigen_emit_byte('\0'); /* NUL */
}
void acpigen_write_string(const char *string)
{
acpigen_emit_byte(STRING_PREFIX);
acpigen_emit_string(string);
}
void acpigen_write_coreboot_hid(enum coreboot_acpi_ids id)
{
char hid[9]; /* BOOTxxxx */
snprintf(hid, sizeof(hid), "%.4s%04X", COREBOOT_ACPI_ID, id);
acpigen_write_name_string("_HID", hid);
}
/*
* The naming conventions for ACPI namespace names are a bit tricky as
* each element has to be 4 chars wide ("All names are a fixed 32 bits.")
* and "By convention, when an ASL compiler pads a name shorter than 4
* characters, it is done so with trailing underscores ('_')".
*
* Check sections 5.3, 18.2.2 and 18.4 of ACPI spec 3.0 for details.
*/
static void acpigen_emit_simple_namestring(const char *name)
{
int i;
char ud[] = "____";
for (i = 0; i < 4; i++) {
if ((name[i] == '\0') || (name[i] == '.')) {
acpigen_emit_stream(ud, 4 - i);
break;
}
acpigen_emit_byte(name[i]);
}
}
static void acpigen_emit_double_namestring(const char *name, int dotpos)
{
acpigen_emit_byte(DUAL_NAME_PREFIX);
acpigen_emit_simple_namestring(name);
acpigen_emit_simple_namestring(&name[dotpos + 1]);
}
static void acpigen_emit_multi_namestring(const char *name)
{
int count = 0;
unsigned char *pathlen;
acpigen_emit_byte(MULTI_NAME_PREFIX);
acpigen_emit_byte(ZERO_OP);
pathlen = ((unsigned char *)acpigen_get_current()) - 1;
while (name[0] != '\0') {
acpigen_emit_simple_namestring(name);
/* find end or next entity */
while ((name[0] != '.') && (name[0] != '\0'))
name++;
/* forward to next */
if (name[0] == '.')
name++;
count++;
}
pathlen[0] = count;
}
void acpigen_emit_namestring(const char *namepath)
{
int dotcount = 0, i;
int dotpos = 0;
/* Check for NULL pointer */
if (!namepath)
return;
/* We can start with a '\'. */
if (namepath[0] == '\\') {
acpigen_emit_byte('\\');
namepath++;
}
/* And there can be any number of '^' */
while (namepath[0] == '^') {
acpigen_emit_byte('^');
namepath++;
}
/* If we have only \\ or only ^...^. Then we need to put a null
name (0x00). */
if (namepath[0] == '\0') {
acpigen_emit_byte(ZERO_OP);
return;
}
i = 0;
while (namepath[i] != '\0') {
if (namepath[i] == '.') {
dotcount++;
dotpos = i;
}
i++;
}
if (dotcount == 0)
acpigen_emit_simple_namestring(namepath);
else if (dotcount == 1)
acpigen_emit_double_namestring(namepath, dotpos);
else
acpigen_emit_multi_namestring(namepath);
}
void acpigen_write_name(const char *name)
{
acpigen_emit_byte(NAME_OP);
acpigen_emit_namestring(name);
}
void acpigen_write_scope(const char *name)
{
acpigen_emit_byte(SCOPE_OP);
acpigen_write_len_f();
acpigen_emit_namestring(name);
}
void acpigen_get_package_op_element(uint8_t package_op, unsigned int element, uint8_t dest_op)
{
/* <dest_op> = DeRefOf (<package_op>[<element>]) */
acpigen_write_store();
acpigen_emit_byte(DEREF_OP);
acpigen_emit_byte(INDEX_OP);
acpigen_emit_byte(package_op);
acpigen_write_integer(element);
acpigen_emit_byte(ZERO_OP); /* Ignore Index() Destination */
acpigen_emit_byte(dest_op);
}
void acpigen_set_package_op_element_int(uint8_t package_op, unsigned int element, uint64_t src)
{
/* DeRefOf (<package>[<element>]) = <src> */
acpigen_write_store();
acpigen_write_integer(src);
acpigen_emit_byte(DEREF_OP);
acpigen_emit_byte(INDEX_OP);
acpigen_emit_byte(package_op);
acpigen_write_integer(element);
acpigen_emit_byte(ZERO_OP); /* Ignore Index() Destination */
}
void acpigen_get_package_element(const char *package, unsigned int element, uint8_t dest_op)
{
/* <dest_op> = <package>[<element>] */
acpigen_write_store();
acpigen_emit_byte(INDEX_OP);
acpigen_emit_namestring(package);
acpigen_write_integer(element);
acpigen_emit_byte(ZERO_OP); /* Ignore Index() Destination */
acpigen_emit_byte(dest_op);
}
void acpigen_set_package_element_int(const char *package, unsigned int element, uint64_t src)
{
/* <package>[<element>] = <src> */
acpigen_write_store();
acpigen_write_integer(src);
acpigen_emit_byte(INDEX_OP);
acpigen_emit_namestring(package);
acpigen_write_integer(element);
acpigen_emit_byte(ZERO_OP); /* Ignore Index() Destination */
}
void acpigen_set_package_element_namestr(const char *package, unsigned int element,
const char *src)
{
/* <package>[<element>] = <src> */
acpigen_write_store();
acpigen_emit_namestring(src);
acpigen_emit_byte(INDEX_OP);
acpigen_emit_namestring(package);
acpigen_write_integer(element);
acpigen_emit_byte(ZERO_OP); /* Ignore Index() Destination */
}
void acpigen_write_processor_namestring(unsigned int cpu_index)
{
char buffer[16];
snprintf(buffer, sizeof(buffer), "\\_SB." CONFIG_ACPI_CPU_STRING, cpu_index);
acpigen_emit_namestring(buffer);
}
/* Processor() operator is deprecated as of ACPI 6.0, use Device() instead. */
void acpigen_write_processor(u8 cpuindex, u32 pblock_addr, u8 pblock_len)
{
/*
Processor (\_SB.CPcpuindex, cpuindex, pblock_addr, pblock_len)
{
*/
acpigen_emit_ext_op(PROCESSOR_OP);
acpigen_write_len_f();
acpigen_write_processor_namestring(cpuindex);
acpigen_emit_byte(cpuindex);
acpigen_emit_dword(pblock_addr);
acpigen_emit_byte(pblock_len);
}
void acpigen_write_processor_device(unsigned int cpu_index)
{
acpigen_emit_ext_op(DEVICE_OP);
acpigen_write_len_f();
acpigen_write_processor_namestring(cpu_index);
acpigen_write_name_string("_HID", "ACPI0007");
acpigen_write_name_integer("_UID", cpu_index);
}
void acpigen_write_processor_package(const char *const name, const unsigned int first_core,
const unsigned int core_count)
{
unsigned int i;
acpigen_write_name(name);
acpigen_write_package(core_count);
for (i = first_core; i < first_core + core_count; ++i)
acpigen_write_processor_namestring(i);
acpigen_pop_len();
}
/* Method to notify all CPU cores */
void acpigen_write_processor_cnot(const unsigned int number_of_cores)
{
int core_id;
acpigen_write_method("\\_SB.CNOT", 1);
for (core_id = 0; core_id < number_of_cores; core_id++) {
acpigen_emit_byte(NOTIFY_OP);
acpigen_write_processor_namestring(core_id);
acpigen_emit_byte(ARG0_OP);
}
acpigen_pop_len();
}
/*
* Generate ACPI AML code for OperationRegion
* Arg0: Pointer to struct opregion opreg = OPREGION(rname, space, offset, len)
* where rname is region name, space is region space, offset is region offset &
* len is region length.
* OperationRegion(regionname, regionspace, regionoffset, regionlength)
*/
void acpigen_write_opregion(const struct opregion *opreg)
{
/* OpregionOp */
acpigen_emit_ext_op(OPREGION_OP);
/* NameString 4 chars only */
acpigen_emit_simple_namestring(opreg->name);
/* RegionSpace */
acpigen_emit_byte(opreg->regionspace);
/* RegionOffset & RegionLen, it can be byte word or double word */
acpigen_write_integer(opreg->regionoffset);
acpigen_write_integer(opreg->regionlen);
}
/*
* Generate ACPI AML code for Mutex
* Arg0: Pointer to name of mutex
* Arg1: Initial value of mutex
*/
void acpigen_write_mutex(const char *name, const uint8_t flags)
{
/* MutexOp */
acpigen_emit_ext_op(MUTEX_OP);
acpigen_emit_namestring(name);
acpigen_emit_byte(flags);
}
void acpigen_write_acquire(const char *name, const uint16_t val)
{
/* AcquireOp */
acpigen_emit_ext_op(ACQUIRE_OP);
acpigen_emit_namestring(name);
acpigen_emit_word(val);
}
void acpigen_write_release(const char *name)
{
/* ReleaseOp */
acpigen_emit_ext_op(RELEASE_OP);
acpigen_emit_namestring(name);
}
static void acpigen_write_field_length(uint32_t len)
{
uint8_t i, j;
uint8_t emit[4];
i = 1;
if (len < 0x40) {
emit[0] = len & 0x3F;
} else {
emit[0] = len & 0xF;
len >>= 4;
while (len) {
emit[i] = len & 0xFF;
i++;
len >>= 8;
}
}
/* Update bit 7:6 : Number of bytes followed by emit[0] */
emit[0] |= (i - 1) << 6;
for (j = 0; j < i; j++)
acpigen_emit_byte(emit[j]);
}
static void acpigen_write_field_offset(uint32_t offset, uint32_t current_bit_pos)
{
uint32_t diff_bits;
if (offset < current_bit_pos) {
printk(BIOS_WARNING, "%s: Cannot move offset backward", __func__);
return;
}
diff_bits = offset - current_bit_pos;
/* Upper limit */
if (diff_bits > 0xFFFFFFF) {
printk(BIOS_WARNING, "%s: Offset very large to encode", __func__);
return;
}
acpigen_emit_byte(0);
acpigen_write_field_length(diff_bits);
}
void acpigen_write_field_name(const char *name, uint32_t size)
{
acpigen_emit_simple_namestring(name);
acpigen_write_field_length(size);
}
static void acpigen_write_field_reserved(uint32_t size)
{
acpigen_emit_byte(0);
acpigen_write_field_length(size);
}
/*
* Generate ACPI AML code for Field
* Arg0: region name
* Arg1: Pointer to struct fieldlist.
* Arg2: no. of entries in Arg1
* Arg3: flags which indicate filed access type, lock rule & update rule.
* Example with fieldlist
* struct fieldlist l[] = {
* FIELDLIST_OFFSET(0x84),
* FIELDLIST_NAMESTR("PMCS", 2),
* FIELDLIST_RESERVED(6),
* };
* acpigen_write_field("UART", l, ARRAY_SIZE(l), FIELD_ANYACC | FIELD_NOLOCK |
* FIELD_PRESERVE);
* Output:
* Field (UART, AnyAcc, NoLock, Preserve)
* {
* Offset (0x84),
* PMCS, 2,
* , 6,
* }
*/
void acpigen_write_field(const char *name, const struct fieldlist *l, size_t count,
uint8_t flags)
{
uint16_t i;
uint32_t current_bit_pos = 0;
/* FieldOp */
acpigen_emit_ext_op(FIELD_OP);
/* Package Length */
acpigen_write_len_f();
/* NameString 4 chars only */
acpigen_emit_simple_namestring(name);
/* Field Flag */
acpigen_emit_byte(flags);
for (i = 0; i < count; i++) {
switch (l[i].type) {
case NAME_STRING:
acpigen_write_field_name(l[i].name, l[i].bits);
current_bit_pos += l[i].bits;
break;
case RESERVED:
acpigen_write_field_reserved(l[i].bits);
current_bit_pos += l[i].bits;
break;
case OFFSET:
acpigen_write_field_offset(l[i].bits, current_bit_pos);
current_bit_pos = l[i].bits;
break;
default:
printk(BIOS_ERR, "%s: Invalid field type 0x%X\n", __func__, l[i].type);
break;
}
}
acpigen_pop_len();
}
/*
* Generate ACPI AML code for IndexField
* Arg0: region name
* Arg1: Pointer to struct fieldlist.
* Arg2: no. of entries in Arg1
* Arg3: flags which indicate filed access type, lock rule & update rule.
* Example with fieldlist
* struct fieldlist l[] = {
* FIELDLIST_OFFSET(0x84),
* FIELDLIST_NAMESTR("PMCS", 2),
* };
* acpigen_write_field("IDX", "DATA" l, ARRAY_SIZE(l), FIELD_ANYACC |
* FIELD_NOLOCK |
* FIELD_PRESERVE);
* Output:
* IndexField (IDX, DATA, AnyAcc, NoLock, Preserve)
* {
* Offset (0x84),
* PMCS, 2
* }
*/
void acpigen_write_indexfield(const char *idx, const char *data, struct fieldlist *l,
size_t count, uint8_t flags)
{
uint16_t i;
uint32_t current_bit_pos = 0;
/* FieldOp */
acpigen_emit_ext_op(INDEX_FIELD_OP);
/* Package Length */
acpigen_write_len_f();
/* NameString 4 chars only */
acpigen_emit_simple_namestring(idx);
/* NameString 4 chars only */
acpigen_emit_simple_namestring(data);
/* Field Flag */
acpigen_emit_byte(flags);
for (i = 0; i < count; i++) {
switch (l[i].type) {
case NAME_STRING:
acpigen_write_field_name(l[i].name, l[i].bits);
current_bit_pos += l[i].bits;
break;
case OFFSET:
acpigen_write_field_offset(l[i].bits, current_bit_pos);
current_bit_pos = l[i].bits;
break;
default:
printk(BIOS_ERR, "%s: Invalid field type 0x%X\n", __func__, l[i].type);
break;
}
}
acpigen_pop_len();
}
void acpigen_write_empty_PCT(void)
{
/*
Name (_PCT, Package (0x02)
{
ResourceTemplate ()
{
Register (FFixedHW,
0x00, // Bit Width
0x00, // Bit Offset
0x0000000000000000, // Address
,)
},
ResourceTemplate ()
{
Register (FFixedHW,
0x00, // Bit Width
0x00, // Bit Offset
0x0000000000000000, // Address
,)
}
})
*/
static char stream[] = {
/* 00000030 "0._PCT.," */
0x08, 0x5F, 0x50, 0x43, 0x54, 0x12, 0x2C,
/* 00000038 "........" */
0x02, 0x11, 0x14, 0x0A, 0x11, 0x82, 0x0C, 0x00,
/* 00000040 "........" */
0x7F, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
/* 00000048 "....y..." */
0x00, 0x00, 0x00, 0x00, 0x79, 0x00, 0x11, 0x14,
/* 00000050 "........" */
0x0A, 0x11, 0x82, 0x0C, 0x00, 0x7F, 0x00, 0x00,
/* 00000058 "........" */
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x79, 0x00
};
acpigen_emit_stream(stream, ARRAY_SIZE(stream));
}
void acpigen_write_PTC(uint8_t duty_width, uint8_t duty_offset, uint16_t p_cnt)
{
/*
Name (_PTC, Package (0x02)
{
ResourceTemplate ()
{
Register (FFixedHW,
0x00, // Duty Width
0x00, // Duty Offset
0x0000000000000000, // P_CNT IO Address
,)
},
ResourceTemplate ()
{
Register (FFixedHW,
0x00, // Duty Width
0x00, // Duty Offset
0x0000000000000000, // P_CNT IO Address
,)
}
})
*/
acpi_addr_t addr = {
.bit_width = duty_width,
.bit_offset = duty_offset,
.access_size = ACPI_ACCESS_SIZE_UNDEFINED,
.addrl = p_cnt,
.addrh = 0,
};
if (addr.addrl != 0)
addr.space_id = ACPI_ADDRESS_SPACE_IO;
else
addr.space_id = ACPI_ADDRESS_SPACE_FIXED;
acpigen_write_name("_PTC");
acpigen_write_package(2);
/* ControlRegister */
acpigen_write_register_resource(&addr);
/* StatusRegister */
acpigen_write_register_resource(&addr);
acpigen_pop_len();
}
void acpigen_write_empty_PTC(void)
{
acpigen_write_PTC(0, 0, 0);
}
static void __acpigen_write_method(const char *name, uint8_t flags)
{
acpigen_emit_byte(METHOD_OP);
acpigen_write_len_f();
acpigen_emit_namestring(name);
acpigen_emit_byte(flags);
}
/* Method (name, nargs, NotSerialized) */
void acpigen_write_method(const char *name, int nargs)
{
__acpigen_write_method(name, (nargs & 7));
}
/* Method (name, nargs, Serialized) */
void acpigen_write_method_serialized(const char *name, int nargs)
{
__acpigen_write_method(name, (nargs & 7) | (1 << 3));
}
void acpigen_write_device(const char *name)
{
acpigen_emit_ext_op(DEVICE_OP);
acpigen_write_len_f();
acpigen_emit_namestring(name);
}
void acpigen_write_thermal_zone(const char *name)
{
acpigen_emit_ext_op(THERMAL_ZONE_OP);
acpigen_write_len_f();
acpigen_emit_namestring(name);
}
void acpigen_write_STA(uint8_t status)
{
/*
* Method (_STA, 0, NotSerialized) { Return (status) }
*/
acpigen_write_method("_STA", 0);
acpigen_emit_byte(RETURN_OP);
acpigen_write_byte(status);
acpigen_pop_len();
}
void acpigen_write_STA_ext(const char *namestring)
{
/*
* Method (_STA, 0, NotSerialized) { Return (ext_val) }
*/
acpigen_write_method("_STA", 0);
acpigen_emit_byte(RETURN_OP);
acpigen_emit_namestring(namestring);
acpigen_pop_len();
}
void acpigen_write_BBN(uint8_t base_bus_number)
{
/*
* Method (_BBN, 0, NotSerialized) { Return (status) }
*/
acpigen_write_method("_BBN", 0);
acpigen_emit_byte(RETURN_OP);
acpigen_write_byte(base_bus_number);
acpigen_pop_len();
}
void acpigen_write_LPI_package(u64 level, const struct acpi_lpi_state *states, u16 nentries)
{
/*
* Name (_LPI, Package (0x06) // _LPI: Low Power Idle States
* {
* 0x0000,
* 0x0000000000000000,
* 0x0003,
* Package (0x0A)
* {
* 0x00000002,
* 0x00000001,
* 0x00000001,
* 0x00000000,
* 0x00000000,
* 0x00000000,
* ResourceTemplate ()
* {
* Register (FFixedHW,
* 0x02, // Bit Width
* 0x02, // Bit Offset
* 0x0000000000000000, // Address
* ,)
* },
*
* ResourceTemplate ()
* {
* Register (SystemMemory,
* 0x00, // Bit Width
* 0x00, // Bit Offset
* 0x0000000000000000, // Address
* ,)
* },
*
* ResourceTemplate ()
* {
* Register (SystemMemory,
* 0x00, // Bit Width
* 0x00, // Bit Offset
* 0x0000000000000000, // Address
* ,)
* },
*
* "C1"
* },
* ...
* }
*/
acpigen_write_name("_LPI");
acpigen_write_package(3 + nentries);
acpigen_write_word(0); /* Revision */
acpigen_write_qword(level);
acpigen_write_word(nentries);
for (size_t i = 0; i < nentries; i++, states++) {
acpigen_write_package(0xA);
acpigen_write_dword(states->min_residency_us);
acpigen_write_dword(states->worst_case_wakeup_latency_us);
acpigen_write_dword(states->flags);
acpigen_write_dword(states->arch_context_lost_flags);
acpigen_write_dword(states->residency_counter_frequency_hz);
acpigen_write_dword(states->enabled_parent_state);
acpigen_write_register_resource(&states->entry_method);
acpigen_write_register_resource(&states->residency_counter_register);
acpigen_write_register_resource(&states->usage_counter_register);
acpigen_write_string(states->state_name);
acpigen_pop_len();
}
acpigen_pop_len();
}
/*
* Generates a func with max supported P-states.
*/
void acpigen_write_PPC(u8 nr)
{
/*
Method (_PPC, 0, NotSerialized)
{
Return (nr)
}
*/
acpigen_write_method("_PPC", 0);
acpigen_emit_byte(RETURN_OP);
/* arg */
acpigen_write_byte(nr);
acpigen_pop_len();
}
/*
* Generates a func with max supported P-states saved
* in the variable PPCM.
*/
void acpigen_write_PPC_NVS(void)
{
/*
Method (_PPC, 0, NotSerialized)
{
Return (PPCM)
}
*/
acpigen_write_method("_PPC", 0);
acpigen_emit_byte(RETURN_OP);
/* arg */
acpigen_emit_namestring("PPCM");
acpigen_pop_len();
}
void acpigen_write_TPC(const char *gnvs_tpc_limit)
{
/*
// Sample _TPC method
Method (_TPC, 0, NotSerialized)
{
Return (\TLVL)
}
*/
acpigen_write_method("_TPC", 0);
acpigen_emit_byte(RETURN_OP);
acpigen_emit_namestring(gnvs_tpc_limit);
acpigen_pop_len();
}
void acpigen_write_PRW(u32 wake, u32 level)
{
/*
* Name (_PRW, Package () { wake, level }
*/
acpigen_write_name("_PRW");
acpigen_write_package(2);
acpigen_write_integer(wake);
acpigen_write_integer(level);
acpigen_pop_len();
}
void acpigen_write_PSS_package(u32 coreFreq, u32 power, u32 transLat, u32 busmLat, u32 control,
u32 status)
{
acpigen_write_package(6);
acpigen_write_dword(coreFreq);
acpigen_write_dword(power);
acpigen_write_dword(transLat);
acpigen_write_dword(busmLat);
acpigen_write_dword(control);
acpigen_write_dword(status);
acpigen_pop_len();
printk(BIOS_DEBUG, "PSS: %uMHz power %u control 0x%x status 0x%x\n", coreFreq, power,
control, status);
}
void acpigen_write_pss_object(const struct acpi_sw_pstate *pstate_values, size_t nentries)
{
size_t pstate;
acpigen_write_name("_PSS");
acpigen_write_package(nentries);
for (pstate = 0; pstate < nentries; pstate++) {
acpigen_write_PSS_package(
pstate_values->core_freq, pstate_values->power,
pstate_values->transition_latency, pstate_values->bus_master_latency,
pstate_values->control_value, pstate_values->status_value);
pstate_values++;
}
acpigen_pop_len();
}
void acpigen_write_PSD_package(u32 domain, u32 numprocs, PSD_coord coordtype)
{
acpigen_write_name("_PSD");
acpigen_write_package(1);
acpigen_write_package(5);
acpigen_write_byte(5); // 5 values
acpigen_write_byte(0); // revision 0
acpigen_write_dword(domain);
acpigen_write_dword(coordtype);
acpigen_write_dword(numprocs);
acpigen_pop_len();
acpigen_pop_len();
}
void acpigen_write_CST_package_entry(const acpi_cstate_t *cstate)
{
acpigen_write_package(4);
acpigen_write_register_resource(&cstate->resource);
acpigen_write_byte(cstate->ctype);
acpigen_write_word(cstate->latency);
acpigen_write_dword(cstate->power);
acpigen_pop_len();
}
void acpigen_write_CST_package(const acpi_cstate_t *cstate, int nentries)
{
int i;
acpigen_write_name("_CST");
acpigen_write_package(nentries+1);
acpigen_write_integer(nentries);
for (i = 0; i < nentries; i++)
acpigen_write_CST_package_entry(cstate + i);
acpigen_pop_len();
}
void acpigen_write_CSD_package(u32 domain, u32 numprocs, CSD_coord coordtype,
u32 index)
{
acpigen_write_name("_CSD");
acpigen_write_package(1);
acpigen_write_package(6);
acpigen_write_integer(6); // 6 values
acpigen_write_byte(0); // revision 0
acpigen_write_dword(domain);
acpigen_write_dword(coordtype);
acpigen_write_dword(numprocs);
acpigen_write_dword(index);
acpigen_pop_len();
acpigen_pop_len();
}
void acpigen_write_TSS_package(int entries, acpi_tstate_t *tstate_list)
{
/*
Sample _TSS package with 100% and 50% duty cycles
Name (_TSS, Package (0x02)
{
Package(){100, 1000, 0, 0x00, 0)
Package(){50, 520, 0, 0x18, 0)
})
*/
int i;
acpi_tstate_t *tstate = tstate_list;
acpigen_write_name("_TSS");
acpigen_write_package(entries);
for (i = 0; i < entries; i++) {
acpigen_write_package(5);
acpigen_write_dword(tstate->percent);
acpigen_write_dword(tstate->power);
acpigen_write_dword(tstate->latency);
acpigen_write_dword(tstate->control);
acpigen_write_dword(tstate->status);
acpigen_pop_len();
tstate++;
}
acpigen_pop_len();
}
void acpigen_write_TSD_package(u32 domain, u32 numprocs, PSD_coord coordtype)
{
acpigen_write_name("_TSD");
acpigen_write_package(1);
acpigen_write_package(5);
acpigen_write_byte(5); // 5 values
acpigen_write_byte(0); // revision 0
acpigen_write_dword(domain);
acpigen_write_dword(coordtype);
acpigen_write_dword(numprocs);
acpigen_pop_len();
acpigen_pop_len();
}
void acpigen_write_mem32fixed(int readwrite, u32 base, u32 size)
{
/*
* ACPI 4.0 section 6.4.3.4: 32-Bit Fixed Memory Range Descriptor
* Byte 0:
* Bit7 : 1 => big item
* Bit6-0: 0000110 (0x6) => 32-bit fixed memory
*/
acpigen_emit_byte(0x86);
/* Byte 1+2: length (0x0009) */
acpigen_emit_byte(0x09);
acpigen_emit_byte(0x00);
/* bit1-7 are ignored */
acpigen_emit_byte(readwrite ? 0x01 : 0x00);
acpigen_emit_dword(base);
acpigen_emit_dword(size);
}
static void acpigen_write_register(const acpi_addr_t *addr)
{
acpigen_emit_byte(0x82); /* Register Descriptor */
acpigen_emit_byte(0x0c); /* Register Length 7:0 */
acpigen_emit_byte(0x00); /* Register Length 15:8 */
acpigen_emit_byte(addr->space_id); /* Address Space ID */
acpigen_emit_byte(addr->bit_width); /* Register Bit Width */
acpigen_emit_byte(addr->bit_offset); /* Register Bit Offset */
acpigen_emit_byte(addr->access_size); /* Register Access Size */
acpigen_emit_dword(addr->addrl); /* Register Address Low */
acpigen_emit_dword(addr->addrh); /* Register Address High */
}
void acpigen_write_register_resource(const acpi_addr_t *addr)
{
acpigen_write_resourcetemplate_header();
acpigen_write_register(addr);
acpigen_write_resourcetemplate_footer();
}
void acpigen_write_irq(u16 mask)
{
/*
* ACPI 3.0b section 6.4.2.1: IRQ Descriptor
* Byte 0:
* Bit7 : 0 => small item
* Bit6-3: 0100 (0x4) => IRQ port descriptor
* Bit2-0: 010 (0x2) => 2 Bytes long
*/
acpigen_emit_byte(0x22);
acpigen_emit_byte(mask & 0xff);
acpigen_emit_byte((mask >> 8) & 0xff);
}
void acpigen_write_io16(u16 min, u16 max, u8 align, u8 len, u8 decode16)
{
/*
* ACPI 4.0 section 6.4.2.6: I/O Port Descriptor
* Byte 0:
* Bit7 : 0 => small item
* Bit6-3: 1000 (0x8) => I/O port descriptor
* Bit2-0: 111 (0x7) => 7 Bytes long
*/
acpigen_emit_byte(0x47);
/* Does the device decode all 16 or just 10 bits? */
/* bit1-7 are ignored */
acpigen_emit_byte(decode16 ? 0x01 : 0x00);
/* minimum base address the device may be configured for */
acpigen_emit_byte(min & 0xff);
acpigen_emit_byte((min >> 8) & 0xff);
/* maximum base address the device may be configured for */
acpigen_emit_byte(max & 0xff);
acpigen_emit_byte((max >> 8) & 0xff);
/* alignment for min base */
acpigen_emit_byte(align & 0xff);
acpigen_emit_byte(len & 0xff);
}
void acpigen_write_resourcetemplate_header(void)
{
/*
* A ResourceTemplate() is a Buffer() with a
* (Byte|Word|DWord) containing the length, followed by one or more
* resource items, terminated by the end tag.
* (small item 0xf, len 1)
*/
acpigen_emit_byte(BUFFER_OP);
acpigen_write_len_f();
acpigen_emit_byte(WORD_PREFIX);
len_stack[ltop++] = acpigen_get_current();
/* Add 2 dummy bytes for the ACPI word (keep aligned with
the calculation in acpigen_write_resourcetemplate() below). */
acpigen_emit_byte(0x00);
acpigen_emit_byte(0x00);
}
void acpigen_write_resourcetemplate_footer(void)
{
char *p = len_stack[--ltop];
int len;
/*
* end tag (acpi 4.0 Section 6.4.2.8)
* 0x79 <checksum>
* 0x00 is treated as a good checksum according to the spec
* and is what iasl generates.
*/
acpigen_emit_byte(0x79);
acpigen_emit_byte(0x00);
/* Start counting past the 2-bytes length added in
acpigen_write_resourcetemplate() above. */
len = acpigen_get_current() - (p + 2);
/* patch len word */
p[0] = len & 0xff;
p[1] = (len >> 8) & 0xff;
/* patch len field */
acpigen_pop_len();
}
static void acpigen_add_mainboard_rsvd_mem32(void *gp, struct device *dev, struct resource *res)
{
acpigen_write_mem32fixed(0, res->base, res->size);
}
static void acpigen_add_mainboard_rsvd_io(void *gp, struct device *dev, struct resource *res)
{
resource_t base = res->base;
resource_t size = res->size;
while (size > 0) {
resource_t sz = size > 255 ? 255 : size;
acpigen_write_io16(base, base, 0, sz, 1);
size -= sz;
base += sz;
}
}
void acpigen_write_mainboard_resource_template(void)
{
acpigen_write_resourcetemplate_header();
/* Add reserved memory ranges. */
search_global_resources(
IORESOURCE_MEM | IORESOURCE_RESERVE,
IORESOURCE_MEM | IORESOURCE_RESERVE,
acpigen_add_mainboard_rsvd_mem32, 0);
/* Add reserved io ranges. */
search_global_resources(
IORESOURCE_IO | IORESOURCE_RESERVE,
IORESOURCE_IO | IORESOURCE_RESERVE,
acpigen_add_mainboard_rsvd_io, 0);
acpigen_write_resourcetemplate_footer();
}
void acpigen_write_mainboard_resources(const char *scope, const char *name)
{
acpigen_write_scope(scope);
acpigen_write_name(name);
acpigen_write_mainboard_resource_template();
acpigen_pop_len();
}
static int hex2bin(const char c)
{
if (c >= 'A' && c <= 'F')
return c - 'A' + 10;
if (c >= 'a' && c <= 'f')
return c - 'a' + 10;
return c - '0';
}
void acpigen_emit_eisaid(const char *eisaid)
{
u32 compact = 0;
/* Clamping individual values would be better but
there is a disagreement over what is a valid
EISA id, so accept anything and don't clamp,
parent code should create a valid EISAid.
*/
compact |= (eisaid[0] - 'A' + 1) << 26;
compact |= (eisaid[1] - 'A' + 1) << 21;
compact |= (eisaid[2] - 'A' + 1) << 16;
compact |= hex2bin(eisaid[3]) << 12;
compact |= hex2bin(eisaid[4]) << 8;
compact |= hex2bin(eisaid[5]) << 4;
compact |= hex2bin(eisaid[6]);
acpigen_emit_byte(0xc);
acpigen_emit_byte((compact >> 24) & 0xff);
acpigen_emit_byte((compact >> 16) & 0xff);
acpigen_emit_byte((compact >> 8) & 0xff);
acpigen_emit_byte(compact & 0xff);
}
/*
* ToUUID(uuid)
*
* ACPI 6.1 Section 19.6.136 table 19-385 defines a special output
* order for the bytes that make up a UUID Buffer object.
* UUID byte order for input:
* aabbccdd-eeff-gghh-iijj-kkllmmnnoopp
* UUID byte order for output:
* ddccbbaa-ffee-hhgg-iijj-kkllmmnnoopp
*/
#define UUID_LEN 16
void acpigen_write_uuid(const char *uuid)
{
uint8_t buf[UUID_LEN];
size_t i, order[UUID_LEN] = { 3, 2, 1, 0, 5, 4, 7, 6,
8, 9, 10, 11, 12, 13, 14, 15 };
/* Parse UUID string into bytes */
if (hexstrtobin(uuid, buf, UUID_LEN) < UUID_LEN)
return;
/* BufferOp */
acpigen_emit_byte(BUFFER_OP);
acpigen_write_len_f();
/* Buffer length in bytes */
acpigen_write_word(UUID_LEN);
/* Output UUID in expected order */
for (i = 0; i < UUID_LEN; i++)
acpigen_emit_byte(buf[order[i]]);
acpigen_pop_len();
}
/*
* Name (_PRx, Package(One) { name })
* ...
* PowerResource (name, level, order)
*/
void acpigen_write_power_res(const char *name, uint8_t level, uint16_t order,
const char * const dev_states[], size_t dev_states_count)
{
size_t i;
for (i = 0; i < dev_states_count; i++) {
acpigen_write_name(dev_states[i]);
acpigen_write_package(1);
acpigen_emit_simple_namestring(name);
acpigen_pop_len(); /* Package */
}
acpigen_emit_ext_op(POWER_RES_OP);
acpigen_write_len_f();
acpigen_emit_simple_namestring(name);
acpigen_emit_byte(level);
acpigen_emit_word(order);
}
/* Sleep (ms) */
void acpigen_write_sleep(uint64_t sleep_ms)
{
acpigen_emit_ext_op(SLEEP_OP);
acpigen_write_integer(sleep_ms);
}
void acpigen_write_store(void)
{
acpigen_emit_byte(STORE_OP);
}
/* Store (src, dst) */
void acpigen_write_store_ops(uint8_t src, uint8_t dst)
{
acpigen_write_store();
acpigen_emit_byte(src);
acpigen_emit_byte(dst);
}
/* Store (src, "namestr") */
void acpigen_write_store_op_to_namestr(uint8_t src, const char *dst)
{
acpigen_write_store();
acpigen_emit_byte(src);
acpigen_emit_namestring(dst);
}
/* Store (src, "namestr") */
void acpigen_write_store_int_to_namestr(uint64_t src, const char *dst)
{
acpigen_write_store();
acpigen_write_integer(src);
acpigen_emit_namestring(dst);
}
/* Store ("namestr", dst) */
void acpigen_write_store_namestr_to_op(const char *src, uint8_t dst)
{
acpigen_write_store();
acpigen_emit_namestring(src);
acpigen_emit_byte(dst);
}
/* Store (src, dst) */
void acpigen_write_store_int_to_op(uint64_t src, uint8_t dst)
{
acpigen_write_store();
acpigen_write_integer(src);
acpigen_emit_byte(dst);
}
/* Store ("namestr", "namestr") */
void acpigen_write_store_namestr_to_namestr(const char *src, const char *dst)
{
acpigen_write_store();
acpigen_emit_namestring(src);
acpigen_emit_namestring(dst);
}
/* Or (arg1, arg2, res) */
void acpigen_write_or(uint8_t arg1, uint8_t arg2, uint8_t res)
{
acpigen_emit_byte(OR_OP);
acpigen_emit_byte(arg1);
acpigen_emit_byte(arg2);
acpigen_emit_byte(res);
}
/* Xor (arg1, arg2, res) */
void acpigen_write_xor(uint8_t arg1, uint8_t arg2, uint8_t res)
{
acpigen_emit_byte(XOR_OP);
acpigen_emit_byte(arg1);
acpigen_emit_byte(arg2);
acpigen_emit_byte(res);
}
/* And (arg1, arg2, res) */
void acpigen_write_and(uint8_t arg1, uint8_t arg2, uint8_t res)
{
acpigen_emit_byte(AND_OP);
acpigen_emit_byte(arg1);
acpigen_emit_byte(arg2);
acpigen_emit_byte(res);
}
/* Not (arg, res) */
void acpigen_write_not(uint8_t arg, uint8_t res)
{
acpigen_emit_byte(NOT_OP);
acpigen_emit_byte(arg);
acpigen_emit_byte(res);
}
/* Concatenate (str, src_res, dest_res) */
void acpigen_concatenate_string_op(const char *str, uint8_t src_res, uint8_t dest_res)
{
acpigen_emit_byte(CONCATENATE_OP);
acpigen_write_string(str);
acpigen_emit_byte(src_res);
acpigen_emit_byte(dest_res);
}
/* Store (str, DEBUG) */
void acpigen_write_debug_string(const char *str)
{
acpigen_write_store();
acpigen_write_string(str);
acpigen_emit_ext_op(DEBUG_OP);
}
/* Store (val, DEBUG) */
void acpigen_write_debug_integer(uint64_t val)
{
acpigen_write_store();
acpigen_write_integer(val);
acpigen_emit_ext_op(DEBUG_OP);
}
/* Store (op, DEBUG) */
void acpigen_write_debug_op(uint8_t op)
{
acpigen_write_store();
acpigen_emit_byte(op);
acpigen_emit_ext_op(DEBUG_OP);
}
/* Store (str, DEBUG) */
void acpigen_write_debug_namestr(const char *str)
{
acpigen_write_store();
acpigen_emit_namestring(str);
acpigen_emit_ext_op(DEBUG_OP);
}
/* Concatenate (str1, res, tmp_res)
Store(tmp_res, DEBUG) */
void acpigen_write_debug_concatenate_string_op(const char *str, uint8_t res,
uint8_t tmp_res)
{
acpigen_concatenate_string_op(str, res, tmp_res);
acpigen_write_debug_op(tmp_res);
}
static void acpigen_tx_byte(unsigned char byte, void *data)
{
acpigen_emit_byte(byte);
}
/* Store("formatted string", DEBUG) */
void acpigen_write_debug_sprintf(const char *fmt, ...)
{
va_list args;
acpigen_write_store();
acpigen_emit_byte(STRING_PREFIX);
va_start(args, fmt);
vtxprintf(acpigen_tx_byte, fmt, args, NULL);
va_end(args);
acpigen_emit_byte('\0');
acpigen_emit_ext_op(DEBUG_OP);
}
void acpigen_write_if(void)
{
acpigen_emit_byte(IF_OP);
acpigen_write_len_f();
}
/* If (And (arg1, arg2)) */
void acpigen_write_if_and(uint8_t arg1, uint8_t arg2)
{
acpigen_write_if();
acpigen_emit_byte(AND_OP);
acpigen_emit_byte(arg1);
acpigen_emit_byte(arg2);
}
/*
* Generates ACPI code for checking if operand1 and operand2 are equal.
* Both operand1 and operand2 are ACPI ops.
*
* If (Lequal (op,1 op2))
*/
void acpigen_write_if_lequal_op_op(uint8_t op1, uint8_t op2)
{
acpigen_write_if();
acpigen_emit_byte(LEQUAL_OP);
acpigen_emit_byte(op1);
acpigen_emit_byte(op2);
}
/*
* Generates ACPI code for checking if operand1 is greater than operand2.
* Both operand1 and operand2 are ACPI ops.
*
* If (Lgreater (op1 op2))
*/
void acpigen_write_if_lgreater_op_op(uint8_t op1, uint8_t op2)
{
acpigen_write_if();
acpigen_emit_byte(LGREATER_OP);
acpigen_emit_byte(op1);
acpigen_emit_byte(op2);
}
/*
* Generates ACPI code for checking if operand1 and operand2 are equal, where,
* operand1 is ACPI op and operand2 is an integer.
*
* If (Lequal (op, val))
*/
void acpigen_write_if_lequal_op_int(uint8_t op, uint64_t val)
{
acpigen_write_if();
acpigen_emit_byte(LEQUAL_OP);
acpigen_emit_byte(op);
acpigen_write_integer(val);
}
/*
* Generates ACPI code for checking if operand is greater than the value, where,
* operand is ACPI op and val is an integer.
*
* If (Lgreater (op, val))
*/
void acpigen_write_if_lgreater_op_int(uint8_t op, uint64_t val)
{
acpigen_write_if();
acpigen_emit_byte(LGREATER_OP);
acpigen_emit_byte(op);
acpigen_write_integer(val);
}
/*
* Generates ACPI code for checking if operand1 and operand2 are equal, where,
* operand1 is namestring and operand2 is an integer.
*
* If (Lequal ("namestr", val))
*/
void acpigen_write_if_lequal_namestr_int(const char *namestr, uint64_t val)
{
acpigen_write_if();
acpigen_emit_byte(LEQUAL_OP);
acpigen_emit_namestring(namestr);
acpigen_write_integer(val);
}
/*
* Generates ACPI code for checking if operand1 and operand2 are equal, where,
* operand1 is namestring and operand2 is an integer.
*
* If (Lgreater ("namestr", val))
*/
void acpigen_write_if_lgreater_namestr_int(const char *namestr, uint64_t val)
{
acpigen_write_if();
acpigen_emit_byte(LGREATER_OP);
acpigen_emit_namestring(namestr);
acpigen_write_integer(val);
}
/*
* Generates ACPI code to check at runtime if an object named `namestring`
* exists, and leaves the If scope open to continue execute code when this
* is true. NOTE: Requires matching acpigen_write_if_end().
*
* If (CondRefOf (NAME))
*/
void acpigen_write_if_cond_ref_of(const char *namestring)
{
acpigen_write_if();
acpigen_emit_ext_op(COND_REFOF_OP);
acpigen_emit_namestring(namestring);
acpigen_emit_byte(ZERO_OP); /* ignore COND_REFOF_OP destination */
}
/* Closes previously opened if statement and generates ACPI code for else statement. */
void acpigen_write_else(void)
{
acpigen_pop_len();
acpigen_emit_byte(ELSE_OP);
acpigen_write_len_f();
}
void acpigen_write_shiftleft_op_int(uint8_t src_result, uint64_t count)
{
acpigen_emit_byte(SHIFT_LEFT_OP);
acpigen_emit_byte(src_result);
acpigen_write_integer(count);
acpigen_emit_byte(ZERO_OP);
}
void acpigen_write_to_buffer(uint8_t src, uint8_t dst)
{
acpigen_emit_byte(TO_BUFFER_OP);
acpigen_emit_byte(src);
acpigen_emit_byte(dst);
}
void acpigen_write_to_integer(uint8_t src, uint8_t dst)
{
acpigen_emit_byte(TO_INTEGER_OP);
acpigen_emit_byte(src);
acpigen_emit_byte(dst);
}
void acpigen_write_to_integer_from_namestring(const char *source, uint8_t dst_op)
{
acpigen_emit_byte(TO_INTEGER_OP);
acpigen_emit_namestring(source);
acpigen_emit_byte(dst_op);
}
void acpigen_write_byte_buffer(uint8_t *arr, size_t size)
{
size_t i;
acpigen_emit_byte(BUFFER_OP);
acpigen_write_len_f();
acpigen_write_integer(size);
for (i = 0; i < size; i++)
acpigen_emit_byte(arr[i]);
acpigen_pop_len();
}
void acpigen_write_return_byte_buffer(uint8_t *arr, size_t size)
{
acpigen_emit_byte(RETURN_OP);
acpigen_write_byte_buffer(arr, size);
}
void acpigen_write_return_singleton_buffer(uint8_t arg)
{
acpigen_write_return_byte_buffer(&arg, 1);
}
void acpigen_write_return_op(uint8_t arg)
{
acpigen_emit_byte(RETURN_OP);
acpigen_emit_byte(arg);
}
void acpigen_write_return_byte(uint8_t arg)
{
acpigen_emit_byte(RETURN_OP);
acpigen_write_byte(arg);
}
void acpigen_write_return_integer(uint64_t arg)
{
acpigen_emit_byte(RETURN_OP);
acpigen_write_integer(arg);
}
void acpigen_write_return_namestr(const char *arg)
{
acpigen_emit_byte(RETURN_OP);
acpigen_emit_namestring(arg);
}
void acpigen_write_return_string(const char *arg)
{
acpigen_emit_byte(RETURN_OP);
acpigen_write_string(arg);
}
void acpigen_write_upc(enum acpi_upc_type type)
{
acpigen_write_name("_UPC");
acpigen_write_package(4);
/* Connectable */
acpigen_write_byte(type == UPC_TYPE_UNUSED ? 0 : 0xff);
/* Type */
acpigen_write_byte(type);
/* Reserved0 */
acpigen_write_zero();
/* Reserved1 */
acpigen_write_zero();
acpigen_pop_len();
}
void acpigen_write_pld(const struct acpi_pld *pld)
{
uint8_t buf[20];
if (acpi_pld_to_buffer(pld, buf, ARRAY_SIZE(buf)) < 0)
return;
acpigen_write_name("_PLD");
acpigen_write_package(1);
acpigen_write_byte_buffer(buf, ARRAY_SIZE(buf));
acpigen_pop_len();
}
void acpigen_write_dsm(const char *uuid, void (**callbacks)(void *), size_t count, void *arg)
{
struct dsm_uuid id = DSM_UUID(uuid, callbacks, count, arg);
acpigen_write_dsm_uuid_arr(&id, 1);
}
/*
* Create a supported functions bitmask
* bit 0: other functions than 0 are supported
* bits 1-x: function x supported
*/
/* On GCC aarch64 the compiler is worried about alloca() having unbounded stack usage. */
#if defined(__GNUC__) && !defined(__clang__)
#pragma GCC diagnostic ignored "-Wstack-usage="
#endif
static void acpigen_dsm_uuid_enum_functions(const struct dsm_uuid *id)
{
const size_t bytes = DIV_ROUND_UP(id->count, BITS_PER_BYTE);
uint8_t *buffer = alloca(bytes);
bool set = false;
size_t cb_idx = 0;
memset(buffer, 0, bytes);
for (size_t i = 0; i < bytes; i++) {
for (size_t j = 0; j < BITS_PER_BYTE; j++) {
if (cb_idx >= id->count)
break;
if (id->callbacks[cb_idx++]) {
set = true;
buffer[i] |= BIT(j);
}
}
}
if (set)
buffer[0] |= BIT(0);
acpigen_write_return_byte_buffer(buffer, bytes);
}
static void acpigen_write_dsm_uuid(struct dsm_uuid *id)
{
size_t i;
/* If (LEqual (Local0, ToUUID(uuid))) */
acpigen_write_if();
acpigen_emit_byte(LEQUAL_OP);
acpigen_emit_byte(LOCAL0_OP);
acpigen_write_uuid(id->uuid);
/* ToInteger (Arg2, Local1) */
acpigen_write_to_integer(ARG2_OP, LOCAL1_OP);
/* If (LEqual(Local1, 0)) */
{
acpigen_write_if_lequal_op_int(LOCAL1_OP, 0);
if (id->callbacks[0])
id->callbacks[0](id->arg);
else if (id->count)
acpigen_dsm_uuid_enum_functions(id);
acpigen_write_if_end();
}
for (i = 1; i < id->count; i++) {
/* If (LEqual (Local1, i)) */
acpigen_write_if_lequal_op_int(LOCAL1_OP, i);
/* Callback to write if handler. */
if (id->callbacks[i])
id->callbacks[i](id->arg);
acpigen_write_if_end(); /* If */
}
/* Default case: Return (Buffer (One) { 0x0 }) */
acpigen_write_return_singleton_buffer(0x0);
acpigen_write_if_end(); /* If (LEqual (Local0, ToUUID(uuid))) */
}
/*
* Generate ACPI AML code for _DSM method.
* This function takes as input array of uuid for the device, set of callbacks
* and argument to pass into the callbacks. Callbacks should ensure that Local0
* and Local1 are left untouched. Use of Local2-Local7 is permitted in
* callbacks.
*
* Arguments passed into _DSM method:
* Arg0 = UUID
* Arg1 = Revision
* Arg2 = Function index
* Arg3 = Function specific arguments
*
* AML code generated would look like:
* Method (_DSM, 4, Serialized) {
* ToBuffer (Arg0, Local0)
* If (LEqual (Local0, ToUUID(uuid))) {
* ToInteger (Arg2, Local1)
* If (LEqual (Local1, 0)) {
* <acpigen by callback[0]>
* }
* ...
* If (LEqual (Local1, n)) {
* <acpigen by callback[n]>
* }
* Return (Buffer (One) { 0x0 })
* }
* ...
* If (LEqual (Local0, ToUUID(uuidn))) {
* ...
* }
* Return (Buffer (One) { 0x0 })
* }
*/
void acpigen_write_dsm_uuid_arr(struct dsm_uuid *ids, size_t count)
{
size_t i;
/* Method (_DSM, 4, Serialized) */
acpigen_write_method_serialized("_DSM", 0x4);
/* ToBuffer (Arg0, Local0) */
acpigen_write_to_buffer(ARG0_OP, LOCAL0_OP);
for (i = 0; i < count; i++)
acpigen_write_dsm_uuid(&ids[i]);
/* Return (Buffer (One) { 0x0 }) */
acpigen_write_return_singleton_buffer(0x0);
acpigen_pop_len(); /* Method _DSM */
}
void acpigen_write_CPPC_package(const struct cppc_config *config)
{
u32 i;
u32 max;
switch (config->version) {
case 1:
max = CPPC_MAX_FIELDS_VER_1;
break;
case 2:
max = CPPC_MAX_FIELDS_VER_2;
break;
case 3:
max = CPPC_MAX_FIELDS_VER_3;
break;
default:
printk(BIOS_ERR, "CPPC version %u is not implemented\n", config->version);
return;
}
acpigen_write_name(CPPC_PACKAGE_NAME);
/* Adding 2 to account for length and version fields */
acpigen_write_package(max + 2);
acpigen_write_dword(max + 2);
acpigen_write_byte(config->version);
for (i = 0; i < max; ++i) {
const cppc_entry_t *entry = &config->entries[i];
if (entry->type == CPPC_TYPE_DWORD)
acpigen_write_dword(entry->dword);
else
acpigen_write_register_resource(&entry->reg);
}
acpigen_pop_len();
}
void acpigen_write_CPPC_method(void)
{
char pscope[16];
snprintf(pscope, sizeof(pscope),
"\\_SB." CONFIG_ACPI_CPU_STRING "." CPPC_PACKAGE_NAME, 0);
acpigen_write_method("_CPC", 0);
acpigen_emit_byte(RETURN_OP);
acpigen_emit_namestring(pscope);
acpigen_pop_len();
}
/*
* Generate ACPI AML code for _ROM method.
* This function takes as input ROM data and ROM length.
*
* The ACPI spec isn't clear about what should happen at the end of the
* ROM. Tests showed that it shouldn't truncate, but fill the remaining
* bytes in the returned buffer with zeros.
*
* Arguments passed into _DSM method:
* Arg0 = Offset in Bytes
* Arg1 = Bytes to return
*
* Example:
* acpigen_write_rom(0xdeadbeef, 0x10000)
*
* AML code generated would look like:
* Method (_ROM, 2, NotSerialized) {
*
* OperationRegion("ROMS", SYSTEMMEMORY, 0xdeadbeef, 0x10000)
* Field (ROMS, AnyAcc, NoLock, Preserve)
* {
* Offset (0),
* RBF0, 0x80000
* }
*
* Store (Arg0, Local0)
* Store (Arg1, Local1)
*
* If (LGreater (Local1, 0x1000))
* {
* Store (0x1000, Local1)
* }
*
* Store (Local1, Local3)
*
* If (LGreater (Local0, 0x10000))
* {
* Return(Buffer(Local1){0})
* }
*
* If (LGreater (Local0, 0x0f000))
* {
* Subtract (0x10000, Local0, Local2)
* If (LGreater (Local1, Local2))
* {
* Store (Local2, Local1)
* }
* }
*
* Name (ROM1, Buffer (Local3) {0})
*
* Multiply (Local0, 0x08, Local0)
* Multiply (Local1, 0x08, Local1)
*
* CreateField (RBF0, Local0, Local1, TMPB)
* Store (TMPB, ROM1)
* Return (ROM1)
* }
*/
void acpigen_write_rom(void *bios, const size_t length)
{
ASSERT(bios)
ASSERT(length)
/* Method (_ROM, 2, Serialized) */
acpigen_write_method_serialized("_ROM", 2);
/* OperationRegion("ROMS", SYSTEMMEMORY, current, length) */
struct opregion opreg = OPREGION("ROMS", SYSTEMMEMORY, (uintptr_t)bios, length);
acpigen_write_opregion(&opreg);
struct fieldlist l[] = {
FIELDLIST_OFFSET(0),
FIELDLIST_NAMESTR("RBF0", 8 * length),
};
/* Field (ROMS, AnyAcc, NoLock, Preserve)
* {
* Offset (0),
* RBF0, 0x80000
* } */
acpigen_write_field(opreg.name, l, 2, FIELD_ANYACC | FIELD_NOLOCK | FIELD_PRESERVE);
/* Store (Arg0, Local0) */
acpigen_write_store_ops(ARG0_OP, LOCAL0_OP);
/* Store (Arg1, Local1) */
acpigen_write_store_ops(ARG1_OP, LOCAL1_OP);
/* ACPI SPEC requires to return at maximum 4KiB */
/* If (LGreater (Local1, 0x1000)) */
acpigen_write_if_lgreater_op_int(LOCAL1_OP, 0x1000);
/* Store (0x1000, Local1) */
acpigen_write_store_int_to_op(0x1000, LOCAL1_OP);
/* Pop if */
acpigen_pop_len();
/* Store (Local1, Local3) */
acpigen_write_store_ops(LOCAL1_OP, LOCAL3_OP);
/* If (LGreater (Local0, length)) */
acpigen_write_if_lgreater_op_int(LOCAL0_OP, length);
/* Return(Buffer(Local1){0}) */
acpigen_emit_byte(RETURN_OP);
acpigen_emit_byte(BUFFER_OP);
acpigen_write_len_f();
acpigen_emit_byte(LOCAL1_OP);
acpigen_emit_byte(0);
acpigen_pop_len();
/* Pop if */
acpigen_pop_len();
/* If (LGreater (Local0, length - 4096)) */
acpigen_write_if_lgreater_op_int(LOCAL0_OP, length - 4096);
/* Subtract (length, Local0, Local2) */
acpigen_emit_byte(SUBTRACT_OP);
acpigen_write_integer(length);
acpigen_emit_byte(LOCAL0_OP);
acpigen_emit_byte(LOCAL2_OP);
/* If (LGreater (Local1, Local2)) */
acpigen_write_if_lgreater_op_op(LOCAL1_OP, LOCAL2_OP);
/* Store (Local2, Local1) */
acpigen_write_store_ops(LOCAL2_OP, LOCAL1_OP);
/* Pop if */
acpigen_pop_len();
/* Pop if */
acpigen_pop_len();
/* Name (ROM1, Buffer (Local3) {0}) */
acpigen_write_name("ROM1");
acpigen_emit_byte(BUFFER_OP);
acpigen_write_len_f();
acpigen_emit_byte(LOCAL3_OP);
acpigen_emit_byte(0);
acpigen_pop_len();
/* Multiply (Local1, 0x08, Local1) */
acpigen_emit_byte(MULTIPLY_OP);
acpigen_emit_byte(LOCAL1_OP);
acpigen_write_integer(0x08);
acpigen_emit_byte(LOCAL1_OP);
/* Multiply (Local0, 0x08, Local0) */
acpigen_emit_byte(MULTIPLY_OP);
acpigen_emit_byte(LOCAL0_OP);
acpigen_write_integer(0x08);
acpigen_emit_byte(LOCAL0_OP);
/* CreateField (RBF0, Local0, Local1, TMPB) */
acpigen_emit_ext_op(CREATEFIELD_OP);
acpigen_emit_namestring("RBF0");
acpigen_emit_byte(LOCAL0_OP);
acpigen_emit_byte(LOCAL1_OP);
acpigen_emit_namestring("TMPB");
/* Store (TMPB, ROM1) */
acpigen_write_store_namestr_to_namestr("TMPB", "ROM1");
/* Return (ROM1) */
acpigen_emit_byte(RETURN_OP);
acpigen_emit_namestring("ROM1");
/* Pop method */
acpigen_pop_len();
}
/*
* Helper functions for enabling/disabling Tx GPIOs based on the GPIO
* polarity. These functions end up calling acpigen_soc_{set,clear}_tx_gpio to
* make callbacks into SoC acpigen code.
*
* Returns 0 on success and -1 on error.
*/
int acpigen_enable_tx_gpio(const struct acpi_gpio *gpio)
{
if (gpio->active_low)
return acpigen_soc_clear_tx_gpio(gpio->pins[0]);
else
return acpigen_soc_set_tx_gpio(gpio->pins[0]);
}
int acpigen_disable_tx_gpio(const struct acpi_gpio *gpio)
{
if (gpio->active_low)
return acpigen_soc_set_tx_gpio(gpio->pins[0]);
else
return acpigen_soc_clear_tx_gpio(gpio->pins[0]);
}
void acpigen_get_rx_gpio(const struct acpi_gpio *gpio)
{
acpigen_soc_read_rx_gpio(gpio->pins[0]);
if (gpio->active_low)
acpigen_write_xor(LOCAL0_OP, 1, LOCAL0_OP);
}
void acpigen_get_tx_gpio(const struct acpi_gpio *gpio)
{
acpigen_soc_get_tx_gpio(gpio->pins[0]);
if (gpio->active_low)
acpigen_write_xor(LOCAL0_OP, 1, LOCAL0_OP);
}
/* refer to ACPI 6.4.3.5.3 Word Address Space Descriptor section for details */
void acpigen_resource_word(u16 res_type, u16 gen_flags, u16 type_flags, u16 gran, u16 range_min,
u16 range_max, u16 translation, u16 length)
{
/* Byte 0: Type 1, Large Item Value 0x8: Word Address Space Descriptor */
acpigen_emit_byte(0x88);
/* Byte 1+2: length (0x000d) */
acpigen_emit_byte(0x0d);
acpigen_emit_byte(0x00);
/* resource type */
acpigen_emit_byte(res_type); // 0 - mem, 1 - io, 2 - bus
/* general flags */
acpigen_emit_byte(gen_flags);
/* type flags */
// refer to ACPI Table 6-234 (Memory), 6-235 (IO), 6-236 (Bus) for details
acpigen_emit_byte(type_flags);
/* granularity, min, max, translation, length */
acpigen_emit_word(gran);
acpigen_emit_word(range_min);
acpigen_emit_word(range_max);
acpigen_emit_word(translation);
acpigen_emit_word(length);
}
/* refer to ACPI 6.4.3.5.2 DWord Address Space Descriptor section for details */
void acpigen_resource_dword(u16 res_type, u16 gen_flags, u16 type_flags, u32 gran,
u32 range_min, u32 range_max, u32 translation, u32 length)
{
/* Byte 0: Type 1, Large Item Value 0x7: DWord Address Space Descriptor */
acpigen_emit_byte(0x87);
/* Byte 1+2: length (0023) */
acpigen_emit_byte(23);
acpigen_emit_byte(0x00);
/* resource type */
acpigen_emit_byte(res_type); // 0 - mem, 1 - io, 2 - bus
/* general flags */
acpigen_emit_byte(gen_flags);
/* type flags */
// refer to ACPI Table 6-234 (Memory), 6-235 (IO), 6-236 (Bus) for details
acpigen_emit_byte(type_flags);
/* granularity, min, max, translation, length */
acpigen_emit_dword(gran);
acpigen_emit_dword(range_min);
acpigen_emit_dword(range_max);
acpigen_emit_dword(translation);
acpigen_emit_dword(length);
}
static void acpigen_emit_qword(u64 data)
{
acpigen_emit_dword(data & 0xffffffff);
acpigen_emit_dword((data >> 32) & 0xffffffff);
}
/* refer to ACPI 6.4.3.5.1 QWord Address Space Descriptor section for details */
void acpigen_resource_qword(u16 res_type, u16 gen_flags, u16 type_flags, u64 gran,
u64 range_min, u64 range_max, u64 translation, u64 length)
{
/* Byte 0: Type 1, Large Item Value 0xa: QWord Address Space Descriptor */
acpigen_emit_byte(0x8a);
/* Byte 1+2: length (0x002b) */
acpigen_emit_byte(0x2b);
acpigen_emit_byte(0x00);
/* resource type */
acpigen_emit_byte(res_type); // 0 - mem, 1 - io, 2 - bus
/* general flags */
acpigen_emit_byte(gen_flags);
/* type flags */
// refer to ACPI Table 6-234 (Memory), 6-235 (IO), 6-236 (Bus) for details
acpigen_emit_byte(type_flags);
/* granularity, min, max, translation, length */
acpigen_emit_qword(gran);
acpigen_emit_qword(range_min);
acpigen_emit_qword(range_max);
acpigen_emit_qword(translation);
acpigen_emit_qword(length);
}
void acpigen_resource_producer_bus_number(u16 bus_base, u16 bus_limit)
{
acpigen_resource_word(RSRC_TYPE_BUS, /* res_type */
ADDR_SPACE_GENERAL_FLAG_MAX_FIXED
| ADDR_SPACE_GENERAL_FLAG_MIN_FIXED
| ADDR_SPACE_GENERAL_FLAG_DEC_POS
| ADDR_SPACE_GENERAL_FLAG_PRODUCER, /* gen_flags */
BUS_NUM_RANGE_RESOURCE_FLAG, /* type_flags */
0, /* gran */
bus_base, /* range_min */
bus_limit, /* range_max */
0x0, /* translation */
bus_limit - bus_base + 1); /* length */
}
void acpigen_resource_producer_io(u16 io_base, u16 io_limit)
{
acpigen_resource_dword(RSRC_TYPE_IO, /* res_type */
ADDR_SPACE_GENERAL_FLAG_MAX_FIXED
| ADDR_SPACE_GENERAL_FLAG_MIN_FIXED
| ADDR_SPACE_GENERAL_FLAG_DEC_POS
| ADDR_SPACE_GENERAL_FLAG_PRODUCER, /* gen_flags */
IO_RSRC_FLAG_ENTIRE_RANGE, /* type_flags */
0, /* gran */
io_base, /* range_min */
io_limit, /* range_max */
0x0, /* translation */
io_limit - io_base + 1); /* length */
}
static void acpigen_resource_producer_mmio32(u32 mmio_base, u32 mmio_limit, u16 type_flags)
{
acpigen_resource_dword(RSRC_TYPE_MEM, /* res_type */
ADDR_SPACE_GENERAL_FLAG_MAX_FIXED
| ADDR_SPACE_GENERAL_FLAG_MIN_FIXED
| ADDR_SPACE_GENERAL_FLAG_DEC_POS
| ADDR_SPACE_GENERAL_FLAG_PRODUCER, /* gen_flags */
type_flags, /* type_flags */
0, /* gran */
mmio_base, /* range_min */
mmio_limit, /* range_max */
0x0, /* translation */
mmio_limit - mmio_base + 1); /* length */
}
static void acpigen_resource_producer_mmio64(u64 mmio_base, u64 mmio_limit, u16 type_flags)
{
acpigen_resource_qword(RSRC_TYPE_MEM, /* res_type */
ADDR_SPACE_GENERAL_FLAG_MAX_FIXED
| ADDR_SPACE_GENERAL_FLAG_MIN_FIXED
| ADDR_SPACE_GENERAL_FLAG_DEC_POS
| ADDR_SPACE_GENERAL_FLAG_PRODUCER, /* gen_flags */
type_flags, /* type_flags */
0, /* gran */
mmio_base, /* range_min */
mmio_limit, /* range_max */
0x0, /* translation */
mmio_limit - mmio_base + 1); /* length */
}
void acpigen_resource_producer_mmio(u64 mmio_base, u64 mmio_limit, u16 type_flags)
{
if (mmio_base < 4ULL * GiB && mmio_limit < 4ULL * GiB)
acpigen_resource_producer_mmio32(mmio_base, mmio_limit, type_flags);
else
acpigen_resource_producer_mmio64(mmio_base, mmio_limit, type_flags);
}
void acpigen_write_ADR(uint64_t adr)
{
acpigen_write_name_qword("_ADR", adr);
}
/**
* acpigen_write_ADR_soundwire_device() - SoundWire ACPI Device Address Encoding.
* @address: SoundWire device address properties.
*
* From SoundWire Discovery and Configuration Specification Version 1.0 Table 3.
*
* 63..52 - Reserved (0)
* 51..48 - Zero-based SoundWire Link ID, relative to the immediate parent.
* Used when a Controller has multiple master devices, each producing a
* separate SoundWire Link. Set to 0 for single-link controllers.
* 47..0 - SoundWire Device ID Encoding from specification version 1.2 table 88
* 47..44 - SoundWire specification version that this device supports
* 43..40 - Unique ID for multiple devices
* 39..24 - MIPI standard manufacturer code
* 23..08 - Vendor defined part ID
* 07..00 - MIPI class encoding
*/
void acpigen_write_ADR_soundwire_device(const struct soundwire_address *address)
{
acpigen_write_ADR((((uint64_t)address->link_id & 0xf) << 48) |
(((uint64_t)address->version & 0xf) << 44) |
(((uint64_t)address->unique_id & 0xf) << 40) |
(((uint64_t)address->manufacturer_id & 0xffff) << 24) |
(((uint64_t)address->part_id & 0xffff) << 8) |
(((uint64_t)address->class & 0xff)));
}
void acpigen_notify(const char *namestr, int value)
{
acpigen_emit_byte(NOTIFY_OP);
acpigen_emit_namestring(namestr);
acpigen_write_integer(value);
}
static void _create_field(uint8_t aml_op, uint8_t srcop, size_t byte_offset, const char *name)
{
acpigen_emit_byte(aml_op);
acpigen_emit_byte(srcop);
acpigen_write_integer(byte_offset);
acpigen_emit_namestring(name);
}
void acpigen_write_create_byte_field(uint8_t op, size_t byte_offset, const char *name)
{
_create_field(CREATE_BYTE_OP, op, byte_offset, name);
}
void acpigen_write_create_word_field(uint8_t op, size_t byte_offset, const char *name)
{
_create_field(CREATE_WORD_OP, op, byte_offset, name);
}
void acpigen_write_create_dword_field(uint8_t op, size_t byte_offset, const char *name)
{
_create_field(CREATE_DWORD_OP, op, byte_offset, name);
}
void acpigen_write_create_qword_field(uint8_t op, size_t byte_offset, const char *name)
{
_create_field(CREATE_QWORD_OP, op, byte_offset, name);
}
void acpigen_write_pct_package(const acpi_addr_t *perf_ctrl, const acpi_addr_t *perf_sts)
{
acpigen_write_name("_PCT");
acpigen_write_package(0x02);
acpigen_write_register_resource(perf_ctrl);
acpigen_write_register_resource(perf_sts);
acpigen_pop_len();
}
void acpigen_write_xpss_package(const struct acpi_xpss_sw_pstate *pstate_value)
{
acpigen_write_package(0x08);
acpigen_write_dword(pstate_value->core_freq);
acpigen_write_dword(pstate_value->power);
acpigen_write_dword(pstate_value->transition_latency);
acpigen_write_dword(pstate_value->bus_master_latency);
acpigen_write_byte_buffer((uint8_t *)&pstate_value->control_value, sizeof(uint64_t));
acpigen_write_byte_buffer((uint8_t *)&pstate_value->status_value, sizeof(uint64_t));
acpigen_write_byte_buffer((uint8_t *)&pstate_value->control_mask, sizeof(uint64_t));
acpigen_write_byte_buffer((uint8_t *)&pstate_value->status_mask, sizeof(uint64_t));
acpigen_pop_len();
}
void acpigen_write_xpss_object(const struct acpi_xpss_sw_pstate *pstate_values, size_t nentries)
{
size_t pstate;
acpigen_write_name("XPSS");
acpigen_write_package(nentries);
for (pstate = 0; pstate < nentries; pstate++) {
acpigen_write_xpss_package(pstate_values);
pstate_values++;
}
acpigen_pop_len();
}
/* Delay up to wait_ms until provided namestr matches expected value. */
void acpigen_write_delay_until_namestr_int(uint32_t wait_ms, const char *name, uint64_t value)
{
uint32_t wait_ms_segment = 1;
uint32_t segments = wait_ms;
/* Sleep in 16ms segments if delay is more than 32ms. */
if (wait_ms > 32) {
wait_ms_segment = 16;
segments = wait_ms / 16;
}
acpigen_write_store_int_to_op(segments, LOCAL7_OP);
acpigen_emit_byte(WHILE_OP);
acpigen_write_len_f();
acpigen_emit_byte(LGREATER_OP);
acpigen_emit_byte(LOCAL7_OP);
acpigen_emit_byte(ZERO_OP);
/* If name is not provided then just delay in a loop. */
if (name) {
acpigen_write_if_lequal_namestr_int(name, value);
acpigen_emit_byte(BREAK_OP);
acpigen_pop_len(); /* If */
}
acpigen_write_sleep(wait_ms_segment);
acpigen_emit_byte(DECREMENT_OP);
acpigen_emit_byte(LOCAL7_OP);
acpigen_pop_len(); /* While */
if (name) {
acpigen_write_if_lequal_op_op(LOCAL7_OP, ZERO_OP);
acpigen_write_debug_sprintf("WARN: Wait loop timeout for variable %s",
name);
acpigen_pop_len(); /* If */
}
}
void acpigen_ssdt_override_sleep_states(bool enable_s1, bool enable_s2, bool enable_s3,
bool enable_s4)
{
assert(!(enable_s1 && CONFIG(ACPI_S1_NOT_SUPPORTED)));
assert(!(enable_s3 && !CONFIG(HAVE_ACPI_RESUME)));
assert(!(enable_s4 && CONFIG(DISABLE_ACPI_HIBERNATE)));
acpigen_write_scope("\\");
uint32_t sleep_enable = (enable_s1 << 0) | (enable_s2 << 1)
| (enable_s3 << 2) | (enable_s4 << 3);
acpigen_write_name_dword("OSFG", sleep_enable);
acpigen_pop_len();
}