blob: 5130b599f9dc714a8aaf39e1f36cf3a93e9cc117 [file] [log] [blame]
/*
* This file is part of the coreboot project.
*
* Copyright (C) 2012 secunet Security Networks AG
* (Written by Nico Huber <nico.huber@secunet.com> for secunet)
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include <stdint.h>
#include <arch/io.h>
#include <console/console.h>
#include "gm45.h"
#define CxRECy_MCHBAR(x, y) (0x14a0 + (x * 0x0100) + ((3 - y) * 4))
#define CxRECy_SHIFT_L 0
#define CxRECy_MASK_L (3 << CxRECy_SHIFT_L)
#define CxRECy_SHIFT_H 16
#define CxRECy_MASK_H (3 << CxRECy_SHIFT_H)
#define CxRECy_T_SHIFT 28
#define CxRECy_T_MASK (0xf << CxRECy_T_SHIFT)
#define CxRECy_T(t) ((t << CxRECy_T_SHIFT) & CxRECy_T_MASK)
#define CxRECy_P_SHIFT 24
#define CxRECy_P_MASK (0x7 << CxRECy_P_SHIFT)
#define CxRECy_P(p) ((p << CxRECy_P_SHIFT) & CxRECy_P_MASK)
#define CxRECy_PH_SHIFT 22
#define CxRECy_PH_MASK (0x3 << CxRECy_PH_SHIFT)
#define CxRECy_PH(p) ((p << CxRECy_PH_SHIFT) & CxRECy_PH_MASK)
#define CxRECy_PM_SHIFT 20
#define CxRECy_PM_MASK (0x3 << CxRECy_PM_SHIFT)
#define CxRECy_PM(p) ((p << CxRECy_PM_SHIFT) & CxRECy_PM_MASK)
#define CxRECy_TIMING_MASK (CxRECy_T_MASK | CxRECy_P_MASK | \
CxRECy_PH_MASK | CxRECy_PM_MASK)
#define CxDRT3_C_SHIFT 7
#define CxDRT3_C_MASK (0xf << CxDRT3_C_SHIFT)
#define CxDRT3_C(c) ((c << CxDRT3_C_SHIFT) & CxDRT3_C_MASK)
/* group to byte-lane mapping: (cardF X group X 2 per group) */
static const char bytelane_map[2][4][2] = {
/* A,B,C */{ { 0, 1 }, { 2, 3 }, { 4, 5 }, { 6, 7 } },
/* F */{ { 0, 2 }, { 1, 3 }, { 4, 6 }, { 5, 7 } },
};
#define PH_BOUND 4
#define PH_STEP 2
#define PM_BOUND 3
#define C_BOUND 16
typedef struct {
int c;
int pre;
int ph;
int t;
const int t_bound;
int p;
const int p_bound;
} rec_timing_t;
static void normalize_rec_timing(rec_timing_t *const timing)
{
while (timing->p >= timing->p_bound) {
timing->t++;
timing->p -= timing->p_bound;
}
while (timing->p < 0) {
timing->t--;
timing->p += timing->p_bound;
}
while (timing->t >= timing->t_bound) {
timing->ph += PH_STEP;
timing->t -= timing->t_bound;
}
while (timing->t < 0) {
timing->ph -= PH_STEP;
timing->t += timing->t_bound;
}
while (timing->ph >= PH_BOUND) {
timing->c++;
timing->ph -= PH_BOUND;
}
while (timing->ph < 0) {
timing->c--;
timing->ph += PH_BOUND;
}
if (timing->c < 0 || timing->c >= C_BOUND)
die("Timing under-/overflow during "
"receive-enable calibration.\n");
}
static void rec_full_backstep(rec_timing_t *const timing)
{
timing->c--;
}
static void rec_half_backstep(rec_timing_t *const timing)
{
timing->ph -= PH_STEP;
}
static void rec_quarter_step(rec_timing_t *const timing)
{
timing->t += (timing->t_bound) >> 1;
timing->p += (timing->t_bound & 1) * (timing->p_bound >> 1);
}
static void rec_quarter_backstep(rec_timing_t *const timing)
{
timing->t -= (timing->t_bound) >> 1;
timing->p -= (timing->t_bound & 1) * (timing->p_bound >> 1);
}
static void rec_smallest_step(rec_timing_t *const timing)
{
timing->p++;
}
static void program_timing(int channel, int group,
rec_timing_t timings[][4])
{
rec_timing_t *const timing = &timings[channel][group];
normalize_rec_timing(timing);
/* C value is per channel. */
unsigned int mchbar = CxDRT3_MCHBAR(channel);
MCHBAR32(mchbar) = (MCHBAR32(mchbar) & ~CxDRT3_C_MASK) |
CxDRT3_C(timing->c);
/* All other per group. */
mchbar = CxRECy_MCHBAR(channel, group);
u32 reg = MCHBAR32(mchbar);
reg &= ~CxRECy_TIMING_MASK;
reg |= CxRECy_T(timing->t) | CxRECy_P(timing->p) |
CxRECy_PH(timing->ph) | CxRECy_PM(timing->pre);
MCHBAR32(mchbar) = reg;
}
static int read_dqs_level(const int channel, const int lane)
{
unsigned int mchbar = 0x14f0 + (channel * 0x0100);
MCHBAR32(mchbar) &= ~(1 << 9);
MCHBAR32(mchbar) |= (1 << 9);
/* Read from this channel. */
read32(raminit_get_rank_addr(channel, 0));
mchbar = 0x14b0 + (channel * 0x0100) + ((7 - lane) * 4);
return MCHBAR32(mchbar) & (1 << 30);
}
static void find_dqs_low(const int channel, const int group,
rec_timing_t timings[][4], const char lane_map[][2])
{
/* Look for DQS low, using quarter steps. */
while (read_dqs_level(channel, lane_map[group][0]) ||
read_dqs_level(channel, lane_map[group][1])) {
rec_quarter_step(&timings[channel][group]);
program_timing(channel, group, timings);
}
}
static void find_dqs_high(const int channel, const int group,
rec_timing_t timings[][4], const char lane_map[][2])
{
/* Look for _any_ DQS high, using quarter steps. */
while (!read_dqs_level(channel, lane_map[group][0]) &&
!read_dqs_level(channel, lane_map[group][1])) {
rec_quarter_step(&timings[channel][group]);
program_timing(channel, group, timings);
}
}
static void find_dqs_edge_lowhigh(const int channel, const int group,
rec_timing_t timings[][4],
const char lane_map[][2])
{
/* Advance beyond previous high to low transition. */
timings[channel][group].t += 2;
program_timing(channel, group, timings);
/* Coarsely look for DQS high. */
find_dqs_high(channel, group, timings, lane_map);
/* Go back and perform finer search. */
rec_quarter_backstep(&timings[channel][group]);
program_timing(channel, group, timings);
while (!read_dqs_level(channel, lane_map[group][0]) ||
!read_dqs_level(channel, lane_map[group][1])) {
rec_smallest_step(&timings[channel][group]);
program_timing(channel, group, timings);
}
}
static void find_preamble(const int channel, const int group,
rec_timing_t timings[][4], const char lane_map[][2])
{
/* Look for DQS low, backstepping. */
while (read_dqs_level(channel, lane_map[group][0]) ||
read_dqs_level(channel, lane_map[group][1])) {
rec_full_backstep(&timings[channel][group]);
program_timing(channel, group, timings);
}
}
static void receive_enable_calibration(const timings_t *const timings,
const dimminfo_t *const dimms)
{
/* Override group to byte-lane mapping for raw card type F DIMMS. */
static const char over_bytelane_map[2][4][2] = {
/* A,B,C */{ { 0, 1 }, { 2, 3 }, { 4, 5 }, { 6, 7 } },
/* F */{ { 0, 0 }, { 3, 3 }, { 6, 6 }, { 5, 5 } },
};
const int cardF[] =
{ dimms[0].card_type == 0xf, dimms[0].card_type == 0xf };
const unsigned t_bound =
(timings->mem_clock == MEM_CLOCK_1067MT) ? 9 : 12;
const unsigned p_bound =
(timings->mem_clock == MEM_CLOCK_1067MT) ? 8 : 1;
rec_timing_t rec_timings[2][4] = {
{
{ timings->CAS + 1, 0, 0, 0, t_bound, 0, p_bound },
{ timings->CAS + 1, 0, 0, 0, t_bound, 0, p_bound },
{ timings->CAS + 1, 0, 0, 0, t_bound, 0, p_bound },
{ timings->CAS + 1, 0, 0, 0, t_bound, 0, p_bound }
}, {
{ timings->CAS + 1, 0, 0, 0, t_bound, 0, p_bound },
{ timings->CAS + 1, 0, 0, 0, t_bound, 0, p_bound },
{ timings->CAS + 1, 0, 0, 0, t_bound, 0, p_bound },
{ timings->CAS + 1, 0, 0, 0, t_bound, 0, p_bound }
}
};
int ch, group;
FOR_EACH_POPULATED_CHANNEL(dimms, ch) {
const char (*const map)[2] = over_bytelane_map[cardF[ch]];
for (group = 0; group < 4; ++group) {
program_timing(ch, group, rec_timings);
find_dqs_low(ch, group, rec_timings, map);
find_dqs_edge_lowhigh(ch, group, rec_timings, map);
rec_quarter_step(&rec_timings[ch][group]);
program_timing(ch, group, rec_timings);
find_preamble(ch, group, rec_timings, map);
find_dqs_edge_lowhigh(ch, group, rec_timings, map);
rec_half_backstep(&rec_timings[ch][group]);
normalize_rec_timing(&rec_timings[ch][group]);
if (cardF[ch]) {
rec_timings[ch][group].t++;
program_timing(ch, group, rec_timings);
}
}
int c_min = C_BOUND;
for (group = 0; group < 4; ++group) {
if (rec_timings[ch][group].c < c_min)
c_min = rec_timings[ch][group].c;
}
for (group = 0; group < 4; ++group) {
rec_timings[ch][group].pre =
rec_timings[ch][group].c - c_min;
rec_timings[ch][group].c = c_min;
program_timing(ch, group, rec_timings);
printk(BIOS_SPEW, "Final timings for group %d "
"on channel %d: %d.%d.%d.%d.%d\n",
group, ch,
rec_timings[ch][group].c,
rec_timings[ch][group].pre,
rec_timings[ch][group].ph,
rec_timings[ch][group].t,
rec_timings[ch][group].p);
}
}
}
void raminit_receive_enable_calibration(const timings_t *const timings,
const dimminfo_t *const dimms)
{
int ch;
/* Setup group to byte-lane mapping. */
FOR_EACH_POPULATED_CHANNEL(dimms, ch) {
const char (*const map)[2] =
bytelane_map[dimms[ch].card_type == 0xf];
unsigned int group;
for (group = 0; group < 4; ++group) {
const unsigned int mchbar = CxRECy_MCHBAR(ch, group);
u32 reg = MCHBAR32(mchbar);
reg &= ~((3 << 16) | (1 << 8) | 3);
reg |= (map[group][0] - group);
reg |= (map[group][1] - group - 1) << 16;
MCHBAR32(mchbar) = reg;
}
}
MCHBAR32(0x12a4) |= 1 << 31;
MCHBAR32(0x13a4) |= 1 << 31;
MCHBAR32(0x14f0) = (MCHBAR32(0x14f0) & ~(3 << 9)) | (1 << 9);
MCHBAR32(0x15f0) = (MCHBAR32(0x15f0) & ~(3 << 9)) | (1 << 9);
receive_enable_calibration(timings, dimms);
MCHBAR32(0x12a4) &= ~(1 << 31);
MCHBAR32(0x13a4) &= ~(1 << 31);
raminit_reset_readwrite_pointers();
}