blob: db3a8a9b5fcf0f43f122e0383ab7109154ed06b2 [file] [log] [blame]
/*
* This file is part of the coreboot project.
*
* Copyright (C) 2003-2004 Eric Biederman
* Copyright (C) 2005-2010 coresystems GmbH
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; version 2 of
* the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston,
* MA 02110-1301 USA
*/
#include <console/console.h>
#include <ip_checksum.h>
#include <boot/tables.h>
#include <boot/coreboot_tables.h>
#include <arch/coreboot_tables.h>
#include <string.h>
#include <version.h>
#include <device/device.h>
#include <stdlib.h>
#if (CONFIG_USE_OPTION_TABLE == 1)
#include <option_table.h>
#include <cbfs.h>
#endif
static struct lb_header *lb_table_init(unsigned long addr)
{
struct lb_header *header;
/* 16 byte align the address */
addr += 15;
addr &= ~15;
header = (void *)addr;
header->signature[0] = 'L';
header->signature[1] = 'B';
header->signature[2] = 'I';
header->signature[3] = 'O';
header->header_bytes = sizeof(*header);
header->header_checksum = 0;
header->table_bytes = 0;
header->table_checksum = 0;
header->table_entries = 0;
return header;
}
static struct lb_record *lb_first_record(struct lb_header *header)
{
struct lb_record *rec;
rec = (void *)(((char *)header) + sizeof(*header));
return rec;
}
static struct lb_record *lb_last_record(struct lb_header *header)
{
struct lb_record *rec;
rec = (void *)(((char *)header) + sizeof(*header) + header->table_bytes);
return rec;
}
#if 0
static struct lb_record *lb_next_record(struct lb_record *rec)
{
rec = (void *)(((char *)rec) + rec->size);
return rec;
}
#endif
static struct lb_record *lb_new_record(struct lb_header *header)
{
struct lb_record *rec;
rec = lb_last_record(header);
if (header->table_entries) {
header->table_bytes += rec->size;
}
rec = lb_last_record(header);
header->table_entries++;
rec->tag = LB_TAG_UNUSED;
rec->size = sizeof(*rec);
return rec;
}
static struct lb_memory *lb_memory(struct lb_header *header)
{
struct lb_record *rec;
struct lb_memory *mem;
rec = lb_new_record(header);
mem = (struct lb_memory *)rec;
mem->tag = LB_TAG_MEMORY;
mem->size = sizeof(*mem);
return mem;
}
static struct lb_serial *lb_serial(struct lb_header *header)
{
#if CONFIG_CONSOLE_SERIAL8250
struct lb_record *rec;
struct lb_serial *serial;
rec = lb_new_record(header);
serial = (struct lb_serial *)rec;
serial->tag = LB_TAG_SERIAL;
serial->size = sizeof(*serial);
serial->ioport = CONFIG_TTYS0_BASE;
serial->baud = CONFIG_TTYS0_BAUD;
return serial;
#else
return NULL;
#endif
}
static void add_console(struct lb_header *header, u16 consoletype)
{
struct lb_console *console;
console = (struct lb_console *)lb_new_record(header);
console->tag = LB_TAG_CONSOLE;
console->size = sizeof(*console);
console->type = consoletype;
}
static void lb_console(struct lb_header *header)
{
#if CONFIG_CONSOLE_SERIAL8250
add_console(header, LB_TAG_CONSOLE_SERIAL8250);
#endif
#if CONFIG_CONSOLE_SERIAL8250MEM
add_console(header, LB_TAG_CONSOLE_SERIAL8250MEM);
#endif
#if CONFIG_CONSOLE_LOGBUF
add_console(header, LB_TAG_CONSOLE_LOGBUF);
#endif
#if CONFIG_USBDEBUG
add_console(header, LB_TAG_CONSOLE_EHCI);
#endif
}
static void lb_framebuffer(struct lb_header *header)
{
#if CONFIG_BOOTSPLASH && CONFIG_COREBOOT_KEEP_FRAMEBUFFER
void fill_lb_framebuffer(struct lb_framebuffer *framebuffer);
struct lb_framebuffer *framebuffer;
framebuffer = (struct lb_framebuffer *)lb_new_record(header);
framebuffer->tag = LB_TAG_FRAMEBUFFER;
framebuffer->size = sizeof(*framebuffer);
fill_lb_framebuffer(framebuffer);
#endif
}
static struct lb_mainboard *lb_mainboard(struct lb_header *header)
{
struct lb_record *rec;
struct lb_mainboard *mainboard;
rec = lb_new_record(header);
mainboard = (struct lb_mainboard *)rec;
mainboard->tag = LB_TAG_MAINBOARD;
mainboard->size = (sizeof(*mainboard) +
strlen(mainboard_vendor) + 1 +
strlen(mainboard_part_number) + 1 +
3) & ~3;
mainboard->vendor_idx = 0;
mainboard->part_number_idx = strlen(mainboard_vendor) + 1;
memcpy(mainboard->strings + mainboard->vendor_idx,
mainboard_vendor, strlen(mainboard_vendor) + 1);
memcpy(mainboard->strings + mainboard->part_number_idx,
mainboard_part_number, strlen(mainboard_part_number) + 1);
return mainboard;
}
#if (CONFIG_USE_OPTION_TABLE == 1)
static struct cmos_checksum *lb_cmos_checksum(struct lb_header *header)
{
struct lb_record *rec;
struct cmos_checksum *cmos_checksum;
rec = lb_new_record(header);
cmos_checksum = (struct cmos_checksum *)rec;
cmos_checksum->tag = LB_TAG_OPTION_CHECKSUM;
cmos_checksum->size = (sizeof(*cmos_checksum));
cmos_checksum->range_start = LB_CKS_RANGE_START * 8;
cmos_checksum->range_end = ( LB_CKS_RANGE_END * 8 ) + 7;
cmos_checksum->location = LB_CKS_LOC * 8;
cmos_checksum->type = CHECKSUM_PCBIOS;
return cmos_checksum;
}
#endif
static void lb_strings(struct lb_header *header)
{
static const struct {
uint32_t tag;
const char *string;
} strings[] = {
{ LB_TAG_VERSION, coreboot_version, },
{ LB_TAG_EXTRA_VERSION, coreboot_extra_version, },
{ LB_TAG_BUILD, coreboot_build, },
{ LB_TAG_COMPILE_TIME, coreboot_compile_time, },
{ LB_TAG_COMPILE_BY, coreboot_compile_by, },
{ LB_TAG_COMPILE_HOST, coreboot_compile_host, },
{ LB_TAG_COMPILE_DOMAIN, coreboot_compile_domain, },
{ LB_TAG_COMPILER, coreboot_compiler, },
{ LB_TAG_LINKER, coreboot_linker, },
{ LB_TAG_ASSEMBLER, coreboot_assembler, },
};
unsigned int i;
for(i = 0; i < ARRAY_SIZE(strings); i++) {
struct lb_string *rec;
size_t len;
rec = (struct lb_string *)lb_new_record(header);
len = strlen(strings[i].string);
rec->tag = strings[i].tag;
rec->size = (sizeof(*rec) + len + 1 + 3) & ~3;
memcpy(rec->string, strings[i].string, len+1);
}
}
#if CONFIG_WRITE_HIGH_TABLES == 1
static struct lb_forward *lb_forward(struct lb_header *header, struct lb_header *next_header)
{
struct lb_record *rec;
struct lb_forward *forward;
rec = lb_new_record(header);
forward = (struct lb_forward *)rec;
forward->tag = LB_TAG_FORWARD;
forward->size = sizeof(*forward);
forward->forward = (uint64_t)(unsigned long)next_header;
return forward;
}
#endif
void lb_memory_range(struct lb_memory *mem,
uint32_t type, uint64_t start, uint64_t size)
{
int entries;
entries = (mem->size - sizeof(*mem))/sizeof(mem->map[0]);
mem->map[entries].start = pack_lb64(start);
mem->map[entries].size = pack_lb64(size);
mem->map[entries].type = type;
mem->size += sizeof(mem->map[0]);
}
static void lb_reserve_table_memory(struct lb_header *head)
{
struct lb_record *last_rec;
struct lb_memory *mem;
uint64_t start;
uint64_t end;
int i, entries;
last_rec = lb_last_record(head);
mem = get_lb_mem();
start = (unsigned long)head;
end = (unsigned long)last_rec;
entries = (mem->size - sizeof(*mem))/sizeof(mem->map[0]);
/* Resize the right two memory areas so this table is in
* a reserved area of memory. Everything has been carefully
* setup so that is all we need to do.
*/
for(i = 0; i < entries; i++ ) {
uint64_t map_start = unpack_lb64(mem->map[i].start);
uint64_t map_end = map_start + unpack_lb64(mem->map[i].size);
/* Does this area need to be expanded? */
if (map_end == start) {
mem->map[i].size = pack_lb64(end - map_start);
}
/* Does this area need to be contracted? */
else if (map_start == start) {
mem->map[i].start = pack_lb64(end);
mem->map[i].size = pack_lb64(map_end - end);
}
}
}
static unsigned long lb_table_fini(struct lb_header *head, int fixup)
{
struct lb_record *rec, *first_rec;
rec = lb_last_record(head);
if (head->table_entries) {
head->table_bytes += rec->size;
}
if (fixup)
lb_reserve_table_memory(head);
first_rec = lb_first_record(head);
head->table_checksum = compute_ip_checksum(first_rec, head->table_bytes);
head->header_checksum = 0;
head->header_checksum = compute_ip_checksum(head, sizeof(*head));
printk(BIOS_DEBUG, "Wrote coreboot table at: %p - %p checksum %x\n",
head, rec, head->table_checksum);
return (unsigned long)rec;
}
static void lb_cleanup_memory_ranges(struct lb_memory *mem)
{
int entries;
int i, j;
entries = (mem->size - sizeof(*mem))/sizeof(mem->map[0]);
/* Sort the lb memory ranges */
for(i = 0; i < entries; i++) {
uint64_t entry_start = unpack_lb64(mem->map[i].start);
for(j = i; j < entries; j++) {
uint64_t temp_start = unpack_lb64(mem->map[j].start);
if (temp_start < entry_start) {
struct lb_memory_range tmp;
tmp = mem->map[i];
mem->map[i] = mem->map[j];
mem->map[j] = tmp;
}
}
}
/* Merge adjacent entries */
for(i = 0; (i + 1) < entries; i++) {
uint64_t start, end, nstart, nend;
if (mem->map[i].type != mem->map[i + 1].type) {
continue;
}
start = unpack_lb64(mem->map[i].start);
end = start + unpack_lb64(mem->map[i].size);
nstart = unpack_lb64(mem->map[i + 1].start);
nend = nstart + unpack_lb64(mem->map[i + 1].size);
if ((start <= nstart) && (end > nstart)) {
if (start > nstart) {
start = nstart;
}
if (end < nend) {
end = nend;
}
/* Record the new region size */
mem->map[i].start = pack_lb64(start);
mem->map[i].size = pack_lb64(end - start);
/* Delete the entry I have merged with */
memmove(&mem->map[i + 1], &mem->map[i + 2],
((entries - i - 2) * sizeof(mem->map[0])));
mem->size -= sizeof(mem->map[0]);
entries -= 1;
/* See if I can merge with the next entry as well */
i -= 1;
}
}
}
static void lb_remove_memory_range(struct lb_memory *mem,
uint64_t start, uint64_t size)
{
uint64_t end;
int entries;
int i;
end = start + size;
entries = (mem->size - sizeof(*mem))/sizeof(mem->map[0]);
/* Remove a reserved area from the memory map */
for(i = 0; i < entries; i++) {
uint64_t map_start = unpack_lb64(mem->map[i].start);
uint64_t map_end = map_start + unpack_lb64(mem->map[i].size);
if ((start <= map_start) && (end >= map_end)) {
/* Remove the completely covered range */
memmove(&mem->map[i], &mem->map[i + 1],
((entries - i - 1) * sizeof(mem->map[0])));
mem->size -= sizeof(mem->map[0]);
entries -= 1;
/* Since the index will disappear revisit what will appear here */
i -= 1;
}
else if ((start > map_start) && (end < map_end)) {
/* Split the memory range */
memmove(&mem->map[i + 1], &mem->map[i],
((entries - i) * sizeof(mem->map[0])));
mem->size += sizeof(mem->map[0]);
entries += 1;
/* Update the first map entry */
mem->map[i].size = pack_lb64(start - map_start);
/* Update the second map entry */
mem->map[i + 1].start = pack_lb64(end);
mem->map[i + 1].size = pack_lb64(map_end - end);
/* Don't bother with this map entry again */
i += 1;
}
else if ((start <= map_start) && (end > map_start)) {
/* Shrink the start of the memory range */
mem->map[i].start = pack_lb64(end);
mem->map[i].size = pack_lb64(map_end - end);
}
else if ((start < map_end) && (start > map_start)) {
/* Shrink the end of the memory range */
mem->map[i].size = pack_lb64(start - map_start);
}
}
}
/* This function is used in mainboard specific code, too */
void lb_add_memory_range(struct lb_memory *mem,
uint32_t type, uint64_t start, uint64_t size)
{
lb_remove_memory_range(mem, start, size);
lb_memory_range(mem, type, start, size);
lb_cleanup_memory_ranges(mem);
}
static void lb_dump_memory_ranges(struct lb_memory *mem)
{
int entries;
int i;
entries = (mem->size - sizeof(*mem))/sizeof(mem->map[0]);
printk(BIOS_DEBUG, "coreboot memory table:\n");
for(i = 0; i < entries; i++) {
uint64_t entry_start = unpack_lb64(mem->map[i].start);
uint64_t entry_size = unpack_lb64(mem->map[i].size);
const char *entry_type;
switch (mem->map[i].type) {
case LB_MEM_RAM: entry_type="RAM"; break;
case LB_MEM_RESERVED: entry_type="RESERVED"; break;
case LB_MEM_ACPI: entry_type="ACPI"; break;
case LB_MEM_NVS: entry_type="NVS"; break;
case LB_MEM_UNUSABLE: entry_type="UNUSABLE"; break;
case LB_MEM_VENDOR_RSVD: entry_type="VENDOR RESERVED"; break;
case LB_MEM_TABLE: entry_type="CONFIGURATION TABLES"; break;
default: entry_type="UNKNOWN!"; break;
}
printk(BIOS_DEBUG, "%2d. %016llx-%016llx: %s\n",
i, entry_start, entry_start+entry_size-1, entry_type);
}
}
/* Routines to extract part so the coreboot table or
* information from the coreboot table after we have written it.
* Currently get_lb_mem relies on a global we can change the
* implementaiton.
*/
static struct lb_memory *mem_ranges = 0;
struct lb_memory *get_lb_mem(void)
{
return mem_ranges;
}
static void build_lb_mem_range(void *gp, struct device *dev, struct resource *res)
{
struct lb_memory *mem = gp;
lb_memory_range(mem, LB_MEM_RAM, res->base, res->size);
}
static struct lb_memory *build_lb_mem(struct lb_header *head)
{
struct lb_memory *mem;
/* Record where the lb memory ranges will live */
mem = lb_memory(head);
mem_ranges = mem;
/* Build the raw table of memory */
search_global_resources(
IORESOURCE_MEM | IORESOURCE_CACHEABLE, IORESOURCE_MEM | IORESOURCE_CACHEABLE,
build_lb_mem_range, mem);
lb_cleanup_memory_ranges(mem);
return mem;
}
static void lb_add_rsvd_range(void *gp, struct device *dev, struct resource *res)
{
struct lb_memory *mem = gp;
lb_add_memory_range(mem, LB_MEM_RESERVED, res->base, res->size);
}
static void add_lb_reserved(struct lb_memory *mem)
{
/* Add reserved ranges */
search_global_resources(
IORESOURCE_MEM | IORESOURCE_RESERVE, IORESOURCE_MEM | IORESOURCE_RESERVE,
lb_add_rsvd_range, mem);
}
#if CONFIG_WRITE_HIGH_TABLES == 1
extern uint64_t high_tables_base, high_tables_size;
#endif
unsigned long write_coreboot_table(
unsigned long low_table_start, unsigned long low_table_end,
unsigned long rom_table_start, unsigned long rom_table_end)
{
struct lb_header *head;
struct lb_memory *mem;
#if CONFIG_WRITE_HIGH_TABLES == 1
printk(BIOS_DEBUG, "Writing high table forward entry at 0x%08lx\n",
low_table_end);
head = lb_table_init(low_table_end);
lb_forward(head, (struct lb_header*)rom_table_end);
low_table_end = (unsigned long) lb_table_fini(head, 0);
printk(BIOS_DEBUG, "New low_table_end: 0x%08lx\n", low_table_end);
printk(BIOS_DEBUG, "Now going to write high coreboot table at 0x%08lx\n",
rom_table_end);
head = lb_table_init(rom_table_end);
rom_table_end = (unsigned long)head;
printk(BIOS_DEBUG, "rom_table_end = 0x%08lx\n", rom_table_end);
#else
if(low_table_end > (0x1000 - sizeof(struct lb_header))) { /* after 4K */
/* We need to put lbtable on to [0xf0000,0x100000) */
head = lb_table_init(rom_table_end);
rom_table_end = (unsigned long)head;
} else {
head = lb_table_init(low_table_end);
low_table_end = (unsigned long)head;
}
#endif
printk(BIOS_DEBUG, "Adjust low_table_end from 0x%08lx to ", low_table_end);
low_table_end += 0xfff; // 4K aligned
low_table_end &= ~0xfff;
printk(BIOS_DEBUG, "0x%08lx \n", low_table_end);
/* The Linux kernel assumes this region is reserved */
printk(BIOS_DEBUG, "Adjust rom_table_end from 0x%08lx to ", rom_table_end);
rom_table_end += 0xffff; // 64K align
rom_table_end &= ~0xffff;
printk(BIOS_DEBUG, "0x%08lx \n", rom_table_end);
#if (CONFIG_USE_OPTION_TABLE == 1)
{
struct cmos_option_table *option_table = cbfs_find_file("cmos_layout.bin", 0x1aa);
if (option_table) {
struct lb_record *rec_dest = lb_new_record(head);
/* Copy the option config table, it's already a lb_record... */
memcpy(rec_dest, option_table, option_table->size);
/* Create cmos checksum entry in coreboot table */
lb_cmos_checksum(head);
} else {
printk(BIOS_ERR, "cmos_layout.bin could not be found!\n");
}
}
#endif
/* Record where RAM is located */
mem = build_lb_mem(head);
/* Record the mptable and the the lb_table (This will be adjusted later) */
lb_add_memory_range(mem, LB_MEM_TABLE,
low_table_start, low_table_end - low_table_start);
/* Record the pirq table, acpi tables, and maybe the mptable */
lb_add_memory_range(mem, LB_MEM_TABLE,
rom_table_start, rom_table_end-rom_table_start);
#if CONFIG_WRITE_HIGH_TABLES == 1
printk(BIOS_DEBUG, "Adding high table area\n");
// should this be LB_MEM_ACPI?
lb_add_memory_range(mem, LB_MEM_TABLE,
high_tables_base, high_tables_size);
#endif
/* Add reserved regions */
add_lb_reserved(mem);
#if (CONFIG_HAVE_MAINBOARD_RESOURCES == 1)
add_mainboard_resources(mem);
#endif
lb_dump_memory_ranges(mem);
/* Note:
* I assume that there is always memory at immediately after
* the low_table_end. This means that after I setup the coreboot table.
* I can trivially fixup the reserved memory ranges to hold the correct
* size of the coreboot table.
*/
/* Record our motherboard */
lb_mainboard(head);
/* Record the serial port, if present */
lb_serial(head);
/* Record our console setup */
lb_console(head);
/* Record our various random string information */
lb_strings(head);
/* Record our framebuffer */
lb_framebuffer(head);
/* Remember where my valid memory ranges are */
return lb_table_fini(head, 1);
}