blob: 8fa6fc7ffbcc1bd639bc7033d432f2e7e75bd9e8 [file] [log] [blame]
# Copyright (c) 2012 The Chromium OS Authors. All rights reserved.
# Use of this source code is governed by a BSD-style license that can be
# found in the LICENSE file.
import collections, ctypes, fcntl, glob, logging, math, numpy, os, struct
import threading, time
import common
from autotest_lib.client.bin import utils
from autotest_lib.client.common_lib import error, enum
BatteryDataReportType = enum.Enum('CHARGE', 'ENERGY')
# battery data reported at 1e6 scale
class DevStat(object):
Device power status. This class implements generic status initialization
and parsing routines.
def __init__(self, fields, path=None):
self.fields = fields
self.path = path
def reset_fields(self):
Reset all class fields to None to mark their status as unknown.
for field in self.fields.iterkeys():
setattr(self, field, None)
def read_val(self, file_name, field_type):
path = os.path.join(self.path, file_name)
f = open(path, 'r')
out = f.readline()
val = field_type(out)
return val
return field_type(0)
def read_all_vals(self):
for field, prop in self.fields.iteritems():
if prop[0]:
val = self.read_val(prop[0], prop[1])
setattr(self, field, val)
class ThermalStatACPI(DevStat):
ACPI-based thermal status.
(All temperatures are in millidegrees Celsius.)
str enabled: Whether thermal zone is enabled
int temp: Current temperature
str type: Thermal zone type
int num_trip_points: Number of thermal trip points that activate
cooling devices
int num_points_tripped: Temperature is above this many trip points
str trip_point_N_type: Trip point #N's type
int trip_point_N_temp: Trip point #N's temperature value
int cdevX_trip_point: Trip point o cooling device #X (index)
thermal_fields = {
'enabled': ['enabled', str],
'temp': ['temp', int],
'type': ['type', str],
'num_points_tripped': ['', '']
def __init__(self, path=None):
# Browse the thermal folder for trip point fields.
self.num_trip_points = 0
thermal_fields = glob.glob(path + '/*')
for file in thermal_fields:
field = file[len(path + '/'):]
if field.find('trip_point') != -1:
if field.find('temp'):
field_type = int
field_type = str
self.thermal_fields[field] = [field, field_type]
# Count the number of trip points.
if field.find('_type') != -1:
self.num_trip_points += 1
super(ThermalStatACPI, self).__init__(self.thermal_fields, path)
def update(self):
if not os.path.exists(self.path):
self.num_points_tripped = 0
for field in self.thermal_fields:
if field.find('trip_point_') != -1 and field.find('_temp') != -1 \
and self.temp > self.read_val(field, int):
self.num_points_tripped += 1'Temperature trip point #' + \
field[len('trip_point_'):field.rfind('_temp')] + \
' tripped.')
class ThermalStatHwmon(DevStat):
hwmon-based thermal status.
int temperature: Current temperature in degrees Celsius
thermal_fields = {
'temp': ['temperature', int],
def __init__(self, path=None):
super(ThermalStatHwmon, self).__init__(self.thermal_fields, path)
def update(self):
if not os.path.exists(self.path):
def read_val(self, file_name, field_type):
path = os.path.join(self.path, file_name)
f = open(path, 'r')
out = f.readline()
val = field_type(out)
# Convert degrees Celcius to millidegrees Celcius.
if file_name == 'temperature':
val = val * 1000
return val
return field_type(0)
class BatteryStat(DevStat):
Battery status.
float charge_full: Last full capacity reached [Ah]
float charge_full_design: Full capacity by design [Ah]
float charge_now: Remaining charge [Ah]
float current_now: Battery discharge rate [A]
float energy: Current battery charge [Wh]
float energy_full: Last full capacity reached [Wh]
float energy_full_design: Full capacity by design [Wh]
float energy_rate: Battery discharge rate [W]
float power_now: Battery discharge rate [W]
float remaining_time: Remaining discharging time [h]
float voltage_min_design: Minimum voltage by design [V]
float voltage_now: Voltage now [V]
battery_fields = {
'status': ['status', str],
'charge_full': ['charge_full', float],
'charge_full_design': ['charge_full_design', float],
'charge_now': ['charge_now', float],
'current_now': ['current_now', float],
'voltage_min_design': ['voltage_min_design', float],
'voltage_now': ['voltage_now', float],
'energy': ['energy_now', float],
'energy_full': ['energy_full', float],
'energy_full_design': ['energy_full_design', float],
'power_now': ['power_now', float],
'energy_rate': ['', ''],
'remaining_time': ['', '']
def __init__(self, path=None):
super(BatteryStat, self).__init__(self.battery_fields, path)
def update(self):
if self.charge_full == 0 and self.energy_full != 0:
battery_type = BatteryDataReportType.ENERGY
battery_type = BatteryDataReportType.CHARGE
if self.voltage_min_design != 0:
voltage_nominal = self.voltage_min_design
voltage_nominal = self.voltage_now
# Since charge data is present, calculate parameters based upon
# reported charge data.
if battery_type == BatteryDataReportType.CHARGE:
self.charge_full = self.charge_full / BATTERY_DATA_SCALE
self.charge_full_design = self.charge_full_design / \
self.charge_now = self.charge_now / BATTERY_DATA_SCALE
self.current_now = math.fabs(self.current_now) / \
BATTERY_DATA_SCALE = voltage_nominal * \
self.charge_now / \
self.energy_full = voltage_nominal * \
self.charge_full / \
self.energy_full_design = voltage_nominal * \
self.charge_full_design / \
# Charge data not present, so calculate parameters based upon
# reported energy data.
elif battery_type == BatteryDataReportType.ENERGY:
self.charge_full = self.energy_full / voltage_nominal
self.charge_full_design = self.energy_full_design / \
self.charge_now = / voltage_nominal
# TODO(shawnn): check if power_now can really be reported
# as negative, in the same way current_now can
self.current_now = math.fabs(self.power_now) / \
voltage_nominal = / BATTERY_DATA_SCALE
self.energy_full = self.energy_full / BATTERY_DATA_SCALE
self.energy_full_design = self.energy_full_design / \
self.voltage_min_design = self.voltage_min_design / \
self.voltage_now = self.voltage_now / \
voltage_nominal = voltage_nominal / \
if self.charge_full > (self.charge_full_design * 1.5):
raise error.TestError('Unreasonable charge_full value')
if self.charge_now > (self.charge_full_design * 1.5):
raise error.TestError('Unreasonable charge_now value')
self.energy_rate = self.voltage_now * self.current_now
self.remaining_time = 0
if self.current_now:
self.remaining_time = / self.energy_rate
class LineStatDummy(object):
Dummy line stat for devices which don't provide power_supply related sysfs
def __init__(self): = True
def update(self):
class LineStat(DevStat):
Power line status.
bool online: Line power online
linepower_fields = {
'is_online': ['online', int]
def __init__(self, path=None):
super(LineStat, self).__init__(self.linepower_fields, path)
def update(self):
self.read_all_vals() = self.is_online == 1
class SysStat(object):
System power status for a given host.
battery: A list of BatteryStat objects.
linepower: A list of LineStat objects.
psu_types = ['Mains', 'USB', 'USB_ACA', 'USB_CDP', 'USB_DCP', 'Unknown']
def __init__(self):
power_supply_path = '/sys/class/power_supply/*'
self.battery = None
self.linepower = None
self.thermal = None
self.thermal_path = None
self.battery_path = None
self.linepower_path = None
thermal_path_acpi = '/sys/class/thermal/thermal_zone*'
thermal_path_hwmon = '/sys/class/hwmon/hwmon*/device'
# Look for these types of thermal sysfs paths, in the listed order.
thermal_stat_types = { thermal_path_acpi: ThermalStatACPI,
thermal_path_hwmon: ThermalStatHwmon }
power_supplies = glob.glob(power_supply_path)
for path in power_supplies:
type_path = os.path.join(path,'type')
if not os.path.exists(type_path):
power_type = utils.read_one_line(type_path)
if power_type == 'Battery':
self.battery_path = path
elif power_type in self.psu_types:
self.linepower_path = path
if not self.battery_path or not self.linepower_path:
logging.warn("System does not provide power sysfs interface")
for thermal_path, thermal_type in thermal_stat_types.items():
self.thermal_path = glob.glob(thermal_path)[0]
self.thermal_type = thermal_type
logging.debug('Using %s for thermal info.' % self.thermal_path)
logging.debug('Could not find thermal path %s, skipping.' %
self.min_temp = 999999999
self.max_temp = -999999999
self.temp_log = {}
def refresh(self):
Initialize device power status objects.
if self.battery_path:
self.battery = [ BatteryStat(self.battery_path) ]
if self.linepower_path:
self.linepower = [ LineStat(self.linepower_path) ]
self.linepower = [ LineStatDummy() ]
if self.thermal_path:
self.thermal = [ self.thermal_type(self.thermal_path) ]
if self.thermal[0].temp < self.min_temp:
self.min_temp = self.thermal[0].temp
if self.thermal[0].temp > self.max_temp:
self.max_temp = self.thermal[0].temp'Temperature reading: ' + str(self.thermal[0].temp))
logging.error('Could not read temperature, skipping.')
def on_ac(self):
Returns true if device is currently running from AC power.
on_ac = self.linepower[0].online
# Butterfly can incorrectly report AC online for some time after
# unplug. Check battery discharge state to confirm.
if utils.get_board() == 'butterfly':
on_ac &= (not self.battery_discharging())
return on_ac
def battery_discharging(self):
Returns true if battery is currently discharging.
return(self.battery[0].status.rstrip() == 'Discharging')
def percent_current_charge(self):
return self.battery[0].charge_now * 100 / \
def assert_battery_state(self, percent_initial_charge_min):
"""Check initial power configuration state is battery.
percent_initial_charge_min: float between 0 -> 1.00 of
percentage of battery that must be remaining.
None|0|False means check not performed.
TestError: if one of battery assertions fails
if self.on_ac():
raise error.TestError(
'Running on AC power. Please remove AC power cable.')
percent_initial_charge = self.percent_current_charge()
if percent_initial_charge_min and percent_initial_charge < \
raise error.TestError('Initial charge (%f) less than min (%f)'
% (percent_initial_charge, percent_initial_charge_min))
def get_status():
Return a new power status object (SysStat). A new power status snapshot
for a given host can be obtained by either calling this routine again and
constructing a new SysStat object, or by using the refresh method of the
SysStat object.
status = SysStat()
return status
class AbstractStats(object):
Common superclass for measurements of percentages per state over time.
def to_percent(stats):
Turns a dict with absolute time values into a dict with percentages.
total = sum(stats.itervalues())
if total == 0: return {}
return dict((k, v * 100.0 / total) for (k, v) in stats.iteritems())
def do_diff(new, old):
Returns a dict with value deltas from two dicts with matching keys.
return dict((k, new[k] - old.get(k, 0)) for k in new.iterkeys())
def __init__(self):
self._stats = self._read_stats()
def refresh(self, incremental=True):
Returns dict mapping state names to percentage of time spent in them.
@incremental: If False, stats returned are from a single _read_stats.
Otherwise, stats are from the difference between the
current and last refresh.
raw_stats = result = self._read_stats()
if incremental:
result = self.do_diff(result, self._stats)
self._stats = raw_stats
return self.to_percent(result)
def _read_stats(self):
Override! Reads the raw data values that shall be measured into a dict.
raise NotImplementedError('Override _read_stats in the subclass!')
class CPUFreqStats(AbstractStats):
CPU Frequency statistics
def __init__(self):
cpufreq_stats_path = '/sys/devices/system/cpu/cpu*/cpufreq/stats/' + \
self._file_paths = glob.glob(cpufreq_stats_path)
if not self._file_paths:
logging.debug('time_in_state file not found')
super(CPUFreqStats, self).__init__()
def _read_stats(self):
stats = {}
for path in self._file_paths:
data = utils.read_file(path)
for line in data.splitlines():
pair = line.split()
freq = int(pair[0])
timeunits = int(pair[1])
if freq in stats:
stats[freq] += timeunits
stats[freq] = timeunits
return stats
class CPUIdleStats(AbstractStats):
CPU Idle statistics (refresh() will not work with incremental=False!)
# TODO (snanda): Handle changes in number of c-states due to events such
# as ac <-> battery transitions.
# TODO (snanda): Handle non-S0 states. Time spent in suspend states is
# currently not factored out.
def _read_stats(self):
cpuidle_stats = collections.defaultdict(int)
cpuidle_path = '/sys/devices/system/cpu/cpu*/cpuidle'
epoch_usecs = int(time.time() * 1000 * 1000)
cpus = glob.glob(cpuidle_path)
for cpu in cpus:
state_path = os.path.join(cpu, 'state*')
states = glob.glob(state_path)
cpuidle_stats['C0'] += epoch_usecs
for state in states:
if not int(utils.read_one_line(os.path.join(state, 'latency'))):
# C0 state. Kernel stats aren't right, so calculate by
# subtracting all other states from total time (using epoch
# timer since we calculate differences in the end anyway).
# NOTE: Only x86 lists C0 under cpuidle, ARM does not.
name = utils.read_one_line(os.path.join(state, 'name'))
usecs = int(utils.read_one_line(os.path.join(state, 'time')))
cpuidle_stats['C0'] -= usecs
if name == '<null>':
# Kernel race condition that can happen while a new C-state
# gets added (e.g. AC->battery). Don't know the 'name' of
# the state yet, but its 'time' would be 0 anyway.
logging.warn('Read name: <null>, time: %d from %s'
% (usecs, state) + '... skipping.')
cpuidle_stats[name] += usecs
return cpuidle_stats
class CPUPackageStats(AbstractStats):
Package C-state residency statistics for modern Intel CPUs.
ATOM = {'C2': 0x3F8, 'C4': 0x3F9, 'C6': 0x3FA}
NEHALEM = {'C3': 0x3F8, 'C6': 0x3F9, 'C7': 0x3FA}
SANDY_BRIDGE = {'C2': 0x60D, 'C3': 0x3F8, 'C6': 0x3F9, 'C7': 0x3FA}
def __init__(self):
def _get_platform_states():
Helper to decide what set of microarchitecture-specific MSRs to use.
Returns: dict that maps C-state name to MSR address, or None.
modalias = '/sys/devices/system/cpu/modalias'
if not os.path.exists(modalias): return None
values = utils.read_one_line(modalias).split(':')
# values[2]: vendor, values[4]: family, values[6]: model (CPUID)
if values[2] != '0000' or values[4] != '0006': return None
return {
# model groups pulled from Intel manual, volume 3 chapter 35
'0027': self.ATOM, # unreleased? (Next Generation Atom)
'001A': self.NEHALEM, # Bloomfield, Nehalem-EP (i7/Xeon)
'001E': self.NEHALEM, # Clarks-/Lynnfield, Jasper (i5/i7/X)
'001F': self.NEHALEM, # unreleased? (abandoned?)
'0025': self.NEHALEM, # Arran-/Clarksdale (i3/i5/i7/C/X)
'002C': self.NEHALEM, # Gulftown, Westmere-EP (i7/Xeon)
'002E': self.NEHALEM, # Nehalem-EX (Xeon)
'002F': self.NEHALEM, # Westmere-EX (Xeon)
'002A': self.SANDY_BRIDGE, # SandyBridge (i3/i5/i7/C/X)
'002D': self.SANDY_BRIDGE, # SandyBridge-E (i7)
'003A': self.SANDY_BRIDGE, # IvyBridge (i3/i5/i7/X)
'003C': self.SANDY_BRIDGE, # unclear (Haswell?)
'003E': self.SANDY_BRIDGE, # IvyBridge (Xeon)
}.get(values[6], None)
self._platform_states = _get_platform_states()
super(CPUPackageStats, self).__init__()
def _read_stats(self):
packages = set()
template = '/sys/devices/system/cpu/cpu%s/topology/physical_package_id'
if not self._platform_states: return {}
stats = dict((state, 0) for state in self._platform_states)
stats['C0_C1'] = 0
for cpu in os.listdir('/dev/cpu'):
if not os.path.exists(template % cpu): continue
package = utils.read_one_line(template % cpu)
if package in packages: continue
stats['C0_C1'] += utils.rdmsr(0x10, cpu) # TSC
for (state, msr) in self._platform_states.iteritems():
ticks = utils.rdmsr(msr, cpu)
stats[state] += ticks
stats['C0_C1'] -= ticks
return stats
class USBSuspendStats(AbstractStats):
USB active/suspend statistics (over all devices)
# TODO (snanda): handle hot (un)plugging of USB devices
# TODO (snanda): handle duration counters wraparound
def __init__(self):
usb_stats_path = '/sys/bus/usb/devices/*/power'
self._file_paths = glob.glob(usb_stats_path)
if not self._file_paths:
logging.debug('USB stats path not found')
super(USBSuspendStats, self).__init__()
def _read_stats(self):
usb_stats = {'active': 0, 'suspended': 0}
for path in self._file_paths:
active_duration_path = os.path.join(path, 'active_duration')
total_duration_path = os.path.join(path, 'connected_duration')
if not os.path.exists(active_duration_path) or \
not os.path.exists(total_duration_path):
logging.debug('duration paths do not exist for: %s', path)
active = int(utils.read_file(active_duration_path))
total = int(utils.read_file(total_duration_path))
logging.debug('device %s active for %.2f%%',
path, active * 100.0 / total)
usb_stats['active'] += active
usb_stats['suspended'] += total - active
return usb_stats
class PowerMeasurement(object):
"""Class to measure power.
Public attributes:
domain: String name of the power domain being measured. Example is
'system' for total system power
Public methods:
refresh: Performs any power/energy sampling and calculation and returns
power as float in watts. This method MUST be implemented in
def __init__(self, domain):
self.domain = domain
def refresh(self):
"""Performs any power/energy sampling and calculation.
MUST be implemented in subclass
float, power in watts.
raise NotImplementedError("'refresh' method should be implemented in "
class SystemPower(PowerMeasurement):
"""Class to measure system power.
TODO(tbroch): This class provides a subset of functionality in BatteryStat
in hopes of minimizing power draw. Investigate whether its really
significant and if not, deprecate.
Private Attributes:
_voltage_file: path to retrieve voltage in uvolts
_current_file: path to retrieve current in uamps
def __init__(self, battery_dir):
battery_dir: path to dir containing the files to probe and log.
usually something like /sys/class/power_supply/BAT0/
super(SystemPower, self).__init__('system')
# Files to log voltage and current from
self._voltage_file = os.path.join(battery_dir, 'voltage_now')
self._current_file = os.path.join(battery_dir, 'current_now')
def refresh(self):
"""refresh method.
See superclass PowerMeasurement for details.
voltage_str = utils.read_one_line(self._voltage_file)
current_str = utils.read_one_line(self._current_file)
# Values in sysfs are in microamps and microvolts
# multiply and convert to Watts
power = float(voltage_str) * float(current_str) / 10**12
return power
class PowerLogger(threading.Thread):
"""A thread that logs power draw readings in watts.
Example code snippet:
mylogger = PowerLogger([PowerMeasurent1, PowerMeasurent2])
for testname in tests:
start_time = time.time()
#run the test method for testname
mlogger.checkpoint(tetname, start_time)
keyvals = mylogger.calc()
Public attributes:
seconds_period: float, probing interval in seconds.
readings: list of lists of floats of power measurements in watts.
times: list of floats of time (since Epoch) of when power measurements
occurred. len(time) == len(readings).
done: flag to stop the logger.
domains: list of power domain strings being measured
Public methods:
run: launches the thread to gather power measuremnts
calc: calculates
Private attributes:
_power_measurements: list of PowerMeasurement objects to be sampled.
_checkpoint_data: list of tuples. Tuple contains:
tname: String of testname associated with this time interval
tstart: Float of time when subtest started
tend: Float of time when subtest ended
_results: list of results tuples. Tuple contains:
prefix: String of subtest
mean: Flost of mean power in watts
std: Float of standard deviation of power measurements
tstart: Float of time when subtest started
tend: Float of time when subtest ended
def __init__(self, power_measurements, seconds_period=1.0):
"""Initialize a logger.
power_measurements: list of PowerMeasurement objects to be sampled.
seconds_period: float, probing interval in seconds. Default 1.0
self.seconds_period = seconds_period
self.readings = []
self.times = []
self._checkpoint_data = [] = []
self._power_measurements = power_measurements
for meas in self._power_measurements:
self.done = False
def run(self):
"""Threads run method."""
while(not self.done):
readings = []
for meas in self._power_measurements:
def checkpoint(self, tname, tstart, tend=None):
"""Check point the times in seconds associated with test tname.
tname: String of testname associated with this time interval
tstart: Float in seconds of when tname test started. Should be based
off time.time()
tend: Float in seconds of when tname test ended. Should be based
off time.time(). If None, then value computed in the method.
if not tend:
tend = time.time()
self._checkpoint_data.append((tname, tstart, tend))'Finished test "%s" between timestamps [%s, %s]',
tname, tstart, tend)
def calc(self):
"""Calculate average power consumption during each of the sub-tests.
Method performs the following steps:
1. Signals the thread to stop running.
2. Calculates mean, max, min, count on the samples for each of the
3. Stores results to be written later.
4. Creates keyvals for autotest publishing.
dict of keyvals suitable for autotest results.
t = numpy.array(self.times)
keyvals = {}
results = []
if not self.done:
self.done = True
# times 2 the sleep time in order to allow for readings as well.
self.join(timeout=self.seconds_period * 2)
for i, domain_readings in enumerate(zip(*self.readings)):
power = numpy.array(domain_readings)
domain =[i]
for tname, tstart, tend in self._checkpoint_data:
prefix = '%s_%s' % (tname, domain)
keyvals[prefix+'_duration'] = tend - tstart
# Select all readings taken between tstart and tend timestamps
pwr_array = power[numpy.bitwise_and(tstart < t, t < tend)]
# If sub-test terminated early, avoid calculating avg, std and
# min
if not pwr_array.size:
pwr_mean = pwr_array.mean()
pwr_std = pwr_array.std()
# Results list can be used for pretty printing and saving as csv
results.append((prefix, pwr_mean, pwr_std,
tend - tstart, tstart, tend))
keyvals[prefix+'_pwr'] = pwr_mean
keyvals[prefix+'_pwr_cnt'] = pwr_array.size
keyvals[prefix+'_pwr_max'] = pwr_array.max()
keyvals[prefix+'_pwr_min'] = pwr_array.min()
keyvals[prefix+'_pwr_std'] = pwr_std
self._results = results
return keyvals
def save_results(self, resultsdir, fname=None):
"""Save computed results in a nice tab-separated format.
This is useful for long manual runs.
resultsdir: String, directory to write results to
fname: String name of file to write results to
if not fname:
fname = 'power_results_%.0f.txt' % time.time()
fname = os.path.join(resultsdir, fname)
with file(fname, 'wt') as f:
for row in self._results:
# First column is name, the rest are numbers. See _calc_power()
fmt_row = [row[0]] + ['%.2f' % x for x in row[1:]]
line = '\t'.join(fmt_row)
f.write(line + '\n')
class DiskStateLogger(threading.Thread):
"""Records the time percentages the disk stays in its different power modes.
Example code snippet:
mylogger = power_status.DiskStateLogger()
result = mylogger.result()
Public methods:
start: Launches the thread and starts measurements.
result: Stops the thread if it's still running and returns measurements.
get_error: Returns the exception in _error if it exists.
Private functions:
_get_disk_state: Returns the disk's current ATA power mode as a string.
Private attributes:
_seconds_period: Disk polling interval in seconds.
_stats: Dict that maps disk states to seconds spent in them.
_running: Flag that is True as long as the logger should keep running.
_time: Timestamp of last disk state reading.
_device_path: The file system path of the disk's device node.
_error: Contains a TestError exception if an unexpected error occured
def __init__(self, seconds_period = 5.0, device_path = '/dev/sda'):
"""Initializes a logger.
seconds_period: Disk polling interval in seconds. Default 5.0
device_path: The path of the disk's device node. Default '/dev/sda'
self._seconds_period = seconds_period
self._device_path = device_path
self._stats = {}
self._running = False
self._error = None
def _get_disk_state(self):
"""Checks the disk's power mode and returns it as a string.
This uses the SG_IO ioctl to issue a raw SCSI command data block with
the ATA-PASS-THROUGH command that allows SCSI-to-ATA translation (see
T10 document 04-262r8). The ATA command issued is CHECKPOWERMODE1,
which returns the device's current power mode.
def _addressof(obj):
"""Shortcut to return the memory address of an object as integer."""
return ctypes.cast(obj, ctypes.c_void_p).value
scsi_cdb = struct.pack("12B", # SCSI command data block (uint8[12])
0xa1, # SCSI opcode: ATA-PASS-THROUGH
3 << 1, # protocol: Non-data
1 << 5, # flags: CK_COND
0, # features
0, # sector count
0, 0, 0, # LBA
1 << 6, # flags: ATA-USING-LBA
0xe5, # ATA opcode: CHECKPOWERMODE1
0, # reserved
0, # control (no idea what this is...)
scsi_sense = (ctypes.c_ubyte * 32)() # SCSI sense buffer (uint8[32])
sgio_header = struct.pack("iiBBHIPPPIIiPBBBBHHiII", # see <scsi/sg.h>
83, # Interface ID magic number (int32)
-1, # data transfer direction: none (int32)
12, # SCSI command data block length (uint8)
32, # SCSI sense data block length (uint8)
0, # iovec_count (not applicable?) (uint16)
0, # data transfer length (uint32)
0, # data block pointer
_addressof(scsi_cdb), # SCSI CDB pointer
_addressof(scsi_sense), # sense buffer pointer
500, # timeout in milliseconds (uint32)
0, # flags (uint32)
0, # pack ID (unused) (int32)
0, # user data pointer (unused)
0, 0, 0, 0, 0, 0, 0, 0, 0, # output params
with open(self._device_path, 'r') as dev:
result = fcntl.ioctl(dev, 0x2285, sgio_header)
except IOError, e:
raise error.TestError('ioctl(SG_IO) error: %s' % str(e))
_, _, _, _, status, host_status, driver_status = \
struct.unpack("4x4xxx2x4xPPP4x4x4xPBxxxHH4x4x4x", result)
if status != 0x2: # status: CHECK_CONDITION
raise error.TestError('SG_IO status: %d' % status)
if host_status != 0:
raise error.TestError('SG_IO host status: %d' % host_status)
if driver_status != 0x8: # driver status: SENSE
raise error.TestError('SG_IO driver status: %d' % driver_status)
if scsi_sense[0] != 0x72: # resp. code: current error, descriptor format
raise error.TestError('SENSE response code: %d' % scsi_sense[0])
if scsi_sense[1] != 0: # sense key: No Sense
raise error.TestError('SENSE key: %d' % scsi_sense[1])
if scsi_sense[7] < 14: # additional length (ATA status is 14 - 1 bytes)
raise error.TestError('ADD. SENSE too short: %d' % scsi_sense[7])
if scsi_sense[8] != 0x9: # additional descriptor type: ATA Return Status
raise error.TestError('SENSE descriptor type: %d' % scsi_sense[8])
if scsi_sense[11] != 0: # errors: none
raise error.TestError('ATA error code: %d' % scsi_sense[11])
if scsi_sense[13] == 0x00: return 'standby'
if scsi_sense[13] == 0x80: return 'idle'
if scsi_sense[13] == 0xff: return 'active'
return 'unknown(%d)' % scsi_sense[13]
def run(self):
"""The Thread's run method."""
self._time = time.time()
self._running = True
state = self._get_disk_state()
new_time = time.time()
if state in self._stats:
self._stats[state] += new_time - self._time
self._stats[state] = new_time - self._time
self._time = new_time
except error.TestError, e:
self._error = e
self._running = False
def result(self):
"""Stop the logger and return dict with result percentages."""
if (self._running):
self._running = False
self.join(self._seconds_period * 2)
return AbstractStats.to_percent(self._stats)
def get_error(self):
"""Returns the _error exception... please only call after result()."""
return self._error