blob: 17cd24c023d26cb9e38f1183d67e853833656a35 [file] [log] [blame]
/* SPDX-License-Identifier: GPL-2.0-only */
/*
* coreboot ACPI Table support
*/
/*
* Each system port implementing ACPI has to provide two functions:
*
* write_acpi_tables()
* acpi_dump_apics()
*
* See Kontron 986LCD-M port for a good example of an ACPI implementation
* in coreboot.
*/
#include <acpi/acpi.h>
#include <acpi/acpi_ivrs.h>
#include <acpi/acpigen.h>
#include <cbfs.h>
#include <cbmem.h>
#include <commonlib/helpers.h>
#include <console/console.h>
#include <cpu/cpu.h>
#include <device/mmio.h>
#include <device/pci.h>
#include <drivers/uart/pl011.h>
#include <string.h>
#include <types.h>
#include <version.h>
static acpi_rsdp_t *valid_rsdp(acpi_rsdp_t *rsdp);
u8 acpi_checksum(u8 *table, u32 length)
{
u8 ret = 0;
while (length--) {
ret += *table;
table++;
}
return -ret;
}
/**
* Add an ACPI table to the RSDT (and XSDT) structure, recalculate length
* and checksum.
*/
void acpi_add_table(acpi_rsdp_t *rsdp, void *table)
{
int i, entries_num;
acpi_rsdt_t *rsdt;
acpi_xsdt_t *xsdt;
/* The 32bit RSDT may not be valid if tables live above 4GiB */
rsdt = (acpi_rsdt_t *)(uintptr_t)rsdp->rsdt_address;
xsdt = (acpi_xsdt_t *)(uintptr_t)rsdp->xsdt_address;
/* This should always be MAX_ACPI_TABLES. */
entries_num = ARRAY_SIZE(xsdt->entry);
for (i = 0; i < entries_num; i++) {
if (xsdt->entry[i] == 0)
break;
}
if (i >= entries_num) {
printk(BIOS_ERR, "ACPI: Error: Could not add ACPI table, "
"too many tables.\n");
return;
}
/* Add table to the XSDT. */
xsdt->entry[i] = (u64)(uintptr_t)table;
/* Fix XSDT length or the kernel will assume invalid entries. */
xsdt->header.length = sizeof(acpi_header_t) + (sizeof(u64) * (i + 1));
/* Re-calculate checksum. */
xsdt->header.checksum = 0; /* Hope this won't get optimized away */
xsdt->header.checksum = acpi_checksum((u8 *)xsdt, xsdt->header.length);
/*
* And now the same thing for the RSDT. We use the same index as for
* now we want the XSDT and RSDT to always be in sync in coreboot.
*/
if (rsdt && (uintptr_t)table < UINT32_MAX) {
/* Add table to the RSDT. */
rsdt->entry[i] = (u32)(uintptr_t)table;
/* Fix RSDT length. */
rsdt->header.length = sizeof(acpi_header_t) + (sizeof(u32) * (i + 1));
/* Re-calculate checksum. */
rsdt->header.checksum = 0;
rsdt->header.checksum = acpi_checksum((u8 *)rsdt, rsdt->header.length);
}
printk(BIOS_DEBUG, "ACPI: added table %d/%d, length now %d\n",
i + 1, entries_num, xsdt->header.length);
}
static enum cb_err acpi_fill_header(acpi_header_t *header, const char name[4],
enum acpi_tables table, uint32_t size)
{
if (!header)
return CB_ERR;
/* Fill out header fields. */
memcpy(header->signature, name, 4);
memcpy(header->oem_id, OEM_ID, 6);
memcpy(header->oem_table_id, ACPI_TABLE_CREATOR, 8);
memcpy(header->asl_compiler_id, ASLC, 4);
header->asl_compiler_revision = asl_revision;
header->revision = get_acpi_table_revision(table);
header->length = size;
return CB_SUCCESS;
}
static int acpi_create_mcfg_mmconfig(acpi_mcfg_mmconfig_t *mmconfig, u64 base,
u16 seg_nr, u8 start, u8 end)
{
memset(mmconfig, 0, sizeof(*mmconfig));
mmconfig->base_address = base;
mmconfig->pci_segment_group_number = seg_nr;
mmconfig->start_bus_number = start;
mmconfig->end_bus_number = end;
return sizeof(acpi_mcfg_mmconfig_t);
}
static void acpi_create_madt(acpi_header_t *header, void *unused)
{
acpi_madt_t *madt = (acpi_madt_t *)header;
unsigned long current = (unsigned long)madt + sizeof(acpi_madt_t);
if (acpi_fill_header(header, "APIC", MADT, sizeof(acpi_madt_t)) != CB_SUCCESS)
return;
current = acpi_arch_fill_madt(madt, current);
if (CONFIG(ACPI_CUSTOM_MADT))
current = acpi_fill_madt(current);
/* (Re)calculate length . */
header->length = current - (unsigned long)madt;
}
static unsigned long acpi_fill_mcfg(unsigned long current)
{
current += acpi_create_mcfg_mmconfig((acpi_mcfg_mmconfig_t *)current,
CONFIG_ECAM_MMCONF_BASE_ADDRESS, 0, 0,
CONFIG_ECAM_MMCONF_BUS_NUMBER - 1);
return current;
}
/* MCFG is defined in the PCI Firmware Specification 3.0. */
static void acpi_create_mcfg(acpi_header_t *header, void *unused)
{
acpi_mcfg_t *mcfg = (acpi_mcfg_t *)header;
unsigned long current = (unsigned long)mcfg + sizeof(acpi_mcfg_t);
if (acpi_fill_header(header, "MCFG", MCFG, sizeof(acpi_mcfg_t)) != CB_SUCCESS)
return;
if (CONFIG(ECAM_MMCONF_SUPPORT))
current = acpi_fill_mcfg(current);
/* (Re)calculate length */
header->length = current - (unsigned long)mcfg;
}
static void *get_tcpa_log(u32 *size)
{
const struct cbmem_entry *ce;
const u32 tcpa_default_log_len = 0x10000;
void *lasa;
ce = cbmem_entry_find(CBMEM_ID_TCPA_TCG_LOG);
if (ce) {
lasa = cbmem_entry_start(ce);
*size = cbmem_entry_size(ce);
printk(BIOS_DEBUG, "TCPA log found at %p\n", lasa);
return lasa;
}
lasa = cbmem_add(CBMEM_ID_TCPA_TCG_LOG, tcpa_default_log_len);
if (!lasa) {
printk(BIOS_ERR, "TCPA log creation failed\n");
return NULL;
}
printk(BIOS_DEBUG, "TCPA log created at %p\n", lasa);
memset(lasa, 0, tcpa_default_log_len);
*size = tcpa_default_log_len;
return lasa;
}
static void acpi_create_tcpa(acpi_header_t *header, void *unused)
{
if (!CONFIG(TPM1))
return;
acpi_tcpa_t *tcpa = (acpi_tcpa_t *)header;
u32 tcpa_log_len;
void *lasa;
lasa = get_tcpa_log(&tcpa_log_len);
if (!lasa)
return;
if (acpi_fill_header(header, "TCPA", TCPA, sizeof(acpi_tcpa_t)) != CB_SUCCESS)
return;
tcpa->platform_class = 0;
tcpa->laml = tcpa_log_len;
tcpa->lasa = (uintptr_t)lasa;
}
static void *get_tpm2_log(u32 *size)
{
const struct cbmem_entry *ce;
const u32 tpm2_default_log_len = 0x10000;
void *lasa;
ce = cbmem_entry_find(CBMEM_ID_TPM2_TCG_LOG);
if (ce) {
lasa = cbmem_entry_start(ce);
*size = cbmem_entry_size(ce);
printk(BIOS_DEBUG, "TPM2 log found at %p\n", lasa);
return lasa;
}
lasa = cbmem_add(CBMEM_ID_TPM2_TCG_LOG, tpm2_default_log_len);
if (!lasa) {
printk(BIOS_ERR, "TPM2 log creation failed\n");
return NULL;
}
printk(BIOS_DEBUG, "TPM2 log created at %p\n", lasa);
memset(lasa, 0, tpm2_default_log_len);
*size = tpm2_default_log_len;
return lasa;
}
static void acpi_create_tpm2(acpi_header_t *header, void *unused)
{
if (!CONFIG(TPM2))
return;
acpi_tpm2_t *tpm2 = (acpi_tpm2_t *)header;
u32 tpm2_log_len;
void *lasa;
/*
* Some payloads like SeaBIOS depend on log area to use TPM2.
* Get the memory size and address of TPM2 log area or initialize it.
*/
lasa = get_tpm2_log(&tpm2_log_len);
if (!lasa)
tpm2_log_len = 0;
if (acpi_fill_header(header, "TPM2", TPM2, sizeof(acpi_tpm2_t)) != CB_SUCCESS)
return;
/* Hard to detect for coreboot. Just set it to 0 */
tpm2->platform_class = 0;
if (CONFIG(CRB_TPM)) {
/* Must be set to 7 for CRB Support */
tpm2->control_area = CONFIG_CRB_TPM_BASE_ADDRESS + 0x40;
tpm2->start_method = 7;
} else {
/* Must be set to 0 for FIFO interface support */
tpm2->control_area = 0;
tpm2->start_method = 6;
}
memset(tpm2->msp, 0, sizeof(tpm2->msp));
/* Fill the log area size and start address fields. */
tpm2->laml = tpm2_log_len;
tpm2->lasa = (uintptr_t)lasa;
}
static void acpi_ssdt_write_cbtable(void)
{
const struct cbmem_entry *cbtable;
uintptr_t base;
uint32_t size;
cbtable = cbmem_entry_find(CBMEM_ID_CBTABLE);
if (!cbtable)
return;
base = (uintptr_t)cbmem_entry_start(cbtable);
size = cbmem_entry_size(cbtable);
acpigen_write_device("CTBL");
acpigen_write_coreboot_hid(COREBOOT_ACPI_ID_CBTABLE);
acpigen_write_name_integer("_UID", 0);
acpigen_write_STA(ACPI_STATUS_DEVICE_ALL_ON);
acpigen_write_name("_CRS");
acpigen_write_resourcetemplate_header();
acpigen_write_mem32fixed(0, base, size);
acpigen_write_resourcetemplate_footer();
acpigen_pop_len();
}
static void acpi_create_ssdt_generator(acpi_header_t *ssdt, void *unused)
{
unsigned long current = (unsigned long)ssdt + sizeof(acpi_header_t);
if (acpi_fill_header(ssdt, "SSDT", SSDT, sizeof(acpi_header_t)) != CB_SUCCESS)
return;
acpigen_set_current((char *)current);
/* Write object to declare coreboot tables */
acpi_ssdt_write_cbtable();
{
struct device *dev;
for (dev = all_devices; dev; dev = dev->next)
if (dev->enabled && dev->ops && dev->ops->acpi_fill_ssdt)
dev->ops->acpi_fill_ssdt(dev);
current = (unsigned long)acpigen_get_current();
}
/* (Re)calculate length and checksum. */
ssdt->length = current - (unsigned long)ssdt;
}
int acpi_create_srat_mem(acpi_srat_mem_t *mem, u8 node, u32 basek, u32 sizek,
u32 flags)
{
mem->type = 1; /* Memory affinity structure */
mem->length = sizeof(acpi_srat_mem_t);
mem->base_address_low = (basek << 10);
mem->base_address_high = (basek >> (32 - 10));
mem->length_low = (sizek << 10);
mem->length_high = (sizek >> (32 - 10));
mem->proximity_domain = node;
mem->flags = flags;
return mem->length;
}
int acpi_create_srat_gia_pci(acpi_srat_gia_t *gia, u32 proximity_domain,
u16 seg, u8 bus, u8 dev, u8 func, u32 flags)
{
gia->type = ACPI_SRAT_STRUCTURE_GIA;
gia->length = sizeof(acpi_srat_gia_t);
gia->proximity_domain = proximity_domain;
gia->dev_handle_type = ACPI_SRAT_GIA_DEV_HANDLE_PCI;
/* First two bytes has segment number */
memcpy(gia->dev_handle, &seg, 2);
gia->dev_handle[2] = bus; /* Byte 2 has bus number */
/* Byte 3 has bits 7:3 for dev, bits 2:0 for func */
gia->dev_handle[3] = PCI_SLOT(dev) | PCI_FUNC(func);
gia->flags = flags;
return gia->length;
}
/* http://www.microsoft.com/whdc/system/sysinternals/sratdwn.mspx */
void acpi_create_srat(acpi_srat_t *srat,
unsigned long (*acpi_fill_srat)(unsigned long current))
{
acpi_header_t *header = &(srat->header);
unsigned long current = (unsigned long)srat + sizeof(acpi_srat_t);
memset((void *)srat, 0, sizeof(acpi_srat_t));
if (acpi_fill_header(header, "SRAT", SRAT, sizeof(acpi_srat_t)) != CB_SUCCESS)
return;
srat->resv = 1; /* Spec: Reserved to 1 for backwards compatibility. */
current = acpi_fill_srat(current);
/* (Re)calculate length and checksum. */
header->length = current - (unsigned long)srat;
header->checksum = acpi_checksum((void *)srat, header->length);
}
int acpi_create_cedt_chbs(acpi_cedt_chbs_t *chbs, u32 uid, u32 cxl_ver, u64 base)
{
memset((void *)chbs, 0, sizeof(acpi_cedt_chbs_t));
chbs->type = ACPI_CEDT_STRUCTURE_CHBS;
chbs->length = sizeof(acpi_cedt_chbs_t);
chbs->uid = uid;
chbs->cxl_ver = cxl_ver;
chbs->base = base;
/*
* CXL spec 2.0 section 9.14.1.2 "CXL CHBS"
* CXL 1.1 spec compliant host bridge: 8KB
* CXL 2.0 spec compliant host bridge: 64KB
*/
if (cxl_ver == ACPI_CEDT_CHBS_CXL_VER_1_1)
chbs->len = 8 * KiB;
else if (cxl_ver == ACPI_CEDT_CHBS_CXL_VER_2_0)
chbs->len = 64 * KiB;
else
printk(BIOS_ERR, "ACPI(%s:%s): Incorrect CXL version:%d\n", __FILE__, __func__,
cxl_ver);
return chbs->length;
}
int acpi_create_cedt_cfmws(acpi_cedt_cfmws_t *cfmws, u64 base_hpa, u64 window_size, u8 eniw,
u32 hbig, u16 restriction, u16 qtg_id, const u32 *interleave_target)
{
memset((void *)cfmws, 0, sizeof(acpi_cedt_cfmws_t));
cfmws->type = ACPI_CEDT_STRUCTURE_CFMWS;
u8 niw = 0;
if (eniw >= 8)
printk(BIOS_ERR, "ACPI(%s:%s): Incorrect eniw::%d\n", __FILE__, __func__, eniw);
else
/* NIW = 2 ** ENIW */
niw = 0x1 << eniw;
/* 36 + 4 * NIW */
cfmws->length = sizeof(acpi_cedt_cfmws_t) + 4 * niw;
cfmws->base_hpa = base_hpa;
cfmws->window_size = window_size;
cfmws->eniw = eniw;
// 0: Standard Modulo Arithmetic. Other values reserved.
cfmws->interleave_arithmetic = 0;
cfmws->hbig = hbig;
cfmws->restriction = restriction;
cfmws->qtg_id = qtg_id;
memcpy(&cfmws->interleave_target, interleave_target, 4 * niw);
return cfmws->length;
}
void acpi_create_cedt(acpi_cedt_t *cedt, unsigned long (*acpi_fill_cedt)(unsigned long current))
{
acpi_header_t *header = &(cedt->header);
unsigned long current = (unsigned long)cedt + sizeof(acpi_cedt_t);
memset((void *)cedt, 0, sizeof(acpi_cedt_t));
if (acpi_fill_header(header, "CEDT", CEDT, sizeof(acpi_cedt_t)) != CB_SUCCESS)
return;
current = acpi_fill_cedt(current);
/* (Re)calculate length and checksum. */
header->length = current - (unsigned long)cedt;
header->checksum = acpi_checksum((void *)cedt, header->length);
}
int acpi_create_hmat_mpda(acpi_hmat_mpda_t *mpda, u32 initiator, u32 memory)
{
memset((void *)mpda, 0, sizeof(acpi_hmat_mpda_t));
mpda->type = 0; /* Memory Proximity Domain Attributes structure */
mpda->length = sizeof(acpi_hmat_mpda_t);
/*
* Proximity Domain for Attached Initiator field is valid.
* Bit 1 and bit 2 are reserved since HMAT revision 2.
*/
mpda->flags = (1 << 0);
mpda->proximity_domain_initiator = initiator;
mpda->proximity_domain_memory = memory;
return mpda->length;
}
void acpi_create_hmat(acpi_hmat_t *hmat,
unsigned long (*acpi_fill_hmat)(unsigned long current))
{
acpi_header_t *header = &(hmat->header);
unsigned long current = (unsigned long)hmat + sizeof(acpi_hmat_t);
memset((void *)hmat, 0, sizeof(acpi_hmat_t));
if (acpi_fill_header(header, "HMAT", HMAT, sizeof(acpi_hmat_t)) != CB_SUCCESS)
return;
current = acpi_fill_hmat(current);
/* (Re)calculate length and checksum. */
header->length = current - (unsigned long)hmat;
header->checksum = acpi_checksum((void *)hmat, header->length);
}
/* http://h21007.www2.hp.com/portal/download/files/unprot/Itanium/slit.pdf */
void acpi_create_slit(acpi_slit_t *slit,
unsigned long (*acpi_fill_slit)(unsigned long current))
{
acpi_header_t *header = &(slit->header);
unsigned long current = (unsigned long)slit + sizeof(acpi_slit_t);
memset((void *)slit, 0, sizeof(acpi_slit_t));
if (acpi_fill_header(header, "SLIT", SLIT, sizeof(acpi_slit_t)) != CB_SUCCESS)
return;
current = acpi_fill_slit(current);
/* (Re)calculate length and checksum. */
header->length = current - (unsigned long)slit;
header->checksum = acpi_checksum((void *)slit, header->length);
}
/*
* This method adds the ACPI error injection capability. It fills the default information.
* HW dependent code (caller) can modify the defaults upon return. If no changes are necessary
* and the defaults are acceptable then caller can simply add the table (acpi_add_table).
* INPUTS:
* einj - ptr to the starting location of EINJ table
* actions - number of actions to trigger an error (HW dependent)
* addr - address of trigger action table. This should be ACPI reserved memory and it will be
* shared between OS and FW.
*/
void acpi_create_einj(acpi_einj_t *einj, uintptr_t addr, u8 actions)
{
int i;
acpi_header_t *header = &(einj->header);
acpi_injection_header_t *inj_header = &(einj->inj_header);
acpi_einj_smi_t *einj_smi = (acpi_einj_smi_t *)addr;
acpi_einj_trigger_table_t *tat;
if (!header)
return;
printk(BIOS_DEBUG, "%s einj_smi = %p\n", __func__, einj_smi);
memset(einj_smi, 0, sizeof(acpi_einj_smi_t));
tat = (acpi_einj_trigger_table_t *)((uint8_t *)einj_smi + sizeof(acpi_einj_smi_t));
tat->header_size = 16;
tat->revision = 0;
tat->table_size = sizeof(acpi_einj_trigger_table_t) +
sizeof(acpi_einj_action_table_t) * actions - 1;
tat->entry_count = actions;
printk(BIOS_DEBUG, "%s trigger_action_table = %p\n", __func__, tat);
for (i = 0; i < actions; i++) {
tat->trigger_action[i].action = TRIGGER_ERROR;
tat->trigger_action[i].instruction = NO_OP;
tat->trigger_action[i].flags = FLAG_IGNORE;
tat->trigger_action[i].reg.space_id = ACPI_ADDRESS_SPACE_MEMORY;
tat->trigger_action[i].reg.bit_width = 64;
tat->trigger_action[i].reg.bit_offset = 0;
tat->trigger_action[i].reg.access_size = ACPI_ACCESS_SIZE_QWORD_ACCESS;
tat->trigger_action[i].reg.addr = 0;
tat->trigger_action[i].value = 0;
tat->trigger_action[i].mask = 0xFFFFFFFF;
}
acpi_einj_action_table_t default_actions[ACTION_COUNT] = {
[0] = {
.action = BEGIN_INJECT_OP,
.instruction = WRITE_REGISTER_VALUE,
.flags = FLAG_PRESERVE,
.reg = EINJ_REG_MEMORY((u64)(uintptr_t)&einj_smi->op_state),
.value = 0,
.mask = 0xFFFFFFFF
},
[1] = {
.action = GET_TRIGGER_ACTION_TABLE,
.instruction = READ_REGISTER,
.flags = FLAG_IGNORE,
.reg = EINJ_REG_MEMORY((u64)(uintptr_t)&einj_smi->trigger_action_table),
.value = 0,
.mask = 0xFFFFFFFFFFFFFFFF
},
[2] = {
.action = SET_ERROR_TYPE,
.instruction = WRITE_REGISTER,
.flags = FLAG_PRESERVE,
.reg = EINJ_REG_MEMORY((u64)(uintptr_t)&einj_smi->err_inject[0]),
.value = 0,
.mask = 0xFFFFFFFF
},
[3] = {
.action = GET_ERROR_TYPE,
.instruction = READ_REGISTER,
.flags = FLAG_IGNORE,
.reg = EINJ_REG_MEMORY((u64)(uintptr_t)&einj_smi->err_inj_cap),
.value = 0,
.mask = 0xFFFFFFFF
},
[4] = {
.action = END_INJECT_OP,
.instruction = WRITE_REGISTER_VALUE,
.flags = FLAG_PRESERVE,
.reg = EINJ_REG_MEMORY((u64)(uintptr_t)&einj_smi->op_state),
.value = 0,
.mask = 0xFFFFFFFF
},
[5] = {
.action = EXECUTE_INJECT_OP,
.instruction = WRITE_REGISTER_VALUE,
.flags = FLAG_PRESERVE,
.reg = EINJ_REG_IO(),
.value = 0x9a,
.mask = 0xFFFF,
},
[6] = {
.action = CHECK_BUSY_STATUS,
.instruction = READ_REGISTER_VALUE,
.flags = FLAG_IGNORE,
.reg = EINJ_REG_MEMORY((u64)(uintptr_t)&einj_smi->op_status),
.value = 1,
.mask = 1,
},
[7] = {
.action = GET_CMD_STATUS,
.instruction = READ_REGISTER,
.flags = FLAG_PRESERVE,
.reg = EINJ_REG_MEMORY((u64)(uintptr_t)&einj_smi->cmd_sts),
.value = 0,
.mask = 0x1fe,
},
[8] = {
.action = SET_ERROR_TYPE_WITH_ADDRESS,
.instruction = WRITE_REGISTER,
.flags = FLAG_PRESERVE,
.reg = EINJ_REG_MEMORY((u64)(uintptr_t)&einj_smi->setaddrtable),
.value = 1,
.mask = 0xffffffff
}
};
einj_smi->err_inj_cap = ACPI_EINJ_DEFAULT_CAP;
einj_smi->trigger_action_table = (u64)(uintptr_t)tat;
for (i = 0; i < ACTION_COUNT; i++)
printk(BIOS_DEBUG, "default_actions[%d].reg.addr is %llx\n", i,
default_actions[i].reg.addr);
memset((void *)einj, 0, sizeof(*einj));
if (acpi_fill_header(header, "EINJ", EINJ, sizeof(acpi_einj_t)) != CB_SUCCESS)
return;
inj_header->einj_header_size = sizeof(acpi_injection_header_t);
inj_header->entry_count = ACTION_COUNT;
printk(BIOS_DEBUG, "%s einj->action_table = %p\n",
__func__, einj->action_table);
memcpy((void *)einj->action_table, (void *)default_actions, sizeof(einj->action_table));
header->checksum = acpi_checksum((void *)einj, sizeof(*einj));
}
void acpi_create_vfct(const struct device *device,
acpi_vfct_t *vfct,
unsigned long (*acpi_fill_vfct)(const struct device *device,
acpi_vfct_t *vfct_struct, unsigned long current))
{
acpi_header_t *header = &(vfct->header);
unsigned long current = (unsigned long)vfct + sizeof(acpi_vfct_t);
memset((void *)vfct, 0, sizeof(acpi_vfct_t));
if (acpi_fill_header(header, "VFCT", VFCT, sizeof(acpi_vfct_t)) != CB_SUCCESS)
return;
current = acpi_fill_vfct(device, vfct, current);
/* If no BIOS image, return with header->length == 0. */
if (!vfct->VBIOSImageOffset)
return;
/* (Re)calculate length and checksum. */
header->length = current - (unsigned long)vfct;
header->checksum = acpi_checksum((void *)vfct, header->length);
}
void acpi_create_ipmi(const struct device *device,
struct acpi_spmi *spmi,
const u16 ipmi_revision,
const acpi_addr_t *addr,
const enum acpi_ipmi_interface_type type,
const s8 gpe_interrupt,
const u32 apic_interrupt,
const u32 uid)
{
acpi_header_t *header = &(spmi->header);
memset((void *)spmi, 0, sizeof(struct acpi_spmi));
if (acpi_fill_header(header, "SPMI", SPMI, sizeof(struct acpi_spmi)) != CB_SUCCESS)
return;
spmi->reserved = 1;
if (device->path.type == DEVICE_PATH_PCI) {
spmi->pci_device_flag = ACPI_IPMI_PCI_DEVICE_FLAG;
spmi->pci_bus = device->bus->secondary;
spmi->pci_device = device->path.pci.devfn >> 3;
spmi->pci_function = device->path.pci.devfn & 0x7;
} else if (type != IPMI_INTERFACE_SSIF) {
memcpy(spmi->uid, &uid, sizeof(spmi->uid));
}
spmi->base_address = *addr;
spmi->specification_revision = ipmi_revision;
spmi->interface_type = type;
if (gpe_interrupt >= 0 && gpe_interrupt < 32) {
spmi->gpe = gpe_interrupt;
spmi->interrupt_type |= ACPI_IPMI_INT_TYPE_SCI;
}
if (apic_interrupt > 0) {
spmi->global_system_interrupt = apic_interrupt;
spmi->interrupt_type |= ACPI_IPMI_INT_TYPE_APIC;
}
/* Calculate checksum. */
header->checksum = acpi_checksum((void *)spmi, header->length);
}
void acpi_create_ivrs(acpi_ivrs_t *ivrs,
unsigned long (*acpi_fill_ivrs)(acpi_ivrs_t *ivrs_struct,
unsigned long current))
{
acpi_header_t *header = &(ivrs->header);
unsigned long current = (unsigned long)ivrs + sizeof(acpi_ivrs_t);
memset((void *)ivrs, 0, sizeof(acpi_ivrs_t));
if (acpi_fill_header(header, "IVRS", IVRS, sizeof(acpi_ivrs_t)) != CB_SUCCESS)
return;
current = acpi_fill_ivrs(ivrs, current);
/* (Re)calculate length and checksum. */
header->length = current - (unsigned long)ivrs;
header->checksum = acpi_checksum((void *)ivrs, header->length);
}
void acpi_create_crat(struct acpi_crat_header *crat,
unsigned long (*acpi_fill_crat)(struct acpi_crat_header *crat_struct,
unsigned long current))
{
acpi_header_t *header = &(crat->header);
unsigned long current = (unsigned long)crat + sizeof(struct acpi_crat_header);
memset((void *)crat, 0, sizeof(struct acpi_crat_header));
if (acpi_fill_header(header, "CRAT", CRAT, sizeof(struct acpi_crat_header)) != CB_SUCCESS)
return;
current = acpi_fill_crat(crat, current);
/* (Re)calculate length and checksum. */
header->length = current - (unsigned long)crat;
header->checksum = acpi_checksum((void *)crat, header->length);
}
static void acpi_create_dbg2(acpi_dbg2_header_t *dbg2,
int port_type, int port_subtype,
acpi_addr_t *address, uint32_t address_size,
const char *device_path)
{
uintptr_t current;
acpi_dbg2_device_t *device;
uint32_t *dbg2_addr_size;
acpi_header_t *header;
size_t path_len;
const char *path;
char *namespace;
/* Fill out header fields. */
current = (uintptr_t)dbg2;
memset(dbg2, 0, sizeof(acpi_dbg2_header_t));
header = &(dbg2->header);
if (acpi_fill_header(header, "DBG2", DBG2, sizeof(acpi_dbg2_header_t)) != CB_SUCCESS)
return;
/* One debug device defined */
dbg2->devices_offset = sizeof(acpi_dbg2_header_t);
dbg2->devices_count = 1;
current += sizeof(acpi_dbg2_header_t);
/* Device comes after the header */
device = (acpi_dbg2_device_t *)current;
memset(device, 0, sizeof(acpi_dbg2_device_t));
current += sizeof(acpi_dbg2_device_t);
device->revision = 0;
device->address_count = 1;
device->port_type = port_type;
device->port_subtype = port_subtype;
/* Base Address comes after device structure */
memcpy((void *)current, address, sizeof(acpi_addr_t));
device->base_address_offset = current - (uintptr_t)device;
current += sizeof(acpi_addr_t);
/* Address Size comes after address structure */
dbg2_addr_size = (uint32_t *)current;
device->address_size_offset = current - (uintptr_t)device;
*dbg2_addr_size = address_size;
current += sizeof(uint32_t);
/* Namespace string comes last, use '.' if not provided */
path = device_path ? : ".";
/* Namespace string length includes NULL terminator */
path_len = strlen(path) + 1;
namespace = (char *)current;
device->namespace_string_length = path_len;
device->namespace_string_offset = current - (uintptr_t)device;
strncpy(namespace, path, path_len);
current += path_len;
/* Update structure lengths and checksum */
device->length = current - (uintptr_t)device;
header->length = current - (uintptr_t)dbg2;
header->checksum = acpi_checksum((uint8_t *)dbg2, header->length);
}
static unsigned long acpi_write_dbg2_uart(acpi_rsdp_t *rsdp, unsigned long current,
int space_id, uint64_t base, uint32_t size,
int access_size, const char *name)
{
acpi_dbg2_header_t *dbg2 = (acpi_dbg2_header_t *)current;
acpi_addr_t address;
memset(&address, 0, sizeof(address));
address.space_id = space_id;
address.addrl = (uint32_t)base;
address.addrh = (uint32_t)((base >> 32) & 0xffffffff);
address.access_size = access_size;
int subtype;
/* 16550-compatible with parameters defined in Generic Address Structure */
if (CONFIG(DRIVERS_UART_8250IO) || CONFIG(DRIVERS_UART_8250MEM))
subtype = ACPI_DBG2_PORT_SERIAL_16550;
else if (CONFIG(DRIVERS_UART_PL011))
subtype = ACPI_DBG2_PORT_SERIAL_ARM_PL011;
else
return current;
acpi_create_dbg2(dbg2,
ACPI_DBG2_PORT_SERIAL,
subtype,
&address, size,
name);
if (dbg2->header.length) {
current += dbg2->header.length;
current = acpi_align_current(current);
acpi_add_table(rsdp, dbg2);
}
return current;
}
unsigned long acpi_write_dbg2_pci_uart(acpi_rsdp_t *rsdp, unsigned long current,
const struct device *dev, uint8_t access_size)
{
struct resource *res;
if (!dev) {
printk(BIOS_DEBUG, "%s: Device not found\n", __func__);
return current;
}
if (!dev->enabled) {
printk(BIOS_INFO, "%s: Device not enabled\n", __func__);
return current;
}
res = probe_resource(dev, PCI_BASE_ADDRESS_0);
if (!res) {
printk(BIOS_ERR, "%s: Unable to find resource for %s\n",
__func__, dev_path(dev));
return current;
}
int space_id;
if (res->flags & IORESOURCE_IO)
space_id = ACPI_ADDRESS_SPACE_IO;
else if (res->flags & IORESOURCE_MEM)
space_id = ACPI_ADDRESS_SPACE_MEMORY;
else {
printk(BIOS_ERR, "%s: Unknown address space type\n", __func__);
return current;
}
return acpi_write_dbg2_uart(rsdp, current, space_id, res->base, res->size, access_size, acpi_device_path(dev));
}
unsigned long acpi_pl011_write_dbg2_uart(acpi_rsdp_t *rsdp, unsigned long current,
uint64_t base, const char *name)
{
return acpi_write_dbg2_uart(rsdp, current, ACPI_ADDRESS_SPACE_MEMORY, base,
sizeof(struct pl011_uart), ACPI_ACCESS_SIZE_DWORD_ACCESS,
name);
}
static void acpi_create_facs(void *header)
{
acpi_facs_t *facs = header;
memcpy(facs->signature, "FACS", 4);
facs->length = sizeof(acpi_facs_t);
facs->hardware_signature = 0;
facs->firmware_waking_vector = 0;
facs->global_lock = 0;
facs->flags = 0;
facs->x_firmware_waking_vector_l = 0;
facs->x_firmware_waking_vector_h = 0;
facs->version = get_acpi_table_revision(FACS);
}
static void acpi_write_rsdt(acpi_rsdt_t *rsdt, char *oem_id, char *oem_table_id)
{
acpi_header_t *header = &(rsdt->header);
if (acpi_fill_header(header, "RSDT", RSDT, sizeof(acpi_rsdt_t)) != CB_SUCCESS)
return;
/* Entries are filled in later, we come with an empty set. */
/* Fix checksum. */
header->checksum = acpi_checksum((void *)rsdt, sizeof(acpi_rsdt_t));
}
static void acpi_write_xsdt(acpi_xsdt_t *xsdt, char *oem_id, char *oem_table_id)
{
acpi_header_t *header = &(xsdt->header);
if (acpi_fill_header(header, "XSDT", XSDT, sizeof(acpi_xsdt_t)) != CB_SUCCESS)
return;
/* Entries are filled in later, we come with an empty set. */
/* Fix checksum. */
header->checksum = acpi_checksum((void *)xsdt, sizeof(acpi_xsdt_t));
}
static void acpi_write_rsdp(acpi_rsdp_t *rsdp, acpi_rsdt_t *rsdt,
acpi_xsdt_t *xsdt, char *oem_id)
{
memset(rsdp, 0, sizeof(acpi_rsdp_t));
memcpy(rsdp->signature, RSDP_SIG, 8);
memcpy(rsdp->oem_id, oem_id, 6);
rsdp->length = sizeof(acpi_rsdp_t);
rsdp->rsdt_address = (uintptr_t)rsdt;
/*
* Revision: ACPI 1.0: 0, ACPI 2.0/3.0/4.0: 2.
*
* Some OSes expect an XSDT to be present for RSD PTR revisions >= 2.
* If we don't have an ACPI XSDT, force ACPI 1.0 (and thus RSD PTR
* revision 0).
*/
if (xsdt == NULL) {
rsdp->revision = 0;
} else {
rsdp->xsdt_address = (u64)(uintptr_t)xsdt;
rsdp->revision = get_acpi_table_revision(RSDP);
}
/* Calculate checksums. */
rsdp->checksum = acpi_checksum((void *)rsdp, 20);
rsdp->ext_checksum = acpi_checksum((void *)rsdp, sizeof(acpi_rsdp_t));
}
unsigned long acpi_create_hest_error_source(acpi_hest_t *hest,
acpi_hest_esd_t *esd, u16 type, void *data, u16 data_len)
{
acpi_header_t *header = &(hest->header);
acpi_hest_hen_t *hen;
void *pos;
u16 len;
pos = esd;
memset(pos, 0, sizeof(acpi_hest_esd_t));
len = 0;
esd->type = type; /* MCE */
esd->source_id = hest->error_source_count;
esd->flags = 0; /* FIRMWARE_FIRST */
esd->enabled = 1;
esd->prealloc_erecords = 1;
esd->max_section_per_record = 0x1;
len += sizeof(acpi_hest_esd_t);
pos = esd + 1;
switch (type) {
case 0: /* MCE */
break;
case 1: /* CMC */
hen = (acpi_hest_hen_t *)(pos);
memset(pos, 0, sizeof(acpi_hest_hen_t));
hen->type = 3; /* SCI? */
hen->length = sizeof(acpi_hest_hen_t);
hen->conf_we = 0; /* Configuration Write Enable. */
hen->poll_interval = 0;
hen->vector = 0;
hen->sw2poll_threshold_val = 0;
hen->sw2poll_threshold_win = 0;
hen->error_threshold_val = 0;
hen->error_threshold_win = 0;
len += sizeof(acpi_hest_hen_t);
pos = hen + 1;
break;
case 2: /* NMI */
case 6: /* AER Root Port */
case 7: /* AER Endpoint */
case 8: /* AER Bridge */
case 9: /* Generic Hardware Error Source. */
/* TODO: */
break;
default:
printk(BIOS_DEBUG, "Invalid type of Error Source.");
break;
}
hest->error_source_count++;
memcpy(pos, data, data_len);
len += data_len;
if (header)
header->length += len;
return len;
}
/* ACPI 4.0 */
void acpi_write_hest(acpi_hest_t *hest,
unsigned long (*acpi_fill_hest)(acpi_hest_t *hest))
{
acpi_header_t *header = &(hest->header);
memset(hest, 0, sizeof(acpi_hest_t));
if (acpi_fill_header(header, "HEST", HEST, sizeof(acpi_hest_t)) != CB_SUCCESS)
return;
acpi_fill_hest(hest);
/* Calculate checksums. */
header->checksum = acpi_checksum((void *)hest, header->length);
}
/* ACPI 3.0b */
static void acpi_create_bert(acpi_header_t *header, void *unused)
{
if (!CONFIG(ACPI_BERT))
return;
acpi_bert_t *bert = (acpi_bert_t *)header;
void *region;
size_t size;
if (acpi_soc_get_bert_region(&region, &size) != CB_SUCCESS)
return;
if (acpi_fill_header(header, "BERT", BERT, sizeof(acpi_bert_t)) != CB_SUCCESS)
return;
bert->error_region = (uintptr_t)region;
bert->region_length = (size_t)size;
}
__weak void arch_fill_fadt(acpi_fadt_t *fadt) { }
__weak void soc_fill_fadt(acpi_fadt_t *fadt) { }
__weak void mainboard_fill_fadt(acpi_fadt_t *fadt) { }
static acpi_header_t *dsdt;
static void acpi_create_fadt(acpi_header_t *header, void *arg1)
{
acpi_fadt_t *fadt = (acpi_fadt_t *)header;
acpi_facs_t *facs = (acpi_facs_t *)(*(acpi_facs_t **)arg1);
if (acpi_fill_header(header, "FACP", FADT, sizeof(acpi_fadt_t)) != CB_SUCCESS)
return;
fadt->FADT_MinorVersion = get_acpi_fadt_minor_version();
if ((uintptr_t)facs <= UINT32_MAX)
fadt->firmware_ctrl = (uintptr_t)facs;
else
fadt->x_firmware_ctl_h = (uint32_t)((uint64_t)(uintptr_t)facs >> 32);
fadt->x_firmware_ctl_l = (uint32_t)(uintptr_t)facs;
if ((uintptr_t)dsdt <= UINT32_MAX)
fadt->dsdt = (uintptr_t)dsdt;
else
fadt->x_dsdt_h = (uint32_t)((uint64_t)(uintptr_t)dsdt >> 32);
fadt->x_dsdt_l = (uint32_t)(uintptr_t)dsdt;
/* should be 0 ACPI 3.0 */
fadt->reserved = 0;
/* P_LVLx latencies are not used as CPU _CST will override them. */
fadt->p_lvl2_lat = ACPI_FADT_C2_NOT_SUPPORTED;
fadt->p_lvl3_lat = ACPI_FADT_C3_NOT_SUPPORTED;
/* Use CPU _PTC instead to provide P_CNT details. */
fadt->duty_offset = 0;
fadt->duty_width = 0;
fadt->preferred_pm_profile = acpi_get_preferred_pm_profile();
arch_fill_fadt(fadt);
acpi_fill_fadt(fadt);
soc_fill_fadt(fadt);
mainboard_fill_fadt(fadt);
}
static void acpi_create_lpit(acpi_header_t *header, void *unused)
{
if (!CONFIG(ACPI_LPIT))
return;
acpi_lpit_t *lpit = (acpi_lpit_t *)header;
unsigned long current = (unsigned long)lpit + sizeof(acpi_lpit_t);
if (acpi_fill_header(header, "LPIT", LPIT, sizeof(acpi_lpit_t)) != CB_SUCCESS)
return;
current = acpi_fill_lpit(current);
/* (Re)calculate length. */
header->length = current - (unsigned long)lpit;
}
static void acpi_create_gtdt(acpi_header_t *header, void *unused)
{
if (!CONFIG(ACPI_GTDT))
return;
acpi_gtdt_t *gtdt = (acpi_gtdt_t *)header;
unsigned long current = (unsigned long)gtdt + sizeof(acpi_gtdt_t);
if (acpi_fill_header(header, "GTDT", GTDT, sizeof(acpi_gtdt_t)) != CB_SUCCESS)
return;
/* Fill out header fields. */
gtdt->platform_timer_offset = sizeof(acpi_gtdt_t);
acpi_soc_fill_gtdt(gtdt);
current = acpi_soc_gtdt_add_timers(&gtdt->platform_timer_count, current);
/* (Re)calculate length. */
header->length = current - (unsigned long)gtdt;
}
unsigned long acpi_gtdt_add_timer_block(unsigned long current, const uint64_t address,
struct acpi_gtdt_timer_entry *timers, size_t number)
{
struct acpi_gtdt_timer_block *block = (struct acpi_gtdt_timer_block *)current;
memset(block, 0, sizeof(struct acpi_gtdt_timer_block));
assert(number < 8 && number != 0);
const size_t entries_size = number * sizeof(struct acpi_gtdt_timer_entry);
block->header.type = ACPI_GTDT_TYPE_TIMER_BLOCK;
block->header.length = sizeof(struct acpi_gtdt_timer_block)
+ entries_size;
block->block_address = address;
block->timer_count = number;
block->timer_offset = sizeof(struct acpi_gtdt_timer_block);
current += sizeof(struct acpi_gtdt_timer_block);
memcpy((void *)current, timers, entries_size);
current += entries_size;
return current;
}
unsigned long acpi_gtdt_add_watchdog(unsigned long current, uint64_t refresh_frame,
uint64_t control_frame, uint32_t gsiv, uint32_t flags)
{
struct acpi_gtdt_watchdog *wd = (struct acpi_gtdt_watchdog *)current;
memset(wd, 0, sizeof(struct acpi_gtdt_watchdog));
wd->header.type = ACPI_GTDT_TYPE_WATCHDOG;
wd->header.length = sizeof(struct acpi_gtdt_watchdog);
wd->refresh_frame_address = refresh_frame;
wd->control_frame_address = control_frame;
wd->timer_interrupt = gsiv;
wd->timer_flags = flags;
return current + sizeof(struct acpi_gtdt_watchdog);
}
unsigned long acpi_create_lpi_desc_ncst(acpi_lpi_desc_ncst_t *lpi_desc, uint16_t uid)
{
memset(lpi_desc, 0, sizeof(acpi_lpi_desc_ncst_t));
lpi_desc->header.length = sizeof(acpi_lpi_desc_ncst_t);
lpi_desc->header.type = ACPI_LPI_DESC_TYPE_NATIVE_CSTATE;
lpi_desc->header.uid = uid;
return lpi_desc->header.length;
}
static uint8_t acpi_spcr_type(void)
{
/* 16550-compatible with parameters defined in Generic Address Structure */
if (CONFIG(DRIVERS_UART_8250IO) || CONFIG(DRIVERS_UART_8250MEM))
return 0x12;
if (CONFIG(DRIVERS_UART_PL011))
return 0x3;
printk(BIOS_ERR, "%s: unknown serial type\n", __func__);
return 0xff;
}
static void acpi_create_spcr(acpi_header_t *header, void *unused)
{
acpi_spcr_t *spcr = (acpi_spcr_t *)header;
struct lb_serial serial;
if (!CONFIG(CONSOLE_SERIAL))
return;
if (fill_lb_serial(&serial) != CB_SUCCESS)
return;
if (acpi_fill_header(header, "SPCR", SPCR, sizeof(acpi_spcr_t)) != CB_SUCCESS)
return;
spcr->interface_type = acpi_spcr_type();
assert(serial.type == LB_SERIAL_TYPE_IO_MAPPED
|| serial.type == LB_SERIAL_TYPE_MEMORY_MAPPED);
spcr->base_address.space_id = serial.type == LB_SERIAL_TYPE_IO_MAPPED ?
ACPI_ADDRESS_SPACE_IO : ACPI_ADDRESS_SPACE_MEMORY;
spcr->base_address.bit_width = serial.regwidth * 8;
spcr->base_address.bit_offset = 0;
switch (serial.regwidth) {
case 1:
spcr->base_address.access_size = ACPI_ACCESS_SIZE_BYTE_ACCESS;
break;
case 2:
spcr->base_address.access_size = ACPI_ACCESS_SIZE_WORD_ACCESS;
break;
case 4:
spcr->base_address.access_size = ACPI_ACCESS_SIZE_DWORD_ACCESS;
break;
default:
printk(BIOS_ERR, "%s, Invalid serial regwidth\n", __func__);
}
spcr->base_address.addrl = serial.baseaddr;
spcr->base_address.addrh = 0;
spcr->interrupt_type = 0;
spcr->irq = 0;
spcr->configured_baudrate = 0; /* Have the OS use whatever is currently set */
spcr->parity = 0;
spcr->stop_bits = 1;
spcr->flow_control = 0;
spcr->terminal_type = 2; /* 2 = VT-UTF8 */
spcr->language = 0;
spcr->pci_did = 0xffff;
spcr->pci_vid = 0xffff;
header->checksum = acpi_checksum((void *)spcr, header->length);
}
unsigned long __weak fw_cfg_acpi_tables(unsigned long start)
{
return 0;
}
void preload_acpi_dsdt(void)
{
const char *file = CONFIG_CBFS_PREFIX "/dsdt.aml";
if (!CONFIG(CBFS_PRELOAD))
return;
printk(BIOS_DEBUG, "Preloading %s\n", file);
cbfs_preload(file);
}
static void acpi_create_dsdt(acpi_header_t *header, void *dsdt_file_arg)
{
dsdt = header;
acpi_header_t *dsdt_file = *(acpi_header_t **)dsdt_file_arg;
unsigned long current = (unsigned long)header;
dsdt = (acpi_header_t *)current;
memcpy(dsdt, dsdt_file, sizeof(acpi_header_t));
if (dsdt->length >= sizeof(acpi_header_t)) {
current += sizeof(acpi_header_t);
acpigen_set_current((char *)current);
if (CONFIG(ACPI_SOC_NVS))
acpi_fill_gnvs();
if (CONFIG(CHROMEOS_NVS))
acpi_fill_cnvs();
for (const struct device *dev = all_devices; dev; dev = dev->next)
if (dev->ops && dev->ops->acpi_inject_dsdt)
dev->ops->acpi_inject_dsdt(dev);
current = (unsigned long)acpigen_get_current();
memcpy((char *)current,
(char *)dsdt_file + sizeof(acpi_header_t),
dsdt->length - sizeof(acpi_header_t));
current += dsdt->length - sizeof(acpi_header_t);
/* (Re)calculate length. */
dsdt->length = current - (unsigned long)dsdt;
}
}
static void acpi_create_slic(acpi_header_t *header, void *slic_file_arg)
{
acpi_header_t *slic_file = *(acpi_header_t **)slic_file_arg;
acpi_header_t *slic = header;
if (slic_file)
memcpy(slic, slic_file, slic_file->length);
}
static uintptr_t coreboot_rsdp;
uintptr_t get_coreboot_rsdp(void)
{
return coreboot_rsdp;
}
static void acpixtract_compatible_hexdump(const void *memory, size_t length)
{
size_t i, j;
uint8_t *line;
size_t num_bytes;
for (i = 0; i < length; i += 16) {
num_bytes = MIN(length - i, 16);
line = ((uint8_t *)memory) + i;
printk(BIOS_SPEW, " %04zX:", i);
for (j = 0; j < num_bytes; j++)
printk(BIOS_SPEW, " %02x", line[j]);
for (; j < 16; j++)
printk(BIOS_SPEW, " ");
printk(BIOS_SPEW, " ");
for (j = 0; j < num_bytes; j++)
printk(BIOS_SPEW, "%c",
isprint(line[j]) ? line[j] : '.');
printk(BIOS_SPEW, "\n");
}
}
static void acpidump_print(void *table_ptr)
{
const acpi_header_t *header = (acpi_header_t *)table_ptr;
const size_t table_size = header->length;
printk(BIOS_SPEW, "%.4s @ 0x0000000000000000\n", header->signature);
acpixtract_compatible_hexdump(table_ptr, table_size);
printk(BIOS_SPEW, "\n");
}
unsigned long write_acpi_tables(const unsigned long start)
{
unsigned long current;
acpi_rsdp_t *rsdp;
acpi_rsdt_t *rsdt = NULL;
acpi_xsdt_t *xsdt = NULL;
acpi_facs_t *facs = NULL;
acpi_header_t *slic_file;
acpi_header_t *ssdt = NULL;
acpi_header_t *dsdt_file;
struct device *dev;
unsigned long fw;
size_t slic_size, dsdt_size;
char oem_id[6], oem_table_id[8];
const struct acpi_table_generator {
void (*create_table)(acpi_header_t *table, void *arg);
void *args;
size_t min_size;
} tables[] = {
{ acpi_create_dsdt, &dsdt_file, sizeof(acpi_header_t) },
{ acpi_create_fadt, &facs, sizeof(acpi_fadt_t) },
{ acpi_create_slic, &slic_file, sizeof(acpi_header_t) },
{ acpi_create_ssdt_generator, NULL, sizeof(acpi_header_t) },
{ acpi_create_mcfg, NULL, sizeof(acpi_mcfg_t) },
{ acpi_create_tcpa, NULL, sizeof(acpi_tcpa_t) },
{ acpi_create_tpm2, NULL, sizeof(acpi_tpm2_t) },
{ acpi_create_lpit, NULL, sizeof(acpi_lpit_t) },
{ acpi_create_madt, NULL, sizeof(acpi_header_t) },
{ acpi_create_bert, NULL, sizeof(acpi_bert_t) },
{ acpi_create_spcr, NULL, sizeof(acpi_spcr_t) },
{ acpi_create_gtdt, NULL, sizeof(acpi_gtdt_t) },
};
current = start;
/* Align ACPI tables to 16byte */
current = acpi_align_current(current);
/* Special case for qemu */
fw = fw_cfg_acpi_tables(current);
if (fw) {
rsdp = NULL;
/* Find RSDP. */
for (void *p = (void *)current; p < (void *)fw; p += 16) {
if (valid_rsdp((acpi_rsdp_t *)p)) {
rsdp = p;
coreboot_rsdp = (uintptr_t)rsdp;
break;
}
}
if (!rsdp)
return fw;
current = fw;
current = acpi_align_current(current);
if (rsdp->xsdt_address == 0) {
xsdt = (acpi_xsdt_t *)current;
current += sizeof(acpi_xsdt_t);
current = acpi_align_current(current);
/*
* Qemu only creates an RSDT.
* Add an XSDT based on the existing RSDT entries.
*/
acpi_rsdt_t *existing_rsdt = (acpi_rsdt_t *)(uintptr_t)rsdp->rsdt_address;
acpi_write_rsdp(rsdp, existing_rsdt, xsdt, oem_id);
acpi_write_xsdt(xsdt, oem_id, oem_table_id);
/*
* Copy existing entries to the new XSDT. This will override existing
* RSDT entries with the same value.
*/
for (int i = 0; existing_rsdt->entry[i]; i++)
acpi_add_table(rsdp, (void *)(uintptr_t)existing_rsdt->entry[i]);
}
/* Add BOOT0000 for Linux google firmware driver */
printk(BIOS_DEBUG, "ACPI: * SSDT\n");
ssdt = (acpi_header_t *)current;
current += sizeof(acpi_header_t);
memset((void *)ssdt, 0, sizeof(acpi_header_t));
memcpy(&ssdt->signature, "SSDT", 4);
ssdt->revision = get_acpi_table_revision(SSDT);
memcpy(&ssdt->oem_id, OEM_ID, 6);
memcpy(&ssdt->oem_table_id, oem_table_id, 8);
ssdt->oem_revision = 42;
memcpy(&ssdt->asl_compiler_id, ASLC, 4);
ssdt->asl_compiler_revision = asl_revision;
ssdt->length = sizeof(acpi_header_t);
acpigen_set_current((char *)current);
/* Write object to declare coreboot tables */
acpi_ssdt_write_cbtable();
/* (Re)calculate length and checksum. */
ssdt->length = current - (unsigned long)ssdt;
ssdt->checksum = acpi_checksum((void *)ssdt, ssdt->length);
acpi_create_ssdt_generator(ssdt, NULL);
acpi_add_table(rsdp, ssdt);
return fw;
}
dsdt_file = cbfs_map(CONFIG_CBFS_PREFIX "/dsdt.aml", &dsdt_size);
if (!dsdt_file) {
printk(BIOS_ERR, "No DSDT file, skipping ACPI tables\n");
return start;
}
if (dsdt_file->length > dsdt_size
|| dsdt_file->length < sizeof(acpi_header_t)
|| memcmp(dsdt_file->signature, "DSDT", 4) != 0) {
printk(BIOS_ERR, "Invalid DSDT file, skipping ACPI tables\n");
cbfs_unmap(dsdt_file);
return start;
}
slic_file = cbfs_map(CONFIG_CBFS_PREFIX "/slic", &slic_size);
if (slic_file
&& (slic_file->length > slic_size
|| slic_file->length < sizeof(acpi_header_t)
|| (memcmp(slic_file->signature, "SLIC", 4) != 0
&& memcmp(slic_file->signature, "MSDM", 4) != 0))) {
cbfs_unmap(slic_file);
slic_file = 0;
}
if (slic_file) {
memcpy(oem_id, slic_file->oem_id, 6);
memcpy(oem_table_id, slic_file->oem_table_id, 8);
} else {
memcpy(oem_id, OEM_ID, 6);
memcpy(oem_table_id, ACPI_TABLE_CREATOR, 8);
}
printk(BIOS_INFO, "ACPI: Writing ACPI tables at %lx.\n", start);
/* We need at least an RSDP, RSDT for ACPI 1.0 compat, otherwise XSDT */
rsdp = (acpi_rsdp_t *)current;
coreboot_rsdp = (uintptr_t)rsdp;
current += sizeof(acpi_rsdp_t);
current = acpi_align_current(current);
if (current + sizeof(acpi_rsdt_t) - 1 <= UINT32_MAX) {
rsdt = (acpi_rsdt_t *)current;
current += sizeof(acpi_rsdt_t);
current = acpi_align_current(current);
} else {
printk(BIOS_INFO, "Not adding RSDT because tables reside above 4G.");
}
xsdt = (acpi_xsdt_t *)current;
current += sizeof(acpi_xsdt_t);
current = acpi_align_current(current);
/* clear all table memory */
memset((void *)start, 0, current - start);
acpi_write_rsdp(rsdp, rsdt, xsdt, oem_id);
acpi_write_rsdt(rsdt, oem_id, oem_table_id);
acpi_write_xsdt(xsdt, oem_id, oem_table_id);
if (ENV_X86) {
printk(BIOS_DEBUG, "ACPI: * FACS\n");
current = ALIGN_UP(current, 64);
facs = (acpi_facs_t *)current;
current += sizeof(acpi_facs_t);
current = acpi_align_current(current);
acpi_create_facs(facs);
}
for (size_t i = 0; i < ARRAY_SIZE(tables); i++) {
acpi_header_t *header = (acpi_header_t *)current;
memset(header, 0, tables[i].min_size);
tables[i].create_table(header, tables[i].args);
if (header->length < tables[i].min_size)
continue;
header->checksum = 0;
header->checksum = acpi_checksum((void *)header, header->length);
current += header->length;
current = acpi_align_current(current);
if (tables[i].create_table == acpi_create_dsdt)
continue;
printk(BIOS_DEBUG, "ACPI: * %.4s\n", header->signature);
acpi_add_table(rsdp, header);
}
/*
* cbfs_unmap() uses mem_pool_free() which works correctly only
* if freeing is done in reverse order than memory allocation.
* This is why unmapping of dsdt_file must be done after
* unmapping slic file.
*/
cbfs_unmap(slic_file);
cbfs_unmap(dsdt_file);
printk(BIOS_DEBUG, "current = %lx\n", current);
for (dev = all_devices; dev; dev = dev->next) {
if (dev->ops && dev->ops->write_acpi_tables) {
current = dev->ops->write_acpi_tables(dev, current,
rsdp);
current = acpi_align_current(current);
}
}
printk(BIOS_INFO, "ACPI: done.\n");
if (CONFIG(DEBUG_ACPICA_COMPATIBLE)) {
printk(BIOS_DEBUG, "Printing ACPI tables in ACPICA compatible format\n");
if (facs)
acpidump_print(facs);
acpidump_print(dsdt);
for (size_t i = 0; xsdt->entry[i] != 0; i++) {
acpidump_print((void *)(uintptr_t)xsdt->entry[i]);
}
printk(BIOS_DEBUG, "Done printing ACPI tables in ACPICA compatible format\n");
}
return current;
}
static acpi_rsdp_t *valid_rsdp(acpi_rsdp_t *rsdp)
{
if (strncmp((char *)rsdp, RSDP_SIG, sizeof(RSDP_SIG) - 1) != 0)
return NULL;
printk(BIOS_DEBUG, "Looking on %p for valid checksum\n", rsdp);
if (acpi_checksum((void *)rsdp, 20) != 0)
return NULL;
printk(BIOS_DEBUG, "Checksum 1 passed\n");
if ((rsdp->revision > 1) && (acpi_checksum((void *)rsdp,
rsdp->length) != 0))
return NULL;
printk(BIOS_DEBUG, "Checksum 2 passed all OK\n");
return rsdp;
}
void *acpi_find_wakeup_vector(void)
{
char *p, *end;
acpi_xsdt_t *xsdt;
acpi_facs_t *facs;
acpi_fadt_t *fadt = NULL;
acpi_rsdp_t *rsdp = NULL;
void *wake_vec;
int i;
if (!acpi_is_wakeup_s3())
return NULL;
printk(BIOS_DEBUG, "Trying to find the wakeup vector...\n");
/* Find RSDP. */
for (p = (char *)0xe0000; p < (char *)0xfffff; p += 16) {
rsdp = valid_rsdp((acpi_rsdp_t *)p);
if (rsdp)
break;
}
if (rsdp == NULL) {
printk(BIOS_ALERT,
"No RSDP found, wake up from S3 not possible.\n");
return NULL;
}
printk(BIOS_DEBUG, "RSDP found at %p\n", rsdp);
xsdt = (acpi_xsdt_t *)(uintptr_t)rsdp->xsdt_address;
end = (char *)xsdt + xsdt->header.length;
printk(BIOS_DEBUG, "XSDT found at %p ends at %p\n", xsdt, end);
for (i = 0; ((char *)&xsdt->entry[i]) < end; i++) {
fadt = (acpi_fadt_t *)(uintptr_t)xsdt->entry[i];
if (strncmp((char *)fadt, "FACP", 4) == 0)
break;
fadt = NULL;
}
if (fadt == NULL) {
printk(BIOS_ALERT,
"No FADT found, wake up from S3 not possible.\n");
return NULL;
}
printk(BIOS_DEBUG, "FADT found at %p\n", fadt);
facs = (acpi_facs_t *)(uintptr_t)((uint64_t)fadt->x_firmware_ctl_l
| (uint64_t)fadt->x_firmware_ctl_h << 32);
if (facs == NULL) {
printk(BIOS_ALERT,
"No FACS found, wake up from S3 not possible.\n");
return NULL;
}
printk(BIOS_DEBUG, "FACS found at %p\n", facs);
wake_vec = (void *)(uintptr_t)facs->firmware_waking_vector;
printk(BIOS_DEBUG, "OS waking vector is %p\n", wake_vec);
return wake_vec;
}
__weak int acpi_get_gpe(int gpe)
{
return -1; /* implemented by SOC */
}
u8 get_acpi_fadt_minor_version(void)
{
return ACPI_FADT_MINOR_VERSION_0;
}
int get_acpi_table_revision(enum acpi_tables table)
{
switch (table) {
case FADT:
return ACPI_FADT_REV_ACPI_6;
case MADT: /* ACPI 3.0: 2, ACPI 4.0/5.0: 3, ACPI 6.2b/6.3: 5 */
return 3;
case MCFG:
return 1;
case TCPA:
return 2;
case TPM2:
return 4;
case SSDT: /* ACPI 3.0 up to 6.3: 2 */
return 2;
case SRAT: /* ACPI 2.0: 1, ACPI 3.0: 2, ACPI 4.0 up to 6.4: 3 */
return 3;
case HMAT: /* ACPI 6.4: 2 */
return 2;
case DMAR:
return 1;
case SLIT: /* ACPI 2.0 up to 6.3: 1 */
return 1;
case SPMI: /* IMPI 2.0 */
return 5;
case HPET: /* Currently 1. Table added in ACPI 2.0. */
return 1;
case VFCT: /* ACPI 2.0/3.0/4.0: 1 */
return 1;
case IVRS:
return IVRS_FORMAT_MIXED;
case DBG2:
return 0;
case FACS: /* ACPI 2.0/3.0: 1, ACPI 4.0 up to 6.3: 2 */
return 1;
case RSDT: /* ACPI 1.0 up to 6.3: 1 */
return 1;
case XSDT: /* ACPI 2.0 up to 6.3: 1 */
return 1;
case RSDP: /* ACPI 2.0 up to 6.3: 2 */
return 2;
case EINJ:
return 1;
case HEST:
return 1;
case NHLT:
return 5;
case BERT:
return 1;
case CEDT: /* CXL 3.0 section 9.17.1 */
return 1;
case CRAT:
return 1;
case LPIT: /* ACPI 5.1 up to 6.3: 0 */
return 0;
case SPCR:
return 4;
case GTDT:
return 3;
default:
return -1;
}
return -1;
}