blob: 1f550835b0dd719e7066aeef6ee727deb3c92500 [file] [log] [blame]
/* SPDX-License-Identifier: GPL-2.0-or-later */
#include <console/console.h>
#include <commonlib/helpers.h>
#include <string.h>
#include <arch/io.h>
#include <device/mmio.h>
#include <device/pci_ops.h>
#include <device/smbus_host.h>
#include <cpu/x86/msr.h>
#include <cpu/x86/cache.h>
#include <cbmem.h>
#include <cf9_reset.h>
#include <ip_checksum.h>
#include <option.h>
#include <device/pci_def.h>
#include <device/device.h>
#include <halt.h>
#include <spd.h>
#include <timestamp.h>
#include <cpu/x86/mtrr.h>
#include <cpu/intel/speedstep.h>
#include <cpu/intel/turbo.h>
#include <mrc_cache.h>
#include <southbridge/intel/ibexpeak/me.h>
#include <southbridge/intel/common/pmbase.h>
#include <delay.h>
#include <types.h>
#include "chip.h"
#include "ironlake.h"
#include "raminit.h"
#include "raminit_tables.h"
#define NORTHBRIDGE PCI_DEV(0, 0, 0)
#define SOUTHBRIDGE PCI_DEV(0, 0x1f, 0)
#define GMA PCI_DEV (0, 0x2, 0x0)
#define FOR_ALL_RANKS \
for (channel = 0; channel < NUM_CHANNELS; channel++) \
for (slot = 0; slot < NUM_SLOTS; slot++) \
for (rank = 0; rank < NUM_RANKS; rank++)
#define FOR_POPULATED_RANKS \
for (channel = 0; channel < NUM_CHANNELS; channel++) \
for (slot = 0; slot < NUM_SLOTS; slot++) \
for (rank = 0; rank < NUM_RANKS; rank++) \
if (info->populated_ranks[channel][slot][rank])
#define FOR_POPULATED_RANKS_BACKWARDS \
for (channel = NUM_CHANNELS - 1; channel >= 0; channel--) \
for (slot = 0; slot < NUM_SLOTS; slot++) \
for (rank = 0; rank < NUM_RANKS; rank++) \
if (info->populated_ranks[channel][slot][rank])
#include <lib.h> /* Prototypes */
typedef struct _u128 {
u64 lo;
u64 hi;
} u128;
static void read128(u32 addr, u64 * out)
{
u128 ret;
u128 stor;
asm volatile ("movdqu %%xmm0, %0\n"
"movdqa (%2), %%xmm0\n"
"movdqu %%xmm0, %1\n"
"movdqu %0, %%xmm0":"+m" (stor), "=m"(ret):"r"(addr));
out[0] = ret.lo;
out[1] = ret.hi;
}
/*
* Ironlake memory I/O timings are located in scan chains, accessible
* through MCHBAR register groups. Each channel has a scan chain, and
* there's a global scan chain too. Each chain is broken into smaller
* sections of N bits, where N <= 32. Each section allows reading and
* writing a certain parameter. Each section contains N - 2 data bits
* and two additional bits: a Mask bit, and a Halt bit.
*/
/* OK */
static void write_1d0(u32 val, u16 addr, int bits, int flag)
{
mchbar_write32(0x1d0, 0);
while (mchbar_read32(0x1d0) & (1 << 23))
;
mchbar_write32(0x1d4, (val & ((1 << bits) - 1)) | 2 << bits | flag << bits);
mchbar_write32(0x1d0, 1 << 30 | addr);
while (mchbar_read32(0x1d0) & (1 << 23))
;
}
/* OK */
static u16 read_1d0(u16 addr, int split)
{
u32 val;
mchbar_write32(0x1d0, 0);
while (mchbar_read32(0x1d0) & (1 << 23))
;
mchbar_write32(0x1d0, 1 << 31 | (((mchbar_read8(0x246) >> 2) & 3) + 0x361 - addr));
while (mchbar_read32(0x1d0) & (1 << 23))
;
val = mchbar_read32(0x1d8);
write_1d0(0, 0x33d, 0, 0);
write_1d0(0, 0x33d, 0, 0);
val &= ((1 << split) - 1);
// printk (BIOS_ERR, "R1D0C [%x] => %x\n", addr, val);
return val;
}
static void sfence(void)
{
asm volatile ("sfence");
}
static inline u16 get_lane_offset(int slot, int rank, int lane)
{
return 0x124 * lane + ((lane & 4) ? 0x23e : 0) + 11 * rank + 22 * slot -
0x452 * (lane == 8);
}
static inline u16 get_timing_register_addr(int lane, int tm, int slot, int rank)
{
const u16 offs[] = { 0x1d, 0xa8, 0xe6, 0x5c };
return get_lane_offset(slot, rank, lane) + offs[(tm + 3) % 4];
}
static u32 gav_real(int line, u32 in)
{
// printk (BIOS_DEBUG, "%d: GAV: %x\n", line, in);
return in;
}
#define gav(x) gav_real (__LINE__, (x))
/* Global allocation of timings_car */
timing_bounds_t timings_car[64];
/* OK */
static u16
read_500(struct raminfo *info, int channel, u16 addr, int split)
{
u32 val;
info->last_500_command[channel] = 1 << 31;
mchbar_write32(0x500 + (channel << 10), 0);
while (mchbar_read32(0x500 + (channel << 10)) & (1 << 23))
;
mchbar_write32(0x500 + (channel << 10),
1 << 31 | (((mchbar_read8(0x246 + (channel << 10)) >> 2) & 3) + 0xb88 - addr));
while (mchbar_read32(0x500 + (channel << 10)) & (1 << 23))
;
val = mchbar_read32(0x508 + (channel << 10));
return val & ((1 << split) - 1);
}
/* OK */
static void
write_500(struct raminfo *info, int channel, u32 val, u16 addr, int bits,
int flag)
{
if (info->last_500_command[channel] == 1 << 31) {
info->last_500_command[channel] = 1 << 30;
write_500(info, channel, 0, 0xb61, 0, 0);
}
mchbar_write32(0x500 + (channel << 10), 0);
while (mchbar_read32(0x500 + (channel << 10)) & (1 << 23))
;
mchbar_write32(0x504 + (channel << 10),
(val & ((1 << bits) - 1)) | 2 << bits | flag << bits);
mchbar_write32(0x500 + (channel << 10), 1 << 30 | addr);
while (mchbar_read32(0x500 + (channel << 10)) & (1 << 23))
;
}
static void rmw_500(struct raminfo *info, int channel, u16 addr, int bits, u32 and, u32 or)
{
const u32 val = read_500(info, channel, addr, bits) & and;
write_500(info, channel, val | or, addr, bits, 1);
}
static int rw_test(int rank)
{
const u32 mask = 0xf00fc33c;
int ok = 0xff;
int i;
for (i = 0; i < 64; i++)
write32p((rank << 28) | (i << 2), 0);
sfence();
for (i = 0; i < 64; i++)
gav(read32p((rank << 28) | (i << 2)));
sfence();
for (i = 0; i < 32; i++) {
u32 pat = (((mask >> i) & 1) ? 0xffffffff : 0);
write32p((rank << 28) | (i << 3), pat);
write32p((rank << 28) | (i << 3) | 4, pat);
}
sfence();
for (i = 0; i < 32; i++) {
u8 pat = (((mask >> i) & 1) ? 0xff : 0);
int j;
u32 val;
gav(val = read32p((rank << 28) | (i << 3)));
for (j = 0; j < 4; j++)
if (((val >> (j * 8)) & 0xff) != pat)
ok &= ~(1 << j);
gav(val = read32p((rank << 28) | (i << 3) | 4));
for (j = 0; j < 4; j++)
if (((val >> (j * 8)) & 0xff) != pat)
ok &= ~(16 << j);
}
sfence();
for (i = 0; i < 64; i++)
write32p((rank << 28) | (i << 2), 0);
sfence();
for (i = 0; i < 64; i++)
gav(read32p((rank << 28) | (i << 2)));
return ok;
}
static void
program_timings(struct raminfo *info, u16 base, int channel, int slot, int rank)
{
int lane;
for (lane = 0; lane < 8; lane++) {
write_500(info, channel,
base +
info->training.
lane_timings[2][channel][slot][rank][lane],
get_timing_register_addr(lane, 2, slot, rank), 9, 0);
write_500(info, channel,
base +
info->training.
lane_timings[3][channel][slot][rank][lane],
get_timing_register_addr(lane, 3, slot, rank), 9, 0);
}
}
static void write_26c(int channel, u16 si)
{
mchbar_write32(0x26c + (channel << 10), 0x03243f35);
mchbar_write32(0x268 + (channel << 10), 0xcfc00000 | si << 9);
mchbar_write16(0x2b9 + (channel << 10), si);
}
static void toggle_1d0_142_5ff(void)
{
u32 reg32 = gav(read_1d0(0x142, 3));
if (reg32 & (1 << 1))
write_1d0(0, 0x142, 3, 1);
mchbar_write8(0x5ff, 0);
mchbar_write8(0x5ff, 1 << 7);
if (reg32 & (1 << 1))
write_1d0(0x2, 0x142, 3, 1);
}
static u32 get_580(int channel, u8 addr)
{
u32 ret;
toggle_1d0_142_5ff();
mchbar_write32(0x580 + (channel << 10), 0x8493c012 | addr);
mchbar_setbits8(0x580 + (channel << 10), 1 << 0);
while (!((ret = mchbar_read32(0x580 + (channel << 10))) & (1 << 16)))
;
mchbar_clrbits8(0x580 + (channel << 10), 1 << 0);
return ret;
}
#define RANK_SHIFT 28
#define CHANNEL_SHIFT 10
static void seq9(struct raminfo *info, int channel, int slot, int rank)
{
int i, lane;
for (i = 0; i < 2; i++)
for (lane = 0; lane < 8; lane++)
write_500(info, channel,
info->training.lane_timings[i +
1][channel][slot]
[rank][lane], get_timing_register_addr(lane,
i + 1,
slot,
rank),
9, 0);
write_1d0(1, 0x103, 6, 1);
for (lane = 0; lane < 8; lane++)
write_500(info, channel,
info->training.
lane_timings[0][channel][slot][rank][lane],
get_timing_register_addr(lane, 0, slot, rank), 9, 0);
for (i = 0; i < 2; i++) {
for (lane = 0; lane < 8; lane++)
write_500(info, channel,
info->training.lane_timings[i +
1][channel][slot]
[rank][lane], get_timing_register_addr(lane,
i + 1,
slot,
rank),
9, 0);
gav(get_580(channel, ((i + 1) << 2) | (rank << 5)));
}
toggle_1d0_142_5ff();
write_1d0(0x2, 0x142, 3, 1);
for (lane = 0; lane < 8; lane++) {
// printk (BIOS_ERR, "before: %x\n", info->training.lane_timings[2][channel][slot][rank][lane]);
info->training.lane_timings[2][channel][slot][rank][lane] =
read_500(info, channel,
get_timing_register_addr(lane, 2, slot, rank), 9);
//printk (BIOS_ERR, "after: %x\n", info->training.lane_timings[2][channel][slot][rank][lane]);
info->training.lane_timings[3][channel][slot][rank][lane] =
info->training.lane_timings[2][channel][slot][rank][lane] +
0x20;
}
}
static int count_ranks_in_channel(struct raminfo *info, int channel)
{
int slot, rank;
int res = 0;
for (slot = 0; slot < NUM_SLOTS; slot++)
for (rank = 0; rank < NUM_SLOTS; rank++)
res += info->populated_ranks[channel][slot][rank];
return res;
}
static void
config_rank(struct raminfo *info, int s3resume, int channel, int slot, int rank)
{
int add;
write_1d0(0, 0x178, 7, 1);
seq9(info, channel, slot, rank);
program_timings(info, 0x80, channel, slot, rank);
if (channel == 0)
add = count_ranks_in_channel(info, 1);
else
add = 0;
if (!s3resume)
gav(rw_test(rank + add));
program_timings(info, 0x00, channel, slot, rank);
if (!s3resume)
gav(rw_test(rank + add));
if (!s3resume)
gav(rw_test(rank + add));
write_1d0(0, 0x142, 3, 1);
write_1d0(0, 0x103, 6, 1);
gav(get_580(channel, 0xc | (rank << 5)));
gav(read_1d0(0x142, 3));
mchbar_write8(0x5ff, 0);
mchbar_write8(0x5ff, 1 << 7);
}
static void set_4cf(struct raminfo *info, int channel, u8 bit, u8 val)
{
const u16 regtable[] = { 0x4cf, 0x659, 0x697 };
val &= 1;
for (int i = 0; i < ARRAY_SIZE(regtable); i++)
rmw_500(info, channel, regtable[i], 4, ~(1 << bit), val << bit);
}
static void set_334(int zero)
{
int j, k, channel;
const u32 val3[] = { 0x2a2b2a2b, 0x26272627, 0x2e2f2e2f, 0x2a2b };
u32 vd8[2][16];
for (channel = 0; channel < NUM_CHANNELS; channel++) {
for (j = 0; j < 4; j++) {
u32 a = (j == 1) ? 0x29292929 : 0x31313131;
u32 lmask = (j == 3) ? 0xffff : 0xffffffff;
u16 c;
if ((j == 0 || j == 3) && zero)
c = 0;
else if (j == 3)
c = 0x5f;
else
c = 0x5f5f;
for (k = 0; k < 2; k++) {
mchbar_write32(0x138 + 8 * k, channel << 26 | j << 24);
gav(vd8[1][(channel << 3) | (j << 1) | k] =
mchbar_read32(0x138 + 8 * k));
gav(vd8[0][(channel << 3) | (j << 1) | k] =
mchbar_read32(0x13c + 8 * k));
}
mchbar_write32(0x334 + (channel << 10) + j * 0x44, zero ? 0 : val3[j]);
mchbar_write32(0x32c + (channel << 10) + j * 0x44,
zero ? 0 : 0x18191819 & lmask);
mchbar_write16(0x34a + (channel << 10) + j * 0x44, c);
mchbar_write32(0x33c + (channel << 10) + j * 0x44,
zero ? 0 : a & lmask);
mchbar_write32(0x344 + (channel << 10) + j * 0x44,
zero ? 0 : a & lmask);
}
}
mchbar_setbits32(0x130, 1 << 0);
while (mchbar_read8(0x130) & 1)
;
}
static void rmw_1d0(u16 addr, u32 and, u32 or, int split)
{
u32 v;
v = read_1d0(addr, split);
write_1d0((v & and) | or, addr, split, 1);
}
static int find_highest_bit_set(u16 val)
{
int i;
for (i = 15; i >= 0; i--)
if (val & (1 << i))
return i;
return -1;
}
static int find_lowest_bit_set32(u32 val)
{
int i;
for (i = 0; i < 32; i++)
if (val & (1 << i))
return i;
return -1;
}
enum {
DEVICE_TYPE = 2,
MODULE_TYPE = 3,
DENSITY = 4,
RANKS_AND_DQ = 7,
MEMORY_BUS_WIDTH = 8,
TIMEBASE_DIVIDEND = 10,
TIMEBASE_DIVISOR = 11,
CYCLETIME = 12,
CAS_LATENCIES_LSB = 14,
CAS_LATENCIES_MSB = 15,
CAS_LATENCY_TIME = 16,
THERMAL_AND_REFRESH = 31,
REFERENCE_RAW_CARD_USED = 62,
RANK1_ADDRESS_MAPPING = 63
};
static void calculate_timings(struct raminfo *info)
{
unsigned int cycletime;
unsigned int cas_latency_time;
unsigned int supported_cas_latencies;
unsigned int channel, slot;
unsigned int clock_speed_index;
unsigned int min_cas_latency;
unsigned int cas_latency;
unsigned int max_clock_index;
/* Find common CAS latency */
supported_cas_latencies = 0x3fe;
for (channel = 0; channel < NUM_CHANNELS; channel++)
for (slot = 0; slot < NUM_SLOTS; slot++)
if (info->populated_ranks[channel][slot][0])
supported_cas_latencies &=
2 *
(info->
spd[channel][slot][CAS_LATENCIES_LSB] |
(info->
spd[channel][slot][CAS_LATENCIES_MSB] <<
8));
max_clock_index = MIN(3, info->max_supported_clock_speed_index);
cycletime = min_cycletime[max_clock_index];
cas_latency_time = min_cas_latency_time[max_clock_index];
for (channel = 0; channel < NUM_CHANNELS; channel++)
for (slot = 0; slot < NUM_SLOTS; slot++)
if (info->populated_ranks[channel][slot][0]) {
unsigned int timebase;
timebase =
1000 *
info->
spd[channel][slot][TIMEBASE_DIVIDEND] /
info->spd[channel][slot][TIMEBASE_DIVISOR];
cycletime =
MAX(cycletime,
timebase *
info->spd[channel][slot][CYCLETIME]);
cas_latency_time =
MAX(cas_latency_time,
timebase *
info->
spd[channel][slot][CAS_LATENCY_TIME]);
}
if (cycletime > min_cycletime[0])
die("RAM init: Decoded SPD DRAM freq is slower than the controller minimum!");
for (clock_speed_index = 0; clock_speed_index < 3; clock_speed_index++) {
if (cycletime == min_cycletime[clock_speed_index])
break;
if (cycletime > min_cycletime[clock_speed_index]) {
clock_speed_index--;
cycletime = min_cycletime[clock_speed_index];
break;
}
}
min_cas_latency = DIV_ROUND_UP(cas_latency_time, cycletime);
cas_latency = 0;
while (supported_cas_latencies) {
cas_latency = find_highest_bit_set(supported_cas_latencies) + 3;
if (cas_latency <= min_cas_latency)
break;
supported_cas_latencies &=
~(1 << find_highest_bit_set(supported_cas_latencies));
}
if (cas_latency != min_cas_latency && clock_speed_index)
clock_speed_index--;
if (cas_latency * min_cycletime[clock_speed_index] > 20000)
die("Couldn't configure DRAM");
info->clock_speed_index = clock_speed_index;
info->cas_latency = cas_latency;
}
static void program_base_timings(struct raminfo *info)
{
unsigned int channel;
unsigned int slot, rank, lane;
unsigned int extended_silicon_revision;
int i;
extended_silicon_revision = info->silicon_revision;
if (info->silicon_revision == 0)
for (channel = 0; channel < NUM_CHANNELS; channel++)
for (slot = 0; slot < NUM_SLOTS; slot++)
if ((info->
spd[channel][slot][MODULE_TYPE] & 0xF) ==
3)
extended_silicon_revision = 4;
for (channel = 0; channel < NUM_CHANNELS; channel++) {
for (slot = 0; slot < NUM_SLOTS; slot++)
for (rank = 0; rank < NUM_SLOTS; rank++) {
int card_timing_2;
if (!info->populated_ranks[channel][slot][rank])
continue;
for (lane = 0; lane < 9; lane++) {
int tm_reg;
int card_timing;
card_timing = 0;
if ((info->
spd[channel][slot][MODULE_TYPE] &
0xF) == 3) {
int reference_card;
reference_card =
info->
spd[channel][slot]
[REFERENCE_RAW_CARD_USED] &
0x1f;
if (reference_card == 3)
card_timing =
u16_ffd1188[0][lane]
[info->
clock_speed_index];
if (reference_card == 5)
card_timing =
u16_ffd1188[1][lane]
[info->
clock_speed_index];
}
info->training.
lane_timings[0][channel][slot][rank]
[lane] =
u8_FFFD1218[info->
clock_speed_index];
info->training.
lane_timings[1][channel][slot][rank]
[lane] = 256;
for (tm_reg = 2; tm_reg < 4; tm_reg++)
info->training.
lane_timings[tm_reg]
[channel][slot][rank][lane]
=
u8_FFFD1240[channel]
[extended_silicon_revision]
[lane][2 * slot +
rank][info->
clock_speed_index]
+ info->max4048[channel]
+
u8_FFFD0C78[channel]
[extended_silicon_revision]
[info->
mode4030[channel]][slot]
[rank][info->
clock_speed_index]
+ card_timing;
for (tm_reg = 0; tm_reg < 4; tm_reg++)
write_500(info, channel,
info->training.
lane_timings[tm_reg]
[channel][slot][rank]
[lane],
get_timing_register_addr
(lane, tm_reg, slot,
rank), 9, 0);
}
card_timing_2 = 0;
if (!(extended_silicon_revision != 4
|| (info->
populated_ranks_mask[channel] & 5) ==
5)) {
if ((info->
spd[channel][slot]
[REFERENCE_RAW_CARD_USED] & 0x1F)
== 3)
card_timing_2 =
u16_FFFE0EB8[0][info->
clock_speed_index];
if ((info->
spd[channel][slot]
[REFERENCE_RAW_CARD_USED] & 0x1F)
== 5)
card_timing_2 =
u16_FFFE0EB8[1][info->
clock_speed_index];
}
for (i = 0; i < 3; i++)
write_500(info, channel,
(card_timing_2 +
info->max4048[channel]
+
u8_FFFD0EF8[channel]
[extended_silicon_revision]
[info->
mode4030[channel]][info->
clock_speed_index]),
u16_fffd0c50[i][slot][rank],
8, 1);
write_500(info, channel,
(info->max4048[channel] +
u8_FFFD0C78[channel]
[extended_silicon_revision][info->
mode4030
[channel]]
[slot][rank][info->
clock_speed_index]),
u16_fffd0c70[slot][rank], 7, 1);
}
if (!info->populated_ranks_mask[channel])
continue;
for (i = 0; i < 3; i++)
write_500(info, channel,
(info->max4048[channel] +
info->avg4044[channel]
+
u8_FFFD17E0[channel]
[extended_silicon_revision][info->
mode4030
[channel]][info->
clock_speed_index]),
u16_fffd0c68[i], 8, 1);
}
}
/* The time of clock cycle in ps. */
static unsigned int cycle_ps(struct raminfo *info)
{
return 2 * halfcycle_ps(info);
}
/* Frequency in 0.1 MHz units. */
static unsigned int frequency_01(struct raminfo *info)
{
return 100 * frequency_11(info) / 9;
}
static unsigned int ps_to_halfcycles(struct raminfo *info, unsigned int ps)
{
return (frequency_11(info) * 2) * ps / 900000;
}
static unsigned int ns_to_cycles(struct raminfo *info, unsigned int ns)
{
return (frequency_11(info)) * ns / 900;
}
static void compute_derived_timings(struct raminfo *info)
{
unsigned int channel, slot, rank;
int extended_silicon_revision;
int some_delay_1_ps;
int some_delay_2_ps;
int some_delay_2_halfcycles_ceil;
int some_delay_2_halfcycles_floor;
int some_delay_3_ps;
int some_delay_3_ps_rounded;
int some_delay_1_cycle_ceil;
int some_delay_1_cycle_floor;
some_delay_3_ps_rounded = 0;
extended_silicon_revision = info->silicon_revision;
if (!info->silicon_revision)
for (channel = 0; channel < NUM_CHANNELS; channel++)
for (slot = 0; slot < NUM_SLOTS; slot++)
if ((info->
spd[channel][slot][MODULE_TYPE] & 0xF) ==
3)
extended_silicon_revision = 4;
if (info->board_lane_delay[7] < 5)
info->board_lane_delay[7] = 5;
info->revision_flag_1 = 2;
if (info->silicon_revision == 2 || info->silicon_revision == 3)
info->revision_flag_1 = 0;
if (info->revision < 16)
info->revision_flag_1 = 0;
if (info->revision < 8)
info->revision_flag_1 = 0;
if (info->revision >= 8 && (info->silicon_revision == 0
|| info->silicon_revision == 1))
some_delay_2_ps = 735;
else
some_delay_2_ps = 750;
if (info->revision >= 0x10 && (info->silicon_revision == 0
|| info->silicon_revision == 1))
some_delay_1_ps = 3929;
else
some_delay_1_ps = 3490;
some_delay_1_cycle_floor = some_delay_1_ps / cycle_ps(info);
some_delay_1_cycle_ceil = some_delay_1_ps / cycle_ps(info);
if (some_delay_1_ps % cycle_ps(info))
some_delay_1_cycle_ceil++;
else
some_delay_1_cycle_floor--;
info->some_delay_1_cycle_floor = some_delay_1_cycle_floor;
if (info->revision_flag_1)
some_delay_2_ps = halfcycle_ps(info) >> 6;
some_delay_2_ps +=
MAX(some_delay_1_ps - 30,
2 * halfcycle_ps(info) * (some_delay_1_cycle_ceil - 1) + 1000) +
375;
some_delay_3_ps =
halfcycle_ps(info) - some_delay_2_ps % halfcycle_ps(info);
if (info->revision_flag_1) {
if (some_delay_3_ps >= 150) {
const int some_delay_3_halfcycles =
(some_delay_3_ps << 6) / halfcycle_ps(info);
some_delay_3_ps_rounded =
halfcycle_ps(info) * some_delay_3_halfcycles >> 6;
}
}
some_delay_2_halfcycles_ceil =
(some_delay_2_ps + halfcycle_ps(info) - 1) / halfcycle_ps(info) -
2 * (some_delay_1_cycle_ceil - 1);
if (info->revision_flag_1 && some_delay_3_ps < 150)
some_delay_2_halfcycles_ceil++;
some_delay_2_halfcycles_floor = some_delay_2_halfcycles_ceil;
if (info->revision < 0x10)
some_delay_2_halfcycles_floor =
some_delay_2_halfcycles_ceil - 1;
if (!info->revision_flag_1)
some_delay_2_halfcycles_floor++;
info->some_delay_2_halfcycles_ceil = some_delay_2_halfcycles_ceil;
info->some_delay_3_ps_rounded = some_delay_3_ps_rounded;
if ((info->populated_ranks[0][0][0] && info->populated_ranks[0][1][0])
|| (info->populated_ranks[1][0][0]
&& info->populated_ranks[1][1][0]))
info->max_slots_used_in_channel = 2;
else
info->max_slots_used_in_channel = 1;
for (channel = 0; channel < NUM_CHANNELS; channel++)
mchbar_write32(0x244 + (channel << 10),
((info->revision < 8) ? 1 : 0x200) |
((2 - info->max_slots_used_in_channel) << 17) |
(channel << 21) |
(info->some_delay_1_cycle_floor << 18) | 0x9510);
if (info->max_slots_used_in_channel == 1) {
info->mode4030[0] = (count_ranks_in_channel(info, 0) == 2);
info->mode4030[1] = (count_ranks_in_channel(info, 1) == 2);
} else {
info->mode4030[0] = ((count_ranks_in_channel(info, 0) == 1) || (count_ranks_in_channel(info, 0) == 2)) ? 2 : 3; /* 2 if 1 or 2 ranks */
info->mode4030[1] = ((count_ranks_in_channel(info, 1) == 1)
|| (count_ranks_in_channel(info, 1) ==
2)) ? 2 : 3;
}
for (channel = 0; channel < NUM_CHANNELS; channel++) {
int max_of_unk;
int min_of_unk_2;
int i, count;
int sum;
if (!info->populated_ranks_mask[channel])
continue;
max_of_unk = 0;
min_of_unk_2 = 32767;
sum = 0;
count = 0;
for (i = 0; i < 3; i++) {
int unk1;
if (info->revision < 8)
unk1 =
u8_FFFD1891[0][channel][info->
clock_speed_index]
[i];
else if (!
(info->revision >= 0x10
|| info->revision_flag_1))
unk1 =
u8_FFFD1891[1][channel][info->
clock_speed_index]
[i];
else
unk1 = 0;
for (slot = 0; slot < NUM_SLOTS; slot++)
for (rank = 0; rank < NUM_RANKS; rank++) {
int a = 0;
int b = 0;
if (!info->
populated_ranks[channel][slot]
[rank])
continue;
if (extended_silicon_revision == 4
&& (info->
populated_ranks_mask[channel] &
5) != 5) {
if ((info->
spd[channel][slot]
[REFERENCE_RAW_CARD_USED] &
0x1F) == 3) {
a = u16_ffd1178[0]
[info->
clock_speed_index];
b = u16_fe0eb8[0][info->
clock_speed_index];
} else
if ((info->
spd[channel][slot]
[REFERENCE_RAW_CARD_USED]
& 0x1F) == 5) {
a = u16_ffd1178[1]
[info->
clock_speed_index];
b = u16_fe0eb8[1][info->
clock_speed_index];
}
}
min_of_unk_2 = MIN(min_of_unk_2, a);
min_of_unk_2 = MIN(min_of_unk_2, b);
if (rank == 0) {
sum += a;
count++;
}
{
int t;
t = b +
u8_FFFD0EF8[channel]
[extended_silicon_revision]
[info->
mode4030[channel]][info->
clock_speed_index];
if (unk1 >= t)
max_of_unk =
MAX(max_of_unk,
unk1 - t);
}
}
{
int t =
u8_FFFD17E0[channel]
[extended_silicon_revision][info->
mode4030
[channel]]
[info->clock_speed_index] + min_of_unk_2;
if (unk1 >= t)
max_of_unk = MAX(max_of_unk, unk1 - t);
}
}
if (count == 0)
die("No memory ranks found for channel %u\n", channel);
info->avg4044[channel] = sum / count;
info->max4048[channel] = max_of_unk;
}
}
static void jedec_read(struct raminfo *info,
int channel, int slot, int rank,
int total_rank, u8 addr3, unsigned int value)
{
/* Handle mirrored mapping. */
if ((rank & 1) && (info->spd[channel][slot][RANK1_ADDRESS_MAPPING] & 1)) {
addr3 = (addr3 & 0xCF) | ((addr3 & 0x10) << 1) | ((addr3 >> 1) & 0x10);
value = (value & ~0x1f8) | ((value >> 1) & 0xa8) | ((value & 0xa8) << 1);
}
mchbar_clrsetbits8(0x271, 0x1f << 1, addr3);
mchbar_clrsetbits8(0x671, 0x1f << 1, addr3);
read32p((value << 3) | (total_rank << 28));
mchbar_clrsetbits8(0x271, 0x1f << 1, 1 << 1);
mchbar_clrsetbits8(0x671, 0x1f << 1, 1 << 1);
read32p(total_rank << 28);
}
enum {
MR1_RZQ12 = 512,
MR1_RZQ2 = 64,
MR1_RZQ4 = 4,
MR1_ODS34OHM = 2
};
enum {
MR0_BT_INTERLEAVED = 8,
MR0_DLL_RESET_ON = 256
};
enum {
MR2_RTT_WR_DISABLED = 0,
MR2_RZQ2 = 1 << 10
};
static void jedec_init(struct raminfo *info)
{
int write_recovery;
int channel, slot, rank;
int total_rank;
int dll_on;
int self_refresh_temperature;
int auto_self_refresh;
auto_self_refresh = 1;
self_refresh_temperature = 1;
if (info->board_lane_delay[3] <= 10) {
if (info->board_lane_delay[3] <= 8)
write_recovery = info->board_lane_delay[3] - 4;
else
write_recovery = 5;
} else {
write_recovery = 6;
}
FOR_POPULATED_RANKS {
auto_self_refresh &=
(info->spd[channel][slot][THERMAL_AND_REFRESH] >> 2) & 1;
self_refresh_temperature &=
info->spd[channel][slot][THERMAL_AND_REFRESH] & 1;
}
if (auto_self_refresh == 1)
self_refresh_temperature = 0;
dll_on = ((info->silicon_revision != 2 && info->silicon_revision != 3)
|| (info->populated_ranks[0][0][0]
&& info->populated_ranks[0][1][0])
|| (info->populated_ranks[1][0][0]
&& info->populated_ranks[1][1][0]));
total_rank = 0;
for (channel = NUM_CHANNELS - 1; channel >= 0; channel--) {
int rtt, rtt_wr = MR2_RTT_WR_DISABLED;
int rzq_reg58e;
if (info->silicon_revision == 2 || info->silicon_revision == 3) {
rzq_reg58e = 64;
rtt = MR1_RZQ2;
if (info->clock_speed_index != 0) {
rzq_reg58e = 4;
if (info->populated_ranks_mask[channel] == 3)
rtt = MR1_RZQ4;
}
} else {
if ((info->populated_ranks_mask[channel] & 5) == 5) {
rtt = MR1_RZQ12;
rzq_reg58e = 64;
rtt_wr = MR2_RZQ2;
} else {
rzq_reg58e = 4;
rtt = MR1_RZQ4;
}
}
mchbar_write16(0x588 + (channel << 10), 0);
mchbar_write16(0x58a + (channel << 10), 4);
mchbar_write16(0x58c + (channel << 10), rtt | MR1_ODS34OHM);
mchbar_write16(0x58e + (channel << 10), rzq_reg58e | 0x82);
mchbar_write16(0x590 + (channel << 10), 0x1282);
for (slot = 0; slot < NUM_SLOTS; slot++)
for (rank = 0; rank < NUM_RANKS; rank++)
if (info->populated_ranks[channel][slot][rank]) {
jedec_read(info, channel, slot, rank,
total_rank, 0x28,
rtt_wr | (info->
clock_speed_index
<< 3)
| (auto_self_refresh << 6) |
(self_refresh_temperature <<
7));
jedec_read(info, channel, slot, rank,
total_rank, 0x38, 0);
jedec_read(info, channel, slot, rank,
total_rank, 0x18,
rtt | MR1_ODS34OHM);
jedec_read(info, channel, slot, rank,
total_rank, 6,
(dll_on << 12) |
(write_recovery << 9)
| ((info->cas_latency - 4) <<
4) | MR0_BT_INTERLEAVED |
MR0_DLL_RESET_ON);
total_rank++;
}
}
}
static void program_modules_memory_map(struct raminfo *info, int pre_jedec)
{
unsigned int channel, slot, rank;
unsigned int total_mb[2] = { 0, 0 }; /* total memory per channel in MB */
unsigned int channel_0_non_interleaved;
FOR_ALL_RANKS {
if (info->populated_ranks[channel][slot][rank]) {
total_mb[channel] +=
pre_jedec ? 256 : (256 << info->
density[channel][slot] >> info->
is_x16_module[channel][slot]);
mchbar_write8(0x208 + rank + 2 * slot + (channel << 10),
(pre_jedec ? (1 | ((1 + 1) << 1)) :
(info->is_x16_module[channel][slot] |
((info->density[channel][slot] + 1) << 1))) |
0x80);
}
mchbar_write16(0x200 + (channel << 10) + 4 * slot + 2 * rank,
total_mb[channel] >> 6);
}
info->total_memory_mb = total_mb[0] + total_mb[1];
info->interleaved_part_mb =
pre_jedec ? 0 : 2 * MIN(total_mb[0], total_mb[1]);
info->non_interleaved_part_mb =
total_mb[0] + total_mb[1] - info->interleaved_part_mb;
channel_0_non_interleaved = total_mb[0] - info->interleaved_part_mb / 2;
mchbar_write32(0x100, channel_0_non_interleaved | info->non_interleaved_part_mb << 16);
if (!pre_jedec)
mchbar_write16(0x104, info->interleaved_part_mb);
}
static void program_board_delay(struct raminfo *info)
{
int cas_latency_shift;
int some_delay_ns;
int some_delay_3_half_cycles;
unsigned int channel, i;
int high_multiplier;
int lane_3_delay;
int cas_latency_derived;
high_multiplier = 0;
some_delay_ns = 200;
some_delay_3_half_cycles = 4;
cas_latency_shift = info->silicon_revision == 0
|| info->silicon_revision == 1 ? 1 : 0;
if (info->revision < 8) {
some_delay_ns = 600;
cas_latency_shift = 0;
}
{
int speed_bit;
speed_bit =
((info->clock_speed_index > 1
|| (info->silicon_revision != 2
&& info->silicon_revision != 3))) ^ (info->revision >=
0x10);
write_500(info, 0, speed_bit | ((!info->use_ecc) << 1), 0x60e,
3, 1);
write_500(info, 1, speed_bit | ((!info->use_ecc) << 1), 0x60e,
3, 1);
if (info->revision >= 0x10 && info->clock_speed_index <= 1
&& (info->silicon_revision == 2
|| info->silicon_revision == 3))
rmw_1d0(0x116, 5, 2, 4);
}
mchbar_write32(0x120, 1 << (info->max_slots_used_in_channel + 28) | 0x188e7f9f);
mchbar_write8(0x124, info->board_lane_delay[4] + (frequency_01(info) + 999) / 1000);
mchbar_write16(0x125, 0x1360);
mchbar_write8(0x127, 0x40);
if (info->fsb_frequency < frequency_11(info) / 2) {
unsigned int some_delay_2_half_cycles;
high_multiplier = 1;
some_delay_2_half_cycles = ps_to_halfcycles(info,
((3 *
fsbcycle_ps(info))
>> 1) +
(halfcycle_ps(info)
*
reg178_min[info->
clock_speed_index]
>> 6)
+
4 *
halfcycle_ps(info)
+ 2230);
some_delay_3_half_cycles =
MIN((some_delay_2_half_cycles +
(frequency_11(info) * 2) * (28 -
some_delay_2_half_cycles) /
(frequency_11(info) * 2 -
4 * (info->fsb_frequency))) >> 3, 7);
}
if (mchbar_read8(0x2ca9) & 1)
some_delay_3_half_cycles = 3;
for (channel = 0; channel < NUM_CHANNELS; channel++) {
mchbar_setbits32(0x220 + (channel << 10), 0x18001117);
mchbar_write32(0x224 + (channel << 10),
(info->max_slots_used_in_channel - 1) |
(info->cas_latency - 5 - info->clock_speed_index)
<< 21 | (info->max_slots_used_in_channel +
info->cas_latency - cas_latency_shift - 4) << 16 |
(info->cas_latency - cas_latency_shift - 4) << 26 |
(info->cas_latency - info->clock_speed_index +
info->max_slots_used_in_channel - 6) << 8);
mchbar_write32(0x228 + (channel << 10), info->max_slots_used_in_channel);
mchbar_write8(0x239 + (channel << 10), 32);
mchbar_write32(0x248 + (channel << 10), high_multiplier << 24 |
some_delay_3_half_cycles << 25 | 0x840000);
mchbar_write32(0x278 + (channel << 10), 0xc362042);
mchbar_write32(0x27c + (channel << 10), 0x8b000062);
mchbar_write32(0x24c + (channel << 10),
(!!info->clock_speed_index) << 17 |
((2 + info->clock_speed_index -
(!!info->clock_speed_index))) << 12 | 0x10200);
mchbar_write8(0x267 + (channel << 10), 4);
mchbar_write16(0x272 + (channel << 10), 0x155);
mchbar_clrsetbits32(0x2bc + (channel << 10), 0xffffff, 0x707070);
write_500(info, channel,
((!info->populated_ranks[channel][1][1])
| (!info->populated_ranks[channel][1][0] << 1)
| (!info->populated_ranks[channel][0][1] << 2)
| (!info->populated_ranks[channel][0][0] << 3)),
0x4c9, 4, 1);
}
mchbar_write8(0x2c4, (1 + (info->clock_speed_index != 0)) << 6 | 0xc);
{
u8 freq_divisor = 2;
if (info->fsb_frequency == frequency_11(info))
freq_divisor = 3;
else if (2 * info->fsb_frequency < 3 * (frequency_11(info) / 2))
freq_divisor = 1;
else
freq_divisor = 2;
mchbar_write32(0x2c0, freq_divisor << 11 | 0x6009c400);
}
if (info->board_lane_delay[3] <= 10) {
if (info->board_lane_delay[3] <= 8)
lane_3_delay = info->board_lane_delay[3];
else
lane_3_delay = 10;
} else {
lane_3_delay = 12;
}
cas_latency_derived = info->cas_latency - info->clock_speed_index + 2;
if (info->clock_speed_index > 1)
cas_latency_derived++;
for (channel = 0; channel < NUM_CHANNELS; channel++) {
mchbar_write32(0x240 + (channel << 10),
((info->clock_speed_index == 0) * 0x11000) |
0x1002100 | (2 + info->clock_speed_index) << 4 |
(info->cas_latency - 3));
write_500(info, channel, (info->clock_speed_index << 1) | 1,
0x609, 6, 1);
write_500(info, channel,
info->clock_speed_index + 2 * info->cas_latency - 7,
0x601, 6, 1);
mchbar_write32(0x250 + (channel << 10),
(lane_3_delay + info->clock_speed_index + 9) << 6 |
info->board_lane_delay[7] << 2 |
info->board_lane_delay[4] << 16 |
info->board_lane_delay[1] << 25 |
info->board_lane_delay[1] << 29 | 1);
mchbar_write32(0x254 + (channel << 10),
info->board_lane_delay[1] >> 3 |
(info->board_lane_delay[8] + 4 * info->use_ecc) << 6 |
0x80 | info->board_lane_delay[6] << 1 |
info->board_lane_delay[2] << 28 |
cas_latency_derived << 16 | 0x4700000);
mchbar_write32(0x258 + (channel << 10),
(info->board_lane_delay[5] + info->clock_speed_index + 9) << 12 |
(info->clock_speed_index - info->cas_latency + 12) << 8 |
info->board_lane_delay[2] << 17 |
info->board_lane_delay[4] << 24 | 0x47);
mchbar_write32(0x25c + (channel << 10),
info->board_lane_delay[1] << 1 |
info->board_lane_delay[0] << 8 | 0x1da50000);
mchbar_write8(0x264 + (channel << 10), 0xff);
mchbar_write8(0x5f8 + (channel << 10), cas_latency_shift << 3 | info->use_ecc);
}
program_modules_memory_map(info, 1);
mchbar_clrsetbits16(0x610, 0xfe3c,
MIN(ns_to_cycles(info, some_delay_ns) / 2, 127) << 9 | 0x3c);
mchbar_setbits16(0x612, 1 << 8);
mchbar_setbits16(0x214, 0x3e00);
for (i = 0; i < 8; i++) {
pci_write_config32(QPI_SAD, SAD_DRAM_RULE(i),
(info->total_memory_mb - 64) | !i | 2);
pci_write_config32(QPI_SAD, SAD_INTERLEAVE_LIST(i), 0);
}
}
#define DEFAULT_PCI_MMIO_SIZE 2048
static void program_total_memory_map(struct raminfo *info)
{
unsigned int tom, tolud, touud;
unsigned int quickpath_reserved;
unsigned int remap_base;
unsigned int uma_base_igd;
unsigned int uma_base_gtt;
unsigned int mmio_size;
int memory_remap;
unsigned int memory_map[8];
int i;
unsigned int current_limit;
unsigned int tseg_base;
int uma_size_igd = 0, uma_size_gtt = 0;
memset(memory_map, 0, sizeof(memory_map));
if (info->uma_enabled) {
u16 t = pci_read_config16(NORTHBRIDGE, GGC);
gav(t);
const int uma_sizes_gtt[16] =
{ 0, 1, 0, 2, 0, 0, 0, 0, 0, 2, 3, 4, 42, 42, 42, 42 };
/* Igd memory */
const int uma_sizes_igd[16] = {
0, 0, 0, 0, 0, 32, 48, 64, 128, 256, 96, 160, 224, 352,
256, 512
};
uma_size_igd = uma_sizes_igd[(t >> 4) & 0xF];
uma_size_gtt = uma_sizes_gtt[(t >> 8) & 0xF];
}
mmio_size = DEFAULT_PCI_MMIO_SIZE;
tom = info->total_memory_mb;
if (tom == 4096)
tom = 4032;
touud = ALIGN_DOWN(tom - info->memory_reserved_for_heci_mb, 64);
tolud = ALIGN_DOWN(MIN(4096 - mmio_size + ALIGN_UP(uma_size_igd + uma_size_gtt, 64)
, touud), 64);
memory_remap = 0;
if (touud - tolud > 64) {
memory_remap = 1;
remap_base = MAX(4096, touud);
touud = touud - tolud + 4096;
}
if (touud > 4096)
memory_map[2] = touud | 1;
quickpath_reserved = 0;
u32 t = pci_read_config32(QPI_SAD, 0x68);
gav(t);
if (t & 0x800) {
u32 shift = t >> 20;
if (shift == 0)
die("Quickpath value is 0\n");
quickpath_reserved = (u32)1 << find_lowest_bit_set32(shift);
}
if (memory_remap)
touud -= quickpath_reserved;
uma_base_igd = tolud - uma_size_igd;
uma_base_gtt = uma_base_igd - uma_size_gtt;
tseg_base = ALIGN_DOWN(uma_base_gtt, 64) - (CONFIG_SMM_TSEG_SIZE >> 20);
if (!memory_remap)
tseg_base -= quickpath_reserved;
tseg_base = ALIGN_DOWN(tseg_base, 8);
pci_write_config16(NORTHBRIDGE, TOLUD, tolud << 4);
pci_write_config16(NORTHBRIDGE, TOM, tom >> 6);
if (memory_remap) {
pci_write_config16(NORTHBRIDGE, REMAPBASE, remap_base >> 6);
pci_write_config16(NORTHBRIDGE, REMAPLIMIT, (touud - 64) >> 6);
}
pci_write_config16(NORTHBRIDGE, TOUUD, touud);
if (info->uma_enabled) {
pci_write_config32(NORTHBRIDGE, IGD_BASE, uma_base_igd << 20);
pci_write_config32(NORTHBRIDGE, GTT_BASE, uma_base_gtt << 20);
}
pci_write_config32(NORTHBRIDGE, TSEG, tseg_base << 20);
current_limit = 0;
memory_map[0] = ALIGN_DOWN(uma_base_gtt, 64) | 1;
memory_map[1] = 4096;
for (i = 0; i < ARRAY_SIZE(memory_map); i++) {
current_limit = MAX(current_limit, memory_map[i] & ~1);
pci_write_config32(QPI_SAD, SAD_DRAM_RULE(i),
(memory_map[i] & 1) | ALIGN_DOWN(current_limit -
1, 64) | 2);
pci_write_config32(QPI_SAD, SAD_INTERLEAVE_LIST(i), 0);
}
}
static void collect_system_info(struct raminfo *info)
{
u32 capid0[3];
int i;
unsigned int channel;
for (i = 0; i < 3; i++) {
capid0[i] = pci_read_config32(NORTHBRIDGE, CAPID0 | (i << 2));
printk(BIOS_DEBUG, "CAPID0[%d] = 0x%08x\n", i, capid0[i]);
}
info->revision = pci_read_config8(NORTHBRIDGE, PCI_REVISION_ID);
printk(BIOS_DEBUG, "Revision ID: 0x%x\n", info->revision);
printk(BIOS_DEBUG, "Device ID: 0x%x\n", pci_read_config16(NORTHBRIDGE, PCI_DEVICE_ID));
info->max_supported_clock_speed_index = (~capid0[1] & 7);
if ((capid0[1] >> 11) & 1)
info->uma_enabled = 0;
else
gav(info->uma_enabled =
pci_read_config8(NORTHBRIDGE, DEVEN) & 8);
/* Unrecognised: [0000:fffd3d2d] 37f81.37f82 ! CPUID: eax: 00000001; ecx: 00000e00 => 00020655.00010800.029ae3ff.bfebfbff */
info->silicon_revision = 0;
if (capid0[2] & 2) {
info->silicon_revision = 0;
info->max_supported_clock_speed_index = 2;
for (channel = 0; channel < NUM_CHANNELS; channel++)
if (info->populated_ranks[channel][0][0]
&& (info->spd[channel][0][MODULE_TYPE] & 0xf) ==
3) {
info->silicon_revision = 2;
info->max_supported_clock_speed_index = 1;
}
} else {
switch (((capid0[2] >> 18) & 1) + 2 * ((capid0[1] >> 3) & 1)) {
case 1:
case 2:
info->silicon_revision = 3;
break;
case 3:
info->silicon_revision = 0;
break;
case 0:
info->silicon_revision = 2;
break;
}
switch (pci_read_config16(NORTHBRIDGE, PCI_DEVICE_ID)) {
case 0x40:
info->silicon_revision = 0;
break;
case 0x48:
info->silicon_revision = 1;
break;
}
}
}
static void write_training_data(struct raminfo *info)
{
int tm, channel, slot, rank, lane;
if (info->revision < 8)
return;
for (tm = 0; tm < 4; tm++)
for (channel = 0; channel < NUM_CHANNELS; channel++)
for (slot = 0; slot < NUM_SLOTS; slot++)
for (rank = 0; rank < NUM_RANKS; rank++)
for (lane = 0; lane < 9; lane++)
write_500(info, channel,
info->
cached_training->
lane_timings[tm]
[channel][slot][rank]
[lane],
get_timing_register_addr
(lane, tm, slot,
rank), 9, 0);
write_1d0(info->cached_training->reg_178, 0x178, 7, 1);
write_1d0(info->cached_training->reg_10b, 0x10b, 6, 1);
}
static void dump_timings(struct raminfo *info)
{
int channel, slot, rank, lane, i;
printk(RAM_SPEW, "Timings:\n");
FOR_POPULATED_RANKS {
printk(RAM_SPEW, "channel %d, slot %d, rank %d\n", channel,
slot, rank);
for (lane = 0; lane < 9; lane++) {
printk(RAM_SPEW, "lane %d: ", lane);
for (i = 0; i < 4; i++) {
printk(RAM_SPEW, "%x (%x) ",
read_500(info, channel,
get_timing_register_addr
(lane, i, slot, rank),
9),
info->training.
lane_timings[i][channel][slot][rank]
[lane]);
}
printk(RAM_SPEW, "\n");
}
}
printk(RAM_SPEW, "[178] = %x (%x)\n", read_1d0(0x178, 7),
info->training.reg_178);
printk(RAM_SPEW, "[10b] = %x (%x)\n", read_1d0(0x10b, 6),
info->training.reg_10b);
}
/* Read timings and other registers that need to be restored verbatim and
put them to CBMEM.
*/
static void save_timings(struct raminfo *info)
{
struct ram_training train;
int channel, slot, rank, lane, i;
train = info->training;
FOR_POPULATED_RANKS for (lane = 0; lane < 9; lane++)
for (i = 0; i < 4; i++)
train.lane_timings[i][channel][slot][rank][lane] =
read_500(info, channel,
get_timing_register_addr(lane, i, slot,
rank), 9);
train.reg_178 = read_1d0(0x178, 7);
train.reg_10b = read_1d0(0x10b, 6);
for (channel = 0; channel < NUM_CHANNELS; channel++) {
u32 reg32;
reg32 = mchbar_read32((channel << 10) + 0x274);
train.reg274265[channel][0] = reg32 >> 16;
train.reg274265[channel][1] = reg32 & 0xffff;
train.reg274265[channel][2] = mchbar_read16((channel << 10) + 0x265) >> 8;
}
train.reg2ca9_bit0 = mchbar_read8(0x2ca9) & 1;
train.reg_6dc = mchbar_read32(0x6dc);
train.reg_6e8 = mchbar_read32(0x6e8);
printk(RAM_SPEW, "[6dc] = %x\n", train.reg_6dc);
printk(RAM_SPEW, "[6e8] = %x\n", train.reg_6e8);
/* Save the MRC S3 restore data to cbmem */
mrc_cache_stash_data(MRC_TRAINING_DATA, MRC_CACHE_VERSION,
&train, sizeof(train));
}
static const struct ram_training *get_cached_training(void)
{
return mrc_cache_current_mmap_leak(MRC_TRAINING_DATA,
MRC_CACHE_VERSION,
NULL);
}
static int have_match_ranks(struct raminfo *info, int channel, int ranks)
{
int ranks_in_channel;
ranks_in_channel = info->populated_ranks[channel][0][0]
+ info->populated_ranks[channel][0][1]
+ info->populated_ranks[channel][1][0]
+ info->populated_ranks[channel][1][1];
/* empty channel */
if (ranks_in_channel == 0)
return 1;
if (ranks_in_channel != ranks)
return 0;
/* single slot */
if (info->populated_ranks[channel][0][0] !=
info->populated_ranks[channel][1][0])
return 1;
if (info->populated_ranks[channel][0][1] !=
info->populated_ranks[channel][1][1])
return 1;
if (info->is_x16_module[channel][0] != info->is_x16_module[channel][1])
return 0;
if (info->density[channel][0] != info->density[channel][1])
return 0;
return 1;
}
static void read_4090(struct raminfo *info)
{
int i, channel, slot, rank, lane;
for (i = 0; i < 2; i++)
for (slot = 0; slot < NUM_SLOTS; slot++)
for (rank = 0; rank < NUM_RANKS; rank++)
for (lane = 0; lane < 9; lane++)
info->training.
lane_timings[0][i][slot][rank][lane]
= 32;
for (i = 1; i < 4; i++)
for (channel = 0; channel < NUM_CHANNELS; channel++)
for (slot = 0; slot < NUM_SLOTS; slot++)
for (rank = 0; rank < NUM_RANKS; rank++)
for (lane = 0; lane < 9; lane++) {
info->training.
lane_timings[i][channel]
[slot][rank][lane] =
read_500(info, channel,
get_timing_register_addr
(lane, i, slot,
rank), 9)
+ (i == 1) * 11; // !!!!
}
}
static u32 get_etalon2(int flip, u32 addr)
{
const u16 invmask[] = {
0xaaaa, 0x6db6, 0x4924, 0xeeee, 0xcccc, 0x8888, 0x7bde, 0x739c,
0x6318, 0x4210, 0xefbe, 0xcf3c, 0x8e38, 0x0c30, 0x0820
};
u32 ret;
u32 comp4 = addr / 480;
addr %= 480;
u32 comp1 = addr & 0xf;
u32 comp2 = (addr >> 4) & 1;
u32 comp3 = addr >> 5;
if (comp4)
ret = 0x1010101 << (comp4 - 1);
else
ret = 0;
if (flip ^ (((invmask[comp3] >> comp1) ^ comp2) & 1))
ret = ~ret;
return ret;
}
static void disable_cache_region(void)
{
msr_t msr = {.lo = 0, .hi = 0 };
wrmsr(MTRR_PHYS_BASE(3), msr);
wrmsr(MTRR_PHYS_MASK(3), msr);
}
static void enable_cache_region(unsigned int base, unsigned int size)
{
msr_t msr;
msr.lo = base | MTRR_TYPE_WRPROT;
msr.hi = 0;
wrmsr(MTRR_PHYS_BASE(3), msr);
msr.lo = ((~(ALIGN_DOWN(size + 4096, 4096) - 1) | MTRR_DEF_TYPE_EN)
& 0xffffffff);
msr.hi = 0x0000000f;
wrmsr(MTRR_PHYS_MASK(3), msr);
}
static void flush_cache(u32 start, u32 size)
{
u32 end;
u32 addr;
end = start + (ALIGN_DOWN(size + 4096, 4096));
for (addr = start; addr < end; addr += 64)
clflush((void *)(uintptr_t)addr);
}
static void clear_errors(void)
{
pci_write_config8(NORTHBRIDGE, 0xc0, 0x01);
}
static void write_testing(struct raminfo *info, int totalrank, int flip)
{
int nwrites = 0;
/* in 8-byte units. */
u32 offset;
u8 *base;
base = (u8 *)(uintptr_t)(totalrank << 28);
for (offset = 0; offset < 9 * 480; offset += 2) {
write32(base + offset * 8, get_etalon2(flip, offset));
write32(base + offset * 8 + 4, get_etalon2(flip, offset));
write32(base + offset * 8 + 8, get_etalon2(flip, offset + 1));
write32(base + offset * 8 + 12, get_etalon2(flip, offset + 1));
nwrites += 4;
if (nwrites >= 320) {
clear_errors();
nwrites = 0;
}
}
}
static u8 check_testing(struct raminfo *info, u8 total_rank, int flip)
{
u8 failmask = 0;
int i;
int comp1, comp2, comp3;
u32 failxor[2] = { 0, 0 };
enable_cache_region((total_rank << 28), 1728 * 5 * 4);
for (comp3 = 0; comp3 < 9 && failmask != 0xff; comp3++) {
for (comp1 = 0; comp1 < 4; comp1++)
for (comp2 = 0; comp2 < 60; comp2++) {
u32 re[4];
u32 curroffset =
comp3 * 8 * 60 + 2 * comp1 + 8 * comp2;
read128((total_rank << 28) | (curroffset << 3),
(u64 *) re);
failxor[0] |=
get_etalon2(flip, curroffset) ^ re[0];
failxor[1] |=
get_etalon2(flip, curroffset) ^ re[1];
failxor[0] |=
get_etalon2(flip, curroffset | 1) ^ re[2];
failxor[1] |=
get_etalon2(flip, curroffset | 1) ^ re[3];
}
for (i = 0; i < 8; i++)
if ((0xff << (8 * (i % 4))) & failxor[i / 4])
failmask |= 1 << i;
}
disable_cache_region();
flush_cache((total_rank << 28), 1728 * 5 * 4);
return failmask;
}
const u32 seed1[0x18] = {
0x3a9d5ab5, 0x576cb65b, 0x555773b6, 0x2ab772ee,
0x555556ee, 0x3a9d5ab5, 0x576cb65b, 0x555773b6,
0x2ab772ee, 0x555556ee, 0x5155a555, 0x5155a555,
0x5155a555, 0x5155a555, 0x3a9d5ab5, 0x576cb65b,
0x555773b6, 0x2ab772ee, 0x555556ee, 0x55d6b4a5,
0x366d6b3a, 0x2ae5ddbb, 0x3b9ddbb7, 0x55d6b4a5,
};
static u32 get_seed2(int a, int b)
{
const u32 seed2[5] = {
0x55555555, 0x33333333, 0x2e555a55, 0x55555555,
0x5b6db6db,
};
u32 r;
r = seed2[(a + (a >= 10)) / 5];
return b ? ~r : r;
}
static int make_shift(int comp2, int comp5, int x)
{
const u8 seed3[32] = {
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x38, 0x1c, 0x3c, 0x18, 0x38, 0x38,
0x38, 0x38, 0x38, 0x38, 0x0f, 0x0f, 0x0f, 0x0f,
0x0f, 0x0f, 0x0f, 0x0f, 0x0f, 0x0f, 0x0f, 0x0f,
};
return (comp2 - ((seed3[comp5] >> (x & 7)) & 1)) & 0x1f;
}
static u32 get_etalon(int flip, u32 addr)
{
u32 mask_byte = 0;
int comp1 = (addr >> 1) & 1;
int comp2 = (addr >> 3) & 0x1f;
int comp3 = (addr >> 8) & 0xf;
int comp4 = (addr >> 12) & 0xf;
int comp5 = (addr >> 16) & 0x1f;
u32 mask_bit = ~(0x10001 << comp3);
u32 part1;
u32 part2;
int byte;
part2 =
((seed1[comp5] >>
make_shift(comp2, comp5,
(comp3 >> 3) | (comp1 << 2) | 2)) & 1) ^ flip;
part1 =
((seed1[comp5] >>
make_shift(comp2, comp5,
(comp3 >> 3) | (comp1 << 2) | 0)) & 1) ^ flip;
for (byte = 0; byte < 4; byte++)
if ((get_seed2(comp5, comp4) >>
make_shift(comp2, comp5, (byte | (comp1 << 2)))) & 1)
mask_byte |= 0xff << (8 * byte);
return (mask_bit & mask_byte) | (part1 << comp3) | (part2 <<
(comp3 + 16));
}
static void
write_testing_type2(struct raminfo *info, u8 totalrank, u8 region, u8 block,
char flip)
{
int i;
for (i = 0; i < 2048; i++)
write32p((totalrank << 28) | (region << 25) | (block << 16) |
(i << 2), get_etalon(flip, (block << 16) | (i << 2)));
}
static u8
check_testing_type2(struct raminfo *info, u8 totalrank, u8 region, u8 block,
char flip)
{
u8 failmask = 0;
u32 failxor[2];
int i;
int comp1, comp2, comp3;
failxor[0] = 0;
failxor[1] = 0;
enable_cache_region(totalrank << 28, 134217728);
for (comp3 = 0; comp3 < 2 && failmask != 0xff; comp3++) {
for (comp1 = 0; comp1 < 16; comp1++)
for (comp2 = 0; comp2 < 64; comp2++) {
u32 addr =
(totalrank << 28) | (region << 25) | (block
<< 16)
| (comp3 << 12) | (comp2 << 6) | (comp1 <<
2);
failxor[comp1 & 1] |=
read32p(addr) ^ get_etalon(flip, addr);
}
for (i = 0; i < 8; i++)
if ((0xff << (8 * (i % 4))) & failxor[i / 4])
failmask |= 1 << i;
}
disable_cache_region();
flush_cache((totalrank << 28) | (region << 25) | (block << 16), 16384);
return failmask;
}
static int check_bounded(unsigned short *vals, u16 bound)
{
int i;
for (i = 0; i < 8; i++)
if (vals[i] < bound)
return 0;
return 1;
}
enum state {
BEFORE_USABLE = 0, AT_USABLE = 1, AT_MARGIN = 2, COMPLETE = 3
};
static int validate_state(enum state *in)
{
int i;
for (i = 0; i < 8; i++)
if (in[i] != COMPLETE)
return 0;
return 1;
}
static void
do_fsm(enum state *state, u16 *counter,
u8 fail_mask, int margin, int uplimit,
u8 *res_low, u8 *res_high, u8 val)
{
int lane;
for (lane = 0; lane < 8; lane++) {
int is_fail = (fail_mask >> lane) & 1;
switch (state[lane]) {
case BEFORE_USABLE:
if (!is_fail) {
counter[lane] = 1;
state[lane] = AT_USABLE;
break;
}
counter[lane] = 0;
state[lane] = BEFORE_USABLE;
break;
case AT_USABLE:
if (!is_fail) {
++counter[lane];
if (counter[lane] >= margin) {
state[lane] = AT_MARGIN;
res_low[lane] = val - margin + 1;
break;
}
state[lane] = 1;
break;
}
counter[lane] = 0;
state[lane] = BEFORE_USABLE;
break;
case AT_MARGIN:
if (is_fail) {
state[lane] = COMPLETE;
res_high[lane] = val - 1;
} else {
counter[lane]++;
state[lane] = AT_MARGIN;
if (val == uplimit) {
state[lane] = COMPLETE;
res_high[lane] = uplimit;
}
}
break;
case COMPLETE:
break;
}
}
}
static void
train_ram_at_178(struct raminfo *info, u8 channel, int slot, int rank,
u8 total_rank, u8 reg_178, int first_run, int niter,
timing_bounds_t * timings)
{
int lane;
enum state state[8];
u16 count[8];
u8 lower_usable[8];
u8 upper_usable[8];
unsigned short num_successfully_checked[8];
u8 reg1b3;
int i;
for (i = 0; i < 8; i++)
state[i] = BEFORE_USABLE;
if (!first_run) {
int is_all_ok = 1;
for (lane = 0; lane < 8; lane++)
if (timings[reg_178][channel][slot][rank][lane].
smallest ==
timings[reg_178][channel][slot][rank][lane].
largest) {
timings[reg_178][channel][slot][rank][lane].
smallest = 0;
timings[reg_178][channel][slot][rank][lane].
largest = 0;
is_all_ok = 0;
}
if (is_all_ok) {
for (i = 0; i < 8; i++)
state[i] = COMPLETE;
}
}
for (reg1b3 = 0; reg1b3 < 0x30 && !validate_state(state); reg1b3++) {
u8 failmask = 0;
write_1d0(reg1b3 ^ 32, 0x1b3, 6, 1);
write_1d0(reg1b3 ^ 32, 0x1a3, 6, 1);
failmask = check_testing(info, total_rank, 0);
mchbar_setbits32(0xfb0, 3 << 16);
do_fsm(state, count, failmask, 5, 47, lower_usable,
upper_usable, reg1b3);
}
if (reg1b3) {
write_1d0(0, 0x1b3, 6, 1);
write_1d0(0, 0x1a3, 6, 1);
for (lane = 0; lane < 8; lane++) {
if (state[lane] == COMPLETE) {
timings[reg_178][channel][slot][rank][lane].
smallest =
lower_usable[lane] +
(info->training.
lane_timings[0][channel][slot][rank][lane]
& 0x3F) - 32;
timings[reg_178][channel][slot][rank][lane].
largest =
upper_usable[lane] +
(info->training.
lane_timings[0][channel][slot][rank][lane]
& 0x3F) - 32;
}
}
}
if (!first_run) {
for (lane = 0; lane < 8; lane++)
if (state[lane] == COMPLETE) {
write_500(info, channel,
timings[reg_178][channel][slot][rank]
[lane].smallest,
get_timing_register_addr(lane, 0,
slot, rank),
9, 1);
write_500(info, channel,
timings[reg_178][channel][slot][rank]
[lane].smallest +
info->training.
lane_timings[1][channel][slot][rank]
[lane]
-
info->training.
lane_timings[0][channel][slot][rank]
[lane], get_timing_register_addr(lane,
1,
slot,
rank),
9, 1);
num_successfully_checked[lane] = 0;
} else
num_successfully_checked[lane] = -1;
do {
u8 failmask = 0;
for (i = 0; i < niter; i++) {
if (failmask == 0xFF)
break;
failmask |=
check_testing_type2(info, total_rank, 2, i,
0);
failmask |=
check_testing_type2(info, total_rank, 3, i,
1);
}
mchbar_setbits32(0xfb0, 3 << 16);
for (lane = 0; lane < 8; lane++)
if (num_successfully_checked[lane] != 0xffff) {
if ((1 << lane) & failmask) {
if (timings[reg_178][channel]
[slot][rank][lane].
largest <=
timings[reg_178][channel]
[slot][rank][lane].smallest)
num_successfully_checked
[lane] = -1;
else {
num_successfully_checked
[lane] = 0;
timings[reg_178]
[channel][slot]
[rank][lane].
smallest++;
write_500(info, channel,
timings
[reg_178]
[channel]
[slot][rank]
[lane].
smallest,
get_timing_register_addr
(lane, 0,
slot, rank),
9, 1);
write_500(info, channel,
timings
[reg_178]
[channel]
[slot][rank]
[lane].
smallest +
info->
training.
lane_timings
[1][channel]
[slot][rank]
[lane]
-
info->
training.
lane_timings
[0][channel]
[slot][rank]
[lane],
get_timing_register_addr
(lane, 1,
slot, rank),
9, 1);
}
} else
num_successfully_checked[lane]
++;
}
}
while (!check_bounded(num_successfully_checked, 2))
;
for (lane = 0; lane < 8; lane++)
if (state[lane] == COMPLETE) {
write_500(info, channel,
timings[reg_178][channel][slot][rank]
[lane].largest,
get_timing_register_addr(lane, 0,
slot, rank),
9, 1);
write_500(info, channel,
timings[reg_178][channel][slot][rank]
[lane].largest +
info->training.
lane_timings[1][channel][slot][rank]
[lane]
-
info->training.
lane_timings[0][channel][slot][rank]
[lane], get_timing_register_addr(lane,
1,
slot,
rank),
9, 1);
num_successfully_checked[lane] = 0;
} else
num_successfully_checked[lane] = -1;
do {
int failmask = 0;
for (i = 0; i < niter; i++) {
if (failmask == 0xFF)
break;
failmask |=
check_testing_type2(info, total_rank, 2, i,
0);
failmask |=
check_testing_type2(info, total_rank, 3, i,
1);
}
mchbar_setbits32(0xfb0, 3 << 16);
for (lane = 0; lane < 8; lane++) {
if (num_successfully_checked[lane] != 0xffff) {
if ((1 << lane) & failmask) {
if (timings[reg_178][channel]
[slot][rank][lane].
largest <=
timings[reg_178][channel]
[slot][rank][lane].
smallest) {
num_successfully_checked
[lane] = -1;
} else {
num_successfully_checked
[lane] = 0;
timings[reg_178]
[channel][slot]
[rank][lane].
largest--;
write_500(info, channel,
timings
[reg_178]
[channel]
[slot][rank]
[lane].
largest,
get_timing_register_addr
(lane, 0,
slot, rank),
9, 1);
write_500(info, channel,
timings
[reg_178]
[channel]
[slot][rank]
[lane].
largest +
info->
training.
lane_timings
[1][channel]
[slot][rank]
[lane]
-
info->
training.
lane_timings
[0][channel]
[slot][rank]
[lane],
get_timing_register_addr
(lane, 1,
slot, rank),
9, 1);
}
} else
num_successfully_checked[lane]
++;
}
}
}
while (!check_bounded(num_successfully_checked, 3))
;
for (lane = 0; lane < 8; lane++) {
write_500(info, channel,
info->training.
lane_timings[0][channel][slot][rank][lane],
get_timing_register_addr(lane, 0, slot, rank),
9, 1);
write_500(info, channel,
info->training.
lane_timings[1][channel][slot][rank][lane],
get_timing_register_addr(lane, 1, slot, rank),
9, 1);
if (timings[reg_178][channel][slot][rank][lane].
largest <=
timings[reg_178][channel][slot][rank][lane].
smallest) {
timings[reg_178][channel][slot][rank][lane].
largest = 0;
timings[reg_178][channel][slot][rank][lane].
smallest = 0;
}
}
}
}
static void set_10b(struct raminfo *info, u8 val)
{
int channel;
int slot, rank;
int lane;
if (read_1d0(0x10b, 6) == val)
return;
write_1d0(val, 0x10b, 6, 1);
FOR_POPULATED_RANKS_BACKWARDS for (lane = 0; lane < 9; lane++) {
u16 reg_500;
reg_500 = read_500(info, channel,
get_timing_register_addr(lane, 0, slot,
rank), 9);
if (val == 1) {
if (lut16[info->clock_speed_index] <= reg_500)
reg_500 -= lut16[info->clock_speed_index];
else
reg_500 = 0;
} else {
reg_500 += lut16[info->clock_speed_index];
}
write_500(info, channel, reg_500,
get_timing_register_addr(lane, 0, slot, rank), 9, 1);
}
}
static void set_ecc(int onoff)
{
int channel;
for (channel = 0; channel < NUM_CHANNELS; channel++) {
u8 t;
t = mchbar_read8((channel << 10) + 0x5f8);
if (onoff)
t |= 1;
else
t &= ~1;
mchbar_write8((channel << 10) + 0x5f8, t);
}
}
static void set_178(u8 val)
{
if (val >= 31)
val = val - 31;
else
val = 63 - val;
write_1d0(2 * val, 0x178, 7, 1);
}
static void
write_500_timings_type(struct raminfo *info, int channel, int slot, int rank,
int type)
{
int lane;
for (lane = 0; lane < 8; lane++)
write_500(info, channel,
info->training.
lane_timings[type][channel][slot][rank][lane],
get_timing_register_addr(lane, type, slot, rank), 9,
0);
}
static void
try_timing_offsets(struct raminfo *info, int channel,
int slot, int rank, int totalrank)
{
u16 count[8];
enum state state[8];
u8 lower_usable[8], upper_usable[8];
int lane;
int i;
int flip = 1;
int timing_offset;
for (i = 0; i < 8; i++)
state[i] = BEFORE_USABLE;
memset(count, 0, sizeof(count));
for (lane = 0; lane < 8; lane++)
write_500(info, channel,
info->training.
lane_timings[2][channel][slot][rank][lane] + 32,
get_timing_register_addr(lane, 3, slot, rank), 9, 1);
for (timing_offset = 0; !validate_state(state) && timing_offset < 64;
timing_offset++) {
u8 failmask;
write_1d0(timing_offset ^ 32, 0x1bb, 6, 1);
failmask = 0;
for (i = 0; i < 2 && failmask != 0xff; i++) {
flip = !flip;
write_testing(info, totalrank, flip);
failmask |= check_testing(info, totalrank, flip);
}
do_fsm(state, count, failmask, 10, 63, lower_usable,
upper_usable, timing_offset);
}
write_1d0(0, 0x1bb, 6, 1);
dump_timings(info);
if (!validate_state(state))
die("Couldn't discover DRAM timings (1)\n");
for (lane = 0; lane < 8; lane++) {
u8 bias = 0;
if (info->silicon_revision) {
int usable_length;
usable_length = upper_usable[lane] - lower_usable[lane];
if (usable_length >= 20) {
bias = usable_length / 2 - 10;
if (bias >= 2)
bias = 2;
}
}
write_500(info, channel,
info->training.
lane_timings[2][channel][slot][rank][lane] +
(upper_usable[lane] + lower_usable[lane]) / 2 - bias,
get_timing_register_addr(lane, 3, slot, rank), 9, 1);
info->training.timing2_bounds[channel][slot][rank][lane][0] =
info->training.lane_timings[2][channel][slot][rank][lane] +
lower_usable[lane];
info->training.timing2_bounds[channel][slot][rank][lane][1] =
info->training.lane_timings[2][channel][slot][rank][lane] +
upper_usable[lane];
info->training.timing2_offset[channel][slot][rank][lane] =
info->training.lane_timings[2][channel][slot][rank][lane];
}
}
static u8
choose_training(struct raminfo *info, int channel, int slot, int rank,
int lane, timing_bounds_t * timings, u8 center_178)
{
u16 central_weight;
u16 side_weight;
unsigned int sum = 0, count = 0;
u8 span;
u8 lower_margin, upper_margin;
u8 reg_178;
u8 result;
span = 12;
central_weight = 20;
side_weight = 20;
if (info->silicon_revision == 1 && channel == 1) {
central_weight = 5;
side_weight = 20;
if ((info->
populated_ranks_mask[1] ^ (info->
populated_ranks_mask[1] >> 2)) &
1)
span = 18;
}
if ((info->populated_ranks_mask[0] & 5) == 5) {
central_weight = 20;
side_weight = 20;
}
if (info->clock_speed_index >= 2
&& (info->populated_ranks_mask[0] & 5) == 5 && slot == 1) {
if (info->silicon_revision == 1) {
switch (channel) {
case 0:
if (lane == 1) {
central_weight = 10;
side_weight = 20;
}
break;
case 1:
if (lane == 6) {
side_weight = 5;
central_weight = 20;
}
break;
}
}
if (info->silicon_revision == 0 && channel == 0 && lane == 0) {
side_weight = 5;
central_weight = 20;
}
}
for (reg_178 = center_178 - span; reg_178 <= center_178 + span;
reg_178 += span) {
u8 smallest;
u8 largest;
largest = timings[reg_178][channel][slot][rank][lane].largest;
smallest = timings[reg_178][channel][slot][rank][lane].smallest;
if (largest - smallest + 1 >= 5) {
unsigned int weight;
if (reg_178 == center_178)
weight = central_weight;
else
weight = side_weight;
sum += weight * (largest + smallest);
count += weight;
}
}
dump_timings(info);
if (count == 0)
die("Couldn't discover DRAM timings (2)\n");
result = sum / (2 * count);
lower_margin =
result - timings[center_178][channel][slot][rank][lane].smallest;
upper_margin =
timings[center_178][channel][slot][rank][lane].largest - result;
if (upper_margin < 10 && lower_margin > 10)
result -= MIN(lower_margin - 10, 10 - upper_margin);
if (upper_margin > 10 && lower_margin < 10)
result += MIN(upper_margin - 10, 10 - lower_margin);
return result;
}
#define STANDARD_MIN_MARGIN 5
static u8 choose_reg178(struct raminfo *info, timing_bounds_t * timings)
{
u16 margin[64];
int lane, rank, slot, channel;
u8 reg178;
int count = 0, sum = 0;
for (reg178 = reg178_min[info->clock_speed_index];
reg178 < reg178_max[info->clock_speed_index];
reg178 += reg178_step[info->clock_speed_index]) {
margin[reg178] = -1;
FOR_POPULATED_RANKS_BACKWARDS for (lane = 0; lane < 8; lane++) {
int curmargin =
timings[reg178][channel][slot][rank][lane].largest -
timings[reg178][channel][slot][rank][lane].
smallest + 1;
if (curmargin < margin[reg178])
margin[reg178] = curmargin;
}
if (margin[reg178] >= STANDARD_MIN_MARGIN) {
u16 weight;
weight = margin[reg178] - STANDARD_MIN_MARGIN;
sum += weight * reg178;
count += weight;
}
}
dump_timings(info);
if (count == 0)
die("Couldn't discover DRAM timings (3)\n");
u8 threshold;
for (threshold = 30; threshold >= 5; threshold--) {
int usable_length = 0;
int smallest_fount = 0;
for (reg178 = reg178_min[info->clock_speed_index];
reg178 < reg178_max[info->clock_speed_index];
reg178 += reg178_step[info->clock_speed_index])
if (margin[reg178] >= threshold) {
usable_length +=
reg178_step[info->clock_speed_index];
info->training.reg178_largest =
reg178 -
2 * reg178_step[info->clock_speed_index];
if (!smallest_fount) {
smallest_fount = 1;
info->training.reg178_smallest =
reg178 +
reg178_step[info->
clock_speed_index];
}
}
if (usable_length >= 0x21)
break;
}
return sum / count;
}
static int check_cached_sanity(struct raminfo *info)
{
int lane;
int slot, rank;
int channel;
if (!info->cached_training)
return 0;
for (channel = 0; channel < NUM_CHANNELS; channel++)
for (slot = 0; slot < NUM_SLOTS; slot++)
for (rank = 0; rank < NUM_RANKS; rank++)
for (lane = 0; lane < 8 + info->use_ecc; lane++) {
u16 cached_value, estimation_value;
cached_value =
info->cached_training->
lane_timings[1][channel][slot][rank]
[lane];
if (cached_value >= 0x18
&& cached_value <= 0x1E7) {
estimation_value =
info->training.
lane_timings[1][channel]
[slot][rank][lane];
if (estimation_value <
cached_value - 24)
return 0;
if (estimation_value >
cached_value + 24)
return 0;
}
}
return 1;
}
static int try_cached_training(struct raminfo *info)
{
u8 saved_243[2];
u8 tm;
int channel, slot, rank, lane;
int flip = 1;
int i, j;
if (!check_cached_sanity(info))
return 0;
info->training.reg178_center = info->cached_training->reg178_center;
info->training.reg178_smallest = info->cached_training->reg178_smallest;
info->training.reg178_largest = info->cached_training->reg178_largest;
memcpy(&info->training.timing_bounds,
&info->cached_training->timing_bounds,
sizeof(info->training.timing_bounds));
memcpy(&info->training.timing_offset,
&info->cached_training->timing_offset,
sizeof(info->training.timing_offset));
write_1d0(2, 0x142, 3, 1);
saved_243[0] = mchbar_read8(0x243);
saved_243[1] = mchbar_read8(0x643);
mchbar_write8(0x243, saved_243[0] | 2);
mchbar_write8(0x643, saved_243[1] | 2);
set_ecc(0);
pci_write_config16(NORTHBRIDGE, 0xc8, 3);
if (read_1d0(0x10b, 6) & 1)
set_10b(info, 0);
for (tm = 0; tm < 2; tm++) {
int totalrank;
set_178(tm ? info->cached_training->reg178_largest : info->
cached_training->reg178_smallest);
totalrank = 0;
/* Check timing ranges. With i == 0 we check smallest one and with
i == 1 the largest bound. With j == 0 we check that on the bound
it still works whereas with j == 1 we check that just outside of
bound we fail.
*/
FOR_POPULATED_RANKS_BACKWARDS {
for (i = 0; i < 2; i++) {
for (lane = 0; lane < 8; lane++) {
write_500(info, channel,
info->cached_training->
timing2_bounds[channel][slot]
[rank][lane][i],
get_timing_register_addr(lane,
3,
slot,
rank),
9, 1);
if (!i)
write_500(info, channel,
info->
cached_training->
timing2_offset
[channel][slot][rank]
[lane],
get_timing_register_addr
(lane, 2, slot, rank),
9, 1);
write_500(info, channel,
i ? info->cached_training->
timing_bounds[tm][channel]
[slot][rank][lane].
largest : info->
cached_training->
timing_bounds[tm][channel]
[slot][rank][lane].smallest,
get_timing_register_addr(lane,
0,
slot,
rank),
9, 1);
write_500(info, channel,
info->cached_training->
timing_offset[channel][slot]
[rank][lane] +
(i ? info->cached_training->
timing_bounds[tm][channel]
[slot][rank][lane].
largest : info->
cached_training->
timing_bounds[tm][channel]
[slot][rank][lane].
smallest) - 64,
get_timing_register_addr(lane,
1,
slot,
rank),
9, 1);
}
for (j = 0; j < 2; j++) {
u8 failmask;
u8 expected_failmask;
char reg1b3;
reg1b3 = (j == 1) + 4;
reg1b3 =
j == i ? reg1b3 : (-reg1b3) & 0x3f;
write_1d0(reg1b3, 0x1bb, 6, 1);
write_1d0(reg1b3, 0x1b3, 6, 1);
write_1d0(reg1b3, 0x1a3, 6, 1);
flip = !flip;
write_testing(info, totalrank, flip);
failmask =
check_testing(info, totalrank,
flip);
expected_failmask =
j == 0 ? 0x00 : 0xff;
if (failmask != expected_failmask)
goto fail;
}
}
totalrank++;
}
}
set_178(info->cached_training->reg178_center);
if (info->use_ecc)
set_ecc(1);
write_training_data(info);
write_1d0(0, 322, 3, 1);
info->training = *info->cached_training;
write_1d0(0, 0x1bb, 6, 1);
write_1d0(0, 0x1b3, 6, 1);
write_1d0(0, 0x1a3, 6, 1);
mchbar_write8(0x243, saved_243[0]);
mchbar_write8(0x643, saved_243[1]);
return 1;
fail:
FOR_POPULATED_RANKS {
write_500_timings_type(info, channel, slot, rank, 1);
write_500_timings_type(info, channel, slot, rank, 2);
write_500_timings_type(info, channel, slot, rank, 3);
}
write_1d0(0, 0x1bb, 6, 1);
write_1d0(0, 0x1b3, 6, 1);
write_1d0(0, 0x1a3, 6, 1);
mchbar_write8(0x243, saved_243[0]);
mchbar_write8(0x643, saved_243[1]);
return 0;
}
static void do_ram_training(struct raminfo *info)
{
u8 saved_243[2];
int totalrank = 0;
u8 reg_178;
int niter;
timing_bounds_t *timings = timings_car;
int lane, rank, slot, channel;
u8 reg178_center;
write_1d0(2, 0x142, 3, 1);
saved_243[0] = mchbar_read8(0x243);
saved_243[1] = mchbar_read8(0x643);
mchbar_write8(0x243, saved_243[0] | 2);
mchbar_write8(0x643, saved_243[1] | 2);
switch (info->clock_speed_index) {
case 0:
niter = 5;
break;
case 1:
niter = 10;
break;
default:
niter = 19;
break;
}
set_ecc(0);
FOR_POPULATED_RANKS_BACKWARDS {
int i;
write_500_timings_type(info, channel, slot, rank, 0);
write_testing(info, totalrank, 0);
for (i = 0; i < niter; i++) {
write_testing_type2(info, totalrank, 2, i, 0);
write_testing_type2(info, totalrank, 3, i, 1);
}
pci_write_config8(NORTHBRIDGE, 0xc0, 0x01);
totalrank++;
}
if (reg178_min[info->clock_speed_index] <
reg178_max[info->clock_speed_index])
memset(timings[reg178_min[info->clock_speed_index]], 0,
sizeof(timings[0]) *
(reg178_max[info->clock_speed_index] -
reg178_min[info->clock_speed_index]));
for (reg_178 = reg178_min[info->clock_speed_index];
reg_178 < reg178_max[info->clock_speed_index];
reg_178 += reg178_step[info->clock_speed_index]) {
totalrank = 0;
set_178(reg_178);
for (channel = NUM_CHANNELS - 1; channel >= 0; channel--)
for (slot = 0; slot < NUM_SLOTS; slot++)
for (rank = 0; rank < NUM_RANKS; rank++) {
memset(&timings[reg_178][channel][slot]
[rank][0].smallest, 0, 16);
if (info->
populated_ranks[channel][slot]
[rank]) {
train_ram_at_178(info, channel,
slot, rank,
totalrank,
reg_178, 1,
niter,
timings);
totalrank++;
}
}
}
reg178_center = choose_reg178(info, timings);
FOR_POPULATED_RANKS_BACKWARDS for (lane = 0; lane < 8; lane++) {
info->training.timing_bounds[0][channel][slot][rank][lane].
smallest =
timings[info->training.
reg178_smallest][channel][slot][rank][lane].
smallest;
info->training.timing_bounds[0][channel][slot][rank][lane].
largest =
timings[info->training.
reg178_smallest][channel][slot][rank][lane].largest;
info->training.timing_bounds[1][channel][slot][rank][lane].
smallest =
timings[info->training.
reg178_largest][channel][slot][rank][lane].smallest;
info->training.timing_bounds[1][channel][slot][rank][lane].
largest =
timings[info->training.
reg178_largest][channel][slot][rank][lane].largest;
info->training.timing_offset[channel][slot][rank][lane] =
info->training.lane_timings[1][channel][slot][rank][lane]
-
info->training.lane_timings[0][channel][slot][rank][lane] +
64;
}
if (info->silicon_revision == 1
&& (info->
populated_ranks_mask[1] ^ (info->
populated_ranks_mask[1] >> 2)) & 1) {
int ranks_after_channel1;
totalrank = 0;
for (reg_178 = reg178_center - 18;
reg_178 <= reg178_center + 18; reg_178 += 18) {
totalrank = 0;
set_178(reg_178);
for (slot = 0; slot < NUM_SLOTS; slot++)
for (rank = 0; rank < NUM_RANKS; rank++) {
if (info->
populated_ranks[1][slot][rank]) {
train_ram_at_178(info, 1, slot,
rank,
totalrank,
reg_178, 0,
niter,
timings);
totalrank++;
}
}
}
ranks_after_channel1 = totalrank;
for (reg_178 = reg178_center - 12;
reg_178 <= reg178_center + 12; reg_178 += 12) {
totalrank = ranks_after_channel1;
set_178(reg_178);
for (slot = 0; slot < NUM_SLOTS; slot++)
for (rank = 0; rank < NUM_RANKS; rank++)
if (info->
populated_ranks[0][slot][rank]) {
train_ram_at_178(info, 0, slot,
rank,
totalrank,
reg_178, 0,
niter,
timings);
totalrank++;
}
}
} else {
for (reg_178 = reg178_center - 12;
reg_178 <= reg178_center + 12; reg_178 += 12) {
totalrank = 0;
set_178(reg_178);
FOR_POPULATED_RANKS_BACKWARDS {
train_ram_at_178(info, channel, slot, rank,
totalrank, reg_178, 0, niter,
timings);
totalrank++;
}
}
}
set_178(reg178_center);
FOR_POPULATED_RANKS_BACKWARDS for (lane = 0; lane < 8; lane++) {
u16 tm0;
tm0 =
choose_training(info, channel, slot, rank, lane, timings,
reg178_center);
write_500(info, channel, tm0,
get_timing_register_addr(lane, 0, slot, rank), 9, 1);
write_500(info, channel,
tm0 +
info->training.
lane_timings[1][channel][slot][rank][lane] -
info->training.
lane_timings[0][channel][slot][rank][lane],
get_timing_register_addr(lane, 1, slot, rank), 9, 1);
}
totalrank = 0;
FOR_POPULATED_RANKS_BACKWARDS {
try_timing_offsets(info, channel, slot, rank, totalrank);
totalrank++;
}
mchbar_write8(0x243, saved_243[0]);
mchbar_write8(0x643, saved_243[1]);
write_1d0(0, 0x142, 3, 1);
info->training.reg178_center = reg178_center;
}
static void ram_training(struct raminfo *info)
{
u16 saved_fc4;
saved_fc4 = mchbar_read16(0xfc4);
mchbar_write16(0xfc4, 0xffff);
if (info->revision >= 8)
read_4090(info);
if (!try_cached_training(info))
do_ram_training(info);
if ((info->silicon_revision == 2 || info->silicon_revision == 3)
&& info->clock_speed_index < 2)
set_10b(info, 1);
mchbar_write16(0xfc4, saved_fc4);
}
u16 get_max_timing(struct raminfo *info, int channel)
{
int slot, rank, lane;
u16 ret = 0;
if ((mchbar_read8(0x2ca8) >> 2) < 1)
return 384;
if (info->revision < 8)
return 256;
for (slot = 0; slot < NUM_SLOTS; slot++)
for (rank = 0; rank < NUM_RANKS; rank++)
if (info->populated_ranks[channel][slot][rank])
for (lane = 0; lane < 8 + info->use_ecc; lane++)
ret = MAX(ret, read_500(info, channel,
get_timing_register_addr
(lane, 0, slot,
rank), 9));
return ret;
}
static void dmi_setup(void)
{
gav(dmibar_read8(0x254));
dmibar_write8(0x254, 1 << 0);
dmibar_write16(0x1b8, 0x18f2);
mchbar_clrsetbits16(0x48, ~0, 1 << 1);
dmibar_setbits32(0xd68, 1 << 27);
outl((gav(inl(DEFAULT_GPIOBASE | 0x38)) & ~0x140000) | 0x400000,
DEFAULT_GPIOBASE | 0x38);
gav(inb(DEFAULT_GPIOBASE | 0xe)); // = 0xfdcaff6e
}
void chipset_init(const int s3resume)
{
u8 x2ca8;
u16 ggc;
u8 gfxsize;
x2ca8 = mchbar_read8(0x2ca8);
if ((x2ca8 & 1) || (x2ca8 == 8 && !s3resume)) {
printk(BIOS_DEBUG, "soft reset detected, rebooting properly\n");
mchbar_write8(0x2ca8, 0);
system_reset();
}
dmi_setup();
mchbar_write16(0x1170, 0xa880);
mchbar_write8(0x11c1, 1 << 0);
mchbar_write16(0x1170, 0xb880);
mchbar_clrsetbits8(0x1210, ~0, 0x84);
gfxsize = get_uint_option("gfx_uma_size", 0); /* 0 for 32MB */
ggc = 0xb00 | ((gfxsize + 5) << 4);
pci_write_config16(NORTHBRIDGE, GGC, ggc | 2);
u16 deven;
deven = pci_read_config16(NORTHBRIDGE, DEVEN); // = 0x3
if (deven & 8) {
mchbar_write8(0x2c30, 1 << 5);
pci_read_config8(NORTHBRIDGE, 0x8); // = 0x18
mchbar_setbits16(0x2c30, 1 << 9);
mchbar_write16(0x2c32, 0x434);
mchbar_clrsetbits32(0x2c44, ~0, 0x1053687);
pci_read_config8(GMA, MSAC); // = 0x2
pci_write_config8(GMA, MSAC, 0x2);
RCBA8(0x2318);
RCBA8(0x2318) = 0x47;
RCBA8(0x2320);
RCBA8(0x2320) = 0xfc;
}
mchbar_clrsetbits32(0x30, ~0, 0x40);
pci_write_config16(NORTHBRIDGE, GGC, ggc);
gav(RCBA32(0x3428));
RCBA32(0x3428) = 0x1d;
}
static u8 get_bits_420(const u32 reg32)
{
u8 val = 0;
val |= (reg32 >> 4) & (1 << 0);
val |= (reg32 >> 2) & (1 << 1);
val |= (reg32 >> 0) & (1 << 2);
return val;
}
void raminit(const int s3resume, const u8 *spd_addrmap)
{
unsigned int channel, slot, lane, rank;
struct raminfo info;
u8 x2ca8;
int cbmem_wasnot_inited;
x2ca8 = mchbar_read8(0x2ca8);
printk(RAM_DEBUG, "Scratchpad MCHBAR8(0x2ca8): 0x%04x\n", x2ca8);
memset(&info, 0x5a, sizeof(info));
info.last_500_command[0] = 0;
info.last_500_command[1] = 0;
info.board_lane_delay[0] = 0x14;
info.board_lane_delay[1] = 0x07;
info.board_lane_delay[2] = 0x07;
info.board_lane_delay[3] = 0x08;
info.board_lane_delay[4] = 0x56;
info.board_lane_delay[5] = 0x04;
info.board_lane_delay[6] = 0x04;
info.board_lane_delay[7] = 0x05;
info.board_lane_delay[8] = 0x10;
info.training.reg_178 = 0;
info.training.reg_10b = 0;
/* Wait for some bit, maybe TXT clear. */
while (!(read8((u8 *)0xfed40000) & (1 << 7)))
;
/* Wait for ME to be ready */
intel_early_me_init();
info.memory_reserved_for_heci_mb = intel_early_me_uma_size();
/* before SPD */
timestamp_add_now(101);
if (!s3resume || 1) { // possible error
memset(&info.populated_ranks, 0, sizeof(info.populated_ranks));
info.use_ecc = 1;
for (channel = 0; channel < NUM_CHANNELS; channel++)
for (slot = 0; slot < NUM_SLOTS; slot++) {
int v;
int try;
int addr;
const u8 useful_addresses[] = {
DEVICE_TYPE,
MODULE_TYPE,
DENSITY,
RANKS_AND_DQ,
MEMORY_BUS_WIDTH,
TIMEBASE_DIVIDEND,
TIMEBASE_DIVISOR,
CYCLETIME,
CAS_LATENCIES_LSB,
CAS_LATENCIES_MSB,
CAS_LATENCY_TIME,
0x11, 0x12, 0x13, 0x14, 0x15,
0x16, 0x17, 0x18, 0x19, 0x1a, 0x1b,
0x1c, 0x1d,
THERMAL_AND_REFRESH,
0x20,
REFERENCE_RAW_CARD_USED,
RANK1_ADDRESS_MAPPING,
0x75, 0x76, 0x77, 0x78,
0x79, 0x7a, 0x7b, 0x7c, 0x7d, 0x7e,
0x7f, 0x80, 0x81, 0x82, 0x83, 0x84,
0x85, 0x86, 0x87, 0x88,
0x89, 0x8a, 0x8b, 0x8c, 0x8d, 0x8e,
0x8f, 0x90, 0x91, 0x92, 0x93, 0x94,
0x95
};
if (!spd_addrmap[2 * channel + slot])
continue;
for (try = 0; try < 5; try++) {
v = smbus_read_byte(spd_addrmap[2 * channel + slot],
DEVICE_TYPE);
if (v >= 0)
break;
}
if (v < 0)
continue;
for (addr = 0;
addr <
ARRAY_SIZE(useful_addresses); addr++)
gav(info.
spd[channel][0][useful_addresses
[addr]] =
smbus_read_byte(spd_addrmap[2 * channel + slot],
useful_addresses
[addr]));
if (info.spd[channel][0][DEVICE_TYPE] != 11)
die("Only DDR3 is supported");
v = info.spd[channel][0][RANKS_AND_DQ];
info.populated_ranks[channel][0][0] = 1;
info.populated_ranks[channel][0][1] =
((v >> 3) & 7);
if (((v >> 3) & 7) > 1)
die("At most 2 ranks are supported");
if ((v & 7) == 0 || (v & 7) > 2)
die("Only x8 and x16 modules are supported");
if ((info.
spd[channel][slot][MODULE_TYPE] & 0xF) != 2
&& (info.
spd[channel][slot][MODULE_TYPE] & 0xF)
!= 3)
die("Registered memory is not supported");
info.is_x16_module[channel][0] = (v & 7) - 1;
info.density[channel][slot] =
info.spd[channel][slot][DENSITY] & 0xF;
if (!
(info.
spd[channel][slot][MEMORY_BUS_WIDTH] &
0x18))
info.use_ecc = 0;
}
gav(0x55);
for (channel = 0; channel < NUM_CHANNELS; channel++) {
int v = 0;
for (slot = 0; slot < NUM_SLOTS; slot++)
for (rank = 0; rank < NUM_RANKS; rank++)
v |= info.
populated_ranks[channel][slot][rank]
<< (2 * slot + rank);
info.populated_ranks_mask[channel] = v;
}
gav(0x55);
gav(pci_read_config32(NORTHBRIDGE, CAPID0 + 4));
}
/* after SPD */
timestamp_add_now(102);
mchbar_clrbits8(0x2ca8, 1 << 1 | 1 << 0);
collect_system_info(&info);
calculate_timings(&info);
if (!s3resume) {
u8 reg8 = pci_read_config8(SOUTHBRIDGE, GEN_PMCON_2);
if (x2ca8 == 0 && (reg8 & 0x80)) {
/* Don't enable S4-assertion stretch. Makes trouble on roda/rk9.
reg8 = pci_read_config8(PCI_DEV(0, 0x1f, 0), 0xa4);
pci_write_config8(PCI_DEV(0, 0x1f, 0), 0xa4, reg8 | 0x08);
*/
/* Clear bit7. */
pci_write_config8(SOUTHBRIDGE, GEN_PMCON_2,
(reg8 & ~(1 << 7)));
printk(BIOS_INFO,
"Interrupted RAM init, reset required.\n");
system_reset();
}
}
if (!s3resume && x2ca8 == 0)
pci_write_config8(SOUTHBRIDGE, GEN_PMCON_2,
pci_read_config8(SOUTHBRIDGE, GEN_PMCON_2) | 0x80);
compute_derived_timings(&info);
early_quickpath_init(&info, x2ca8);
info.cached_training = get_cached_training();
if (x2ca8 == 0)
late_quickpath_init(&info, s3resume);
mchbar_setbits32(0x2c80, 1 << 24);
mchbar_write32(0x1804, mchbar_read32(0x1c04) & ~(1 << 27));
mchbar_read8(0x2ca8); // !!!!
if (x2ca8 == 0) {
mchbar_clrbits8(0x2ca8, 3);
mchbar_write8(0x2ca8, mchbar_read8(0x2ca8) + 4); // "+" or "|"?
/* This issues a CPU reset without resetting the platform */
printk(BIOS_DEBUG, "Issuing a CPU reset\n");
/* Write back the S3 state to PM1_CNT to let the reset CPU
know it also needs to take the s3 path. */
if (s3resume)
write_pmbase32(PM1_CNT, read_pmbase32(PM1_CNT)
| (SLP_TYP_S3 << 10));
mchbar_setbits32(0x1af0, 1 << 4);
halt();
}
mchbar_clrbits8(0x2ca8, 0); // !!!!
mchbar_clrbits32(0x2c80, 1 << 24);
pci_write_config32(QPI_NON_CORE, MAX_RTIDS, 0x20220);
{
u8 x2c20 = (mchbar_read16(0x2c20) >> 8) & 3;
u16 x2c10 = mchbar_read16(0x2c10);
u16 value = mchbar_read16(0x2c00);
if (x2c20 == 0 && (x2c10 & 0x300) == 0)
value |= (1 << 7);
else
value &= ~(1 << 0);
mchbar_write16(0x2c00, value);
}
udelay(1000); // !!!!
write_1d0(0, 0x33d, 0, 0);
write_500(&info, 0, 0, 0xb61, 0, 0);
write_500(&info, 1, 0, 0xb61, 0, 0);
mchbar_write32(0x1a30, 0);
mchbar_write32(0x1a34, 0);
mchbar_write16(0x614, 0xb5b | (info.populated_ranks[1][0][0] * 0x404) |
(info.populated_ranks[0][0][0] * 0xa0));
mchbar_write16(0x616, 0x26a);
mchbar_write32(0x134, 0x856000);
mchbar_write32(0x160, 0x5ffffff);
mchbar_clrsetbits32(0x114, ~0, 0xc2024440); // !!!!
mchbar_clrsetbits32(0x118, ~0, 0x4); // !!!!
for (channel = 0; channel < NUM_CHANNELS; channel++)
mchbar_write32(0x260 + (channel << 10), 0x30809ff |
(info.populated_ranks_mask[channel] & 3) << 20);
for (channel = 0; channel < NUM_CHANNELS; channel++) {
mchbar_write16(0x31c + (channel << 10), 0x101);
mchbar_write16(0x360 + (channel << 10), 0x909);
mchbar_write16(0x3a4 + (channel << 10), 0x101);
mchbar_write16(0x3e8 + (channel << 10), 0x101);
mchbar_write32(0x320 + (channel << 10), 0x29002900);
mchbar_write32(0x324 + (channel << 10), 0);
mchbar_write32(0x368 + (channel << 10), 0x32003200);
mchbar_write16(0x352 + (channel << 10), 0x505);
mchbar_write16(0x354 + (channel << 10), 0x3c3c);
mchbar_write16(0x356 + (channel << 10), 0x1040);
mchbar_write16(0x39a + (channel << 10), 0x73e4);
mchbar_write16(0x3de + (channel << 10), 0x77ed);
mchbar_write16(0x422 + (channel << 10), 0x1040);
}
write_1d0(0x4, 0x151, 4, 1);
write_1d0(0, 0x142, 3, 1);
rdmsr(0x1ac); // !!!!
write_500(&info, 1, 1, 0x6b3, 4, 1);
write_500(&info, 1, 1, 0x6cf, 4, 1);
rmw_1d0(0x21c, 0x38, 0, 6);
write_1d0(((!info.populated_ranks[1][0][0]) << 1) | ((!info.
populated_ranks[0]
[0][0]) << 0),
0x1d1, 3, 1);
for (channel = 0; channel < NUM_CHANNELS; channel++) {
mchbar_write16(0x38e + (channel << 10), 0x5f5f);
mchbar_write16(0x3d2 + (channel << 10), 0x5f5f);
}
set_334(0);
program_base_timings(&info);
mchbar_setbits8(0x5ff, 1 << 7);
write_1d0(0x2, 0x1d5, 2, 1);
write_1d0(0x20, 0x166, 7, 1);
write_1d0(0x0, 0xeb, 3, 1);
write_1d0(0x0, 0xf3, 6, 1);
for (channel = 0; channel < NUM_CHANNELS; channel++) {
u8 a = 0;
if (info.populated_ranks[channel][0][1] && info.clock_speed_index > 1)
a = 3;
if (info.silicon_revision == 0 || info.silicon_revision == 1)
a = 3;
for (lane = 0; lane < 9; lane++) {
const u16 addr = 0x125 + get_lane_offset(0, 0, lane);
rmw_500(&info, channel, addr, 6, 0xf, a);
}
}
if (s3resume) {
if (info.cached_training == NULL) {
u32 reg32;
printk(BIOS_ERR,
"Couldn't find training data. Rebooting\n");
reg32 = inl(DEFAULT_PMBASE + 0x04);
outl(reg32 & ~(7 << 10), DEFAULT_PMBASE + 0x04);
full_reset();
}
int tm;
info.training = *info.cached_training;
for (tm = 0; tm < 4; tm++)
for (channel = 0; channel < NUM_CHANNELS; channel++)
for (slot = 0; slot < NUM_SLOTS; slot++)
for (rank = 0; rank < NUM_RANKS; rank++)
for (lane = 0; lane < 9; lane++)
write_500(&info,
channel,
info.training.
lane_timings
[tm][channel]
[slot][rank]
[lane],
get_timing_register_addr
(lane, tm,
slot, rank),
9, 0);
write_1d0(info.cached_training->reg_178, 0x178, 7, 1);
write_1d0(info.cached_training->reg_10b, 0x10b, 6, 1);
}
mchbar_clrsetbits32(0x1f4, ~0, 1 << 17); // !!!!
mchbar_write32(0x1f0, 0x1d000200);
mchbar_setbits8(0x1f0, 1 << 0);
while (mchbar_read8(0x1f0) & 1)
;
program_board_delay(&info);
mchbar_write8(0x5ff, 0);
mchbar_write8(0x5ff, 1 << 7);
mchbar_write8(0x5f4, 1 << 0);
mchbar_clrbits32(0x130, 1 << 1); // | 2 when ?
while (mchbar_read32(0x130) & 1)
;
rmw_1d0(0x14b, 0x47, 0x30, 7);
rmw_1d0(0xd6, 0x38, 7, 6);
rmw_1d0(0x328, 0x38, 7, 6);
for (channel = 0; channel < NUM_CHANNELS; channel++)
set_4cf(&info, channel, 1, 0);
rmw_1d0(0x116, 0xe, 0, 4);
rmw_1d0(0xae, 0x3e, 0, 6);
rmw_1d0(0x300, 0x3e, 0, 6);
mchbar_clrbits16(0x356, 1 << 15);
mchbar_clrbits16(0x756, 1 << 15);
mchbar_clrbits32(0x140, 7 << 24);
mchbar_clrbits32(0x138, 7 << 24);
mchbar_write32(0x130, 0x31111301);
/* Wait until REG130b0 is 1. */
while (mchbar_read32(0x130) & 1)
;
u8 value_a1;
{
const u8 val_xa1 = get_bits_420(read_1d0(0xa1, 6)); // = 0x1cf4040 // !!!!
const u8 val_2f3 = get_bits_420(read_1d0(0x2f3, 6)); // = 0x10a4040 // !!!!
value_a1 = val_xa1;
rmw_1d0(0x320, 0x38, val_2f3, 6);
rmw_1d0(0x14b, 0x78, val_xa1, 7);
rmw_1d0(0xce, 0x38, val_xa1, 6);
}
for (channel = 0; channel < NUM_CHANNELS; channel++)
set_4cf(&info, channel, 1, 1);
rmw_1d0(0x116, 0xe, 1, 4); // = 0x4040432 // !!!!
{
if ((mchbar_read32(0x144) & 0x1f) < 0x13)
value_a1 += 2;
else
value_a1 += 1;
if (value_a1 > 7)
value_a1 = 7;
write_1d0(2, 0xae, 6, 1);
write_1d0(2, 0x300, 6, 1);
write_1d0(value_a1, 0x121, 3, 1);
rmw_1d0(0xd6, 0x38, 4, 6);
rmw_1d0(0x328, 0x38, 4, 6);
}
for (channel = 0; channel < NUM_CHANNELS; channel++)
set_4cf(&info, channel, 2, 0);
mchbar_write32(0x130, 0x11111301 | info.populated_ranks[1][0][0] << 30 |
info.populated_ranks[0][0][0] << 29);
while (mchbar_read8(0x130) & 1)
;
{
const u8 val_xa1 = get_bits_420(read_1d0(0xa1, 6));
read_1d0(0x2f3, 6); // = 0x10a4054 // !!!!
rmw_1d0(0x21c, 0x38, 0, 6);
rmw_1d0(0x14b, 0x78, val_xa1, 7);
}
for (channel = 0; channel < NUM_CHANNELS; channel++)
set_4cf(&info, channel, 2, 1);
set_334(1);
mchbar_write8(0x1e8, 1 << 2);
for (channel = 0; channel < NUM_CHANNELS; channel++) {
write_500(&info, channel,
0x3 & ~(info.populated_ranks_mask[channel]), 0x6b7, 2,
1);
write_500(&info, channel, 0x3, 0x69b, 2, 1);
}
mchbar_clrsetbits32(0x2d0, ~0xff0c01ff, 0x200000);
mchbar_write16(0x6c0, 0x14a0);
mchbar_clrsetbits32(0x6d0, ~0xff0000ff, 0x8000);
mchbar_write16(0x232, 1 << 3);
/* 0x40004 or 0 depending on ? */
mchbar_clrsetbits32(0x234, 0x40004, 0x40004);
mchbar_clrsetbits32(0x34, 0x7, 5);
mchbar_write32(0x128, 0x2150d05);
mchbar_write8(0x12c, 0x1f);
mchbar_write8(0x12d, 0x56);
mchbar_write8(0x12e, 0x31);
mchbar_write8(0x12f, 0);
mchbar_write8(0x271, 1 << 1);
mchbar_write8(0x671, 1 << 1);
mchbar_write8(0x1e8, 1 << 2);
for (channel = 0; channel < NUM_CHANNELS; channel++)
mchbar_write32(0x294 + (channel << 10),
(info.populated_ranks_mask[channel] & 3) << 16);
mchbar_clrsetbits32(0x134, ~0xfc01ffff, 0x10000);
mchbar_clrsetbits32(0x134, ~0xfc85ffff, 0x850000);
for (channel = 0; channel < NUM_CHANNELS; channel++)
mchbar_clrsetbits32(0x260 + (channel << 10), 0xf << 20, 1 << 27 |
(info.populated_ranks_mask[channel] & 3) << 20);
if (!s3resume)
jedec_init(&info);
int totalrank = 0;
for (channel = 0; channel < NUM_CHANNELS; channel++)
for (slot = 0; slot < NUM_SLOTS; slot++)
for (rank = 0; rank < NUM_RANKS; rank++)
if (info.populated_ranks[channel][slot][rank]) {
jedec_read(&info, channel, slot, rank,
totalrank, 0xa, 0x400);
totalrank++;
}
mchbar_write8(0x12c, 0x9f);
mchbar_clrsetbits8(0x271, 0x3e, 0x0e);
mchbar_clrsetbits8(0x671, 0x3e, 0x0e);
if (!s3resume) {
for (channel = 0; channel < NUM_CHANNELS; channel++) {
mchbar_write32(0x294 + (channel << 10),
(info.populated_ranks_mask[channel] & 3) << 16);
mchbar_write16(0x298 + (channel << 10),
info.populated_ranks[channel][0][0] |
info.populated_ranks[channel][0][1] << 5);
mchbar_write32(0x29c + (channel << 10), 0x77a);
}
mchbar_clrsetbits32(0x2c0, ~0, 0x6009cc00); // !!!!
{
u8 a, b;
a = mchbar_read8(0x243);
b = mchbar_read8(0x643);
mchbar_write8(0x243, a | 2);
mchbar_write8(0x643, b | 2);
}
write_1d0(7, 0x19b, 3, 1);
write_1d0(7, 0x1c0, 3, 1);
write_1d0(4, 0x1c6, 4, 1);
write_1d0(4, 0x1cc, 4, 1);
rmw_1d0(0x151, 0xf, 0x4, 4);
mchbar_write32(0x584, 0xfffff);
mchbar_write32(0x984, 0xfffff);
for (channel = 0; channel < NUM_CHANNELS; channel++)
for (slot = 0; slot < NUM_SLOTS; slot++)
for (rank = 0; rank < NUM_RANKS; rank++)
if (info.
populated_ranks[channel][slot]
[rank])
config_rank(&info, s3resume,
channel, slot,
rank);
mchbar_write8(0x243, 1);
mchbar_write8(0x643, 1);
}
/* was == 1 but is common */
pci_write_config16(NORTHBRIDGE, 0xc8, 3);
write_26c(0, 0x820);
write_26c(1, 0x820);
mchbar_setbits32(0x130, 1 << 1);
/* end */
if (s3resume) {
for (channel = 0; channel < NUM_CHANNELS; channel++) {
mchbar_write32(0x294 + (channel << 10),
(info.populated_ranks_mask[channel] & 3) << 16);
mchbar_write16(0x298 + (channel << 10),
info.populated_ranks[channel][0][0] |
info.populated_ranks[channel][0][1] << 5);
mchbar_write32(0x29c + (channel << 10), 0x77a);
}
mchbar_clrsetbits32(0x2c0, ~0, 0x6009cc00); // !!!!
}
mchbar_clrbits32(0xfa4, 1 << 24 | 1 << 1);
mchbar_write32(0xfb0, 0x2000e019);
/* Before training. */
timestamp_add_now(103);
if (!s3resume)
ram_training(&info);
/* After training. */
timestamp_add_now(104);
dump_timings(&info);
program_modules_memory_map(&info, 0);
program_total_memory_map(&info);
if (info.non_interleaved_part_mb != 0 && info.interleaved_part_mb != 0)
mchbar_write8(0x111, 0 << 2 | 1 << 5 | 1 << 6 | 0 << 7);
else if (have_match_ranks(&info, 0, 4) && have_match_ranks(&info, 1, 4))
mchbar_write8(0x111, 3 << 2 | 1 << 5 | 0 << 6 | 1 << 7);
else if (have_match_ranks(&info, 0, 2) && have_match_ranks(&info, 1, 2))
mchbar_write8(0x111, 3 << 2 | 1 << 5 | 0 << 6 | 0 << 7);
else
mchbar_write8(0x111, 3 << 2 | 1 << 5 | 1 << 6 | 0 << 7);
mchbar_clrbits32(0xfac, 1 << 31);
mchbar_write32(0xfb4, 0x4800);
mchbar_write32(0xfb8, (info.revision < 8) ? 0x20 : 0x0);
mchbar_write32(0xe94, 0x7ffff);
mchbar_write32(0xfc0, 0x80002040);
mchbar_write32(0xfc4, 0x701246);
mchbar_clrbits8(0xfc8, 0x70);
mchbar_setbits32(0xe5c, 1 << 24);
mchbar_clrsetbits32(0x1a70, 3 << 20, 2 << 20);
mchbar_write32(0x50, 0x700b0);
mchbar_write32(0x3c, 0x10);
mchbar_clrsetbits8(0x1aa8, 0x3f, 0xa);
mchbar_setbits8(0xff4, 1 << 1);
mchbar_clrsetbits32(0xff8, 0xe008, 0x1020);
mchbar_write32(0xd00, IOMMU_BASE2 | 1);
mchbar_write32(0xd40, IOMMU_BASE1 | 1);
mchbar_write32(0xdc0, IOMMU_BASE4 | 1);
write32p(IOMMU_BASE1 | 0xffc, 0x80000000);
write32p(IOMMU_BASE2 | 0xffc, 0xc0000000);
write32p(IOMMU_BASE4 | 0xffc, 0x80000000);
{
u32 eax;
eax = info.fsb_frequency / 9;
mchbar_clrsetbits32(0xfcc, 0x3ffff,
(eax * 0x280) | (eax * 0x5000) | eax | 0x40000);
mchbar_write32(0x20, 0x33001);
}
for (channel = 0; channel < NUM_CHANNELS; channel++) {
mchbar_clrbits32(0x220 + (channel << 10), 0x7770);
if (info.max_slots_used_in_channel == 1)
mchbar_setbits16(0x237 + (channel << 10), 0x0201);
else
mchbar_clrbits16(0x237 + (channel << 10), 0x0201);
mchbar_setbits8(0x241 + (channel << 10), 1 << 0);
if (info.clock_speed_index <= 1 && (info.silicon_revision == 2
|| info.silicon_revision == 3))
mchbar_setbits32(0x248 + (channel << 10), 0x00102000);
else
mchbar_clrbits32(0x248 + (channel << 10), 0x00102000);
}
mchbar_setbits32(0x115, 1 << 24);
{
u8 al;
al = 0xd;
if (!(info.silicon_revision == 0 || info.silicon_revision == 1))
al += 2;
al |= ((1 << (info.max_slots_used_in_channel - 1)) - 1) << 4;
mchbar_write32(0x210, al << 16 | 0x20);
}
for (channel = 0; channel < NUM_CHANNELS; channel++) {
mchbar_write32(0x288 + (channel << 10), 0x70605040);
mchbar_write32(0x28c + (channel << 10), 0xfffec080);
mchbar_write32(0x290 + (channel << 10), 0x282091c |
(info.max_slots_used_in_channel - 1) << 0x16);
}
u32 reg1c;
pci_read_config32(NORTHBRIDGE, 0x40); // = DEFAULT_EPBAR | 0x001 // OK
reg1c = epbar_read32(EPVC1RCAP); // = 0x8001 // OK
pci_read_config32(NORTHBRIDGE, 0x40); // = DEFAULT_EPBAR | 0x001 // OK
epbar_write32(EPVC1RCAP, reg1c); // OK
mchbar_read8(0xe08); // = 0x0
pci_read_config32(NORTHBRIDGE, 0xe4); // = 0x316126
mchbar_setbits8(0x1210, 1 << 1);
mchbar_write32(0x1200, 0x8800440);
mchbar_write32(0x1204, 0x53ff0453);
mchbar_write32(0x1208, 0x19002043);
mchbar_write16(0x1214, 0x320);
if (info.revision == 0x10 || info.revision == 0x11) {
mchbar_write16(0x1214, 0x220);
mchbar_setbits8(0x1210, 1 << 6);
}
mchbar_setbits8(0x1214, 1 << 2);
mchbar_write8(0x120c, 1);
mchbar_write8(0x1218, 3);
mchbar_write8(0x121a, 3);
mchbar_write8(0x121c, 3);
mchbar_write16(0xc14, 0);
mchbar_write16(0xc20, 0);
mchbar_write32(0x1c, 0);
/* revision dependent here. */
mchbar_setbits16(0x1230, 0x1f07);
if (info.uma_enabled)
mchbar_setbits32(0x11f4, 1 << 28);
mchbar_setbits16(0x1230, 1 << 15);
mchbar_setbits8(0x1214, 1 << 0);
u8 bl, ebpb;
u16 reg_1020;
reg_1020 = mchbar_read32(0x1020); // = 0x6c733c // OK
mchbar_write8(0x1070, 1);
mchbar_write32(0x1000, 0x100);
mchbar_write8(0x1007, 0);
if (reg_1020 != 0) {
mchbar_write16(0x1018, 0);
bl = reg_1020 >> 8;
ebpb = reg_1020 & 0xff;
} else {
ebpb = 0;
bl = 8;
}
rdmsr(0x1a2);
mchbar_write32(0x1014, 0xffffffff);
mchbar_write32(0x1010, ((((ebpb + 0x7d) << 7) / bl) & 0xff) * !!reg_1020);
mchbar_write8(0x101c, 0xb8);
mchbar_clrsetbits8(0x123e, 0xf0, 0x60);
if (reg_1020 != 0) {
mchbar_clrsetbits32(0x123c, 0xf << 20, 0x6 << 20);
mchbar_write8(0x101c, 0xb8);
}
const u64 heci_uma_addr =
((u64)
((((u64)pci_read_config16(NORTHBRIDGE, TOM)) << 6) -
info.memory_reserved_for_heci_mb)) << 20;
setup_heci_uma(heci_uma_addr, info.memory_reserved_for_heci_mb);
if (info.uma_enabled) {
u16 ax;
mchbar_setbits32(0x11b0, 1 << 14);
mchbar_setbits32(0x11b4, 1 << 14);
mchbar_setbits16(0x1190, 1 << 14);
ax = mchbar_read16(0x1190) & 0xf00; // = 0x480a // OK
mchbar_write16(0x1170, ax | (mchbar_read16(0x1170) & 0x107f) | 0x4080);
mchbar_setbits16(0x1170, 1 << 12);
udelay(1000);
u16 ecx;
for (ecx = 0xffff; ecx && (mchbar_read16(0x1170) & (1 << 12)); ecx--)
;
mchbar_clrbits16(0x1190, 1 << 14);
}
pci_write_config8(SOUTHBRIDGE, GEN_PMCON_2,
pci_read_config8(SOUTHBRIDGE, GEN_PMCON_2) & ~0x80);
udelay(10000);
mchbar_write16(0x2ca8, 1 << 3);
udelay(1000);
dump_timings(&info);
cbmem_wasnot_inited = cbmem_recovery(s3resume);
if (!s3resume)
save_timings(&info);
if (s3resume && cbmem_wasnot_inited) {
printk(BIOS_ERR, "Failed S3 resume.\n");
ram_check_nodie(1 * MiB);
/* Failed S3 resume, reset to come up cleanly */
full_reset();
}
}