blob: 73b039c5f9796dc4cc57d646f8c5e4e9c065bf10 [file] [log] [blame]
// Copyright (c) 2010 The Chromium OS Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include <assert.h>
#include <fcntl.h>
#include <gflags/gflags.h>
#include <stdio.h>
#include <string.h>
#include <sys/mman.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <unistd.h>
#include "arraysize.h"
#include "filepath.h"
#include "glinterface.h"
#include "main.h"
#include "utils.h"
const char* kGlesHeader =
"#ifdef GL_ES\n"
"precision highp float;\n"
"#endif\n";
FilePath* g_base_path = new FilePath();
double g_initial_temperature = -1000.0;
std::string autotest_temperature_script =
"/usr/local/autotest/bin/temperature.py";
DEFINE_string(TEMPERATURE_SCRIPT_PATH,
autotest_temperature_script,
"The path to temperature measurement executable.");
// Sets the base path for MmapFile to `dirname($argv0)`/$relative.
void SetBasePathFromArgv0(const char* argv0, const char* relative) {
if (g_base_path) {
delete g_base_path;
}
FilePath argv0_path = FilePath(argv0).DirName();
FilePath base_path = relative ? argv0_path.Append(relative) : argv0_path;
g_base_path = new FilePath(base_path);
}
void* MmapFile(const char* name, size_t* length) {
FilePath filename = g_base_path->Append(name);
int fd = open(filename.value().c_str(), O_RDONLY);
if (fd == -1)
return NULL;
struct stat sb;
CHECK(fstat(fd, &sb) != -1);
char* mmap_ptr =
static_cast<char*>(mmap(NULL, sb.st_size, PROT_READ, MAP_PRIVATE, fd, 0));
close(fd);
if (mmap_ptr)
*length = sb.st_size;
return mmap_ptr;
}
bool read_int_from_file(FilePath filename, int* value) {
FILE* fd = fopen(filename.value().c_str(), "r");
if (!fd) {
return false;
}
int count = fscanf(fd, "%d", value);
if (count != 1) {
printf("Error: could not read integer from file. (%s)\n",
filename.value().c_str());
if (count != 1)
return false;
}
fclose(fd);
return true;
}
bool read_float_from_cmd_output(const char* command, double* value) {
FILE* fd = popen(command, "r");
if (!fd) {
printf("Error: could not popen command. (%s)\n", command);
return false;
}
int count = fscanf(fd, "%lf", value);
if (count != 1) {
printf("Error: could not read float from command output. (%s)\n", command);
return false;
}
pclose(fd);
return true;
}
bool check_file_existence(const char* file_path, struct stat* buffer = NULL) {
struct stat local_buf;
bool exist = stat(file_path, &local_buf) == 0;
if (buffer && exist)
memcpy(buffer, &local_buf, sizeof(local_buf));
return exist;
}
bool check_dir_existence(const char* file_path) {
struct stat buffer;
bool exist = check_file_existence(file_path, &buffer);
if (!exist)
return false;
return S_ISDIR(buffer.st_mode);
}
// Returns currently measured temperature.
double get_temperature_input() {
std::string command = FLAGS_TEMPERATURE_SCRIPT_PATH;
if (command == autotest_temperature_script) {
command += " --maximum";
}
double temperature_Celsius = -1000.0;
read_float_from_cmd_output(command.c_str(), &temperature_Celsius);
if (temperature_Celsius < 10.0 || temperature_Celsius > 150.0) {
printf("Warning: ignoring temperature reading of %f'C.\n",
temperature_Celsius);
}
return temperature_Celsius;
}
const double GetInitialMachineTemperature() {
return g_initial_temperature;
}
double GetMachineTemperature() {
double max_temperature = get_temperature_input();
return max_temperature;
}
// Waits up to timeout seconds to reach cold_temperature in Celsius.
double WaitForCoolMachine(double cold_temperature,
double timeout,
double* temperature) {
// Integer times are in micro-seconds.
uint64_t time_start = GetUTime();
uint64_t time_now = time_start;
uint64_t time_end = time_now + 1e6 * timeout;
*temperature = GetMachineTemperature();
while (time_now < time_end) {
if (*temperature < cold_temperature)
break;
sleep(1.0);
time_now = GetUTime();
*temperature = GetMachineTemperature();
}
double wait_time = 1.0e-6 * (time_now - time_start);
assert(wait_time >= 0);
assert(wait_time < timeout + 5.0);
return wait_time;
}
std::vector<std::string> SplitString(std::string& input,
std::string delimiter,
bool trim_space) {
std::vector<std::string> result;
if (input.empty())
return result;
size_t start = 0;
while (start != std::string::npos) {
size_t end = input.find(delimiter, start);
std::string piece;
if (end == std::string::npos) {
piece = input.substr(start);
start = end;
} else {
piece = input.substr(start, end - start);
start = end + 1;
}
trim(piece);
result.push_back(piece);
}
return result;
}
namespace glbench {
GLuint SetupTexture(GLsizei size_log2) {
GLsizei size = 1 << size_log2;
GLuint name = ~0;
glGenTextures(1, &name);
glBindTexture(GL_TEXTURE_2D, name);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
unsigned char* pixels = new unsigned char[size * size * 4];
if (!pixels)
return 0;
for (GLint level = 0; size > 0; level++, size /= 2) {
unsigned char* p = pixels;
for (int i = 0; i < size; i++) {
for (int j = 0; j < size; j++) {
*p++ = level % 3 != 0 ? (i ^ j) << level : 0;
*p++ = level % 3 != 1 ? (i ^ j) << level : 0;
*p++ = level % 3 != 2 ? (i ^ j) << level : 0;
*p++ = 255;
}
}
if (size == 1) {
unsigned char* p = pixels;
*p++ = 255;
*p++ = 255;
*p++ = 255;
*p++ = 255;
}
glTexImage2D(GL_TEXTURE_2D, level, GL_RGBA, size, size, 0, GL_RGBA,
GL_UNSIGNED_BYTE, pixels);
}
delete[] pixels;
return name;
}
GLuint SetupVBO(GLenum target, GLsizeiptr size, const GLvoid* data) {
GLuint buf = ~0;
glGenBuffers(1, &buf);
glBindBuffer(target, buf);
glBufferData(target, size, data, GL_STATIC_DRAW);
CHECK(!glGetError());
return buf;
}
// Generates a lattice symmetric around the origin (all quadrants).
void CreateLattice(GLfloat** vertices,
GLsizeiptr* size,
GLfloat size_x,
GLfloat size_y,
int width,
int height) {
GLfloat* vptr = *vertices = new GLfloat[2 * (width + 1) * (height + 1)];
GLfloat shift_x = size_x * width;
GLfloat shift_y = size_y * height;
for (int j = 0; j <= height; j++) {
for (int i = 0; i <= width; i++) {
*vptr++ = 2 * i * size_x - shift_x;
*vptr++ = 2 * j * size_y - shift_y;
}
}
*size = (vptr - *vertices) * sizeof(GLfloat);
}
// Generates a mesh of 2*width*height triangles. The ratio of front facing to
// back facing triangles is culled_ratio/RAND_MAX. Returns the number of
// vertices in the mesh.
int CreateMesh(GLushort** indices,
GLsizeiptr* size,
int width,
int height,
int culled_ratio) {
srand(0);
// We use 16 bit indices for compatibility with GL ES
CHECK(height * width + width + height <= 65535);
GLushort* iptr = *indices = new GLushort[2 * 3 * (width * height)];
const int swath_height = 4;
CHECK(width % swath_height == 0 && height % swath_height == 0);
for (int j = 0; j < height; j += swath_height) {
for (int i = 0; i < width; i++) {
for (int j2 = 0; j2 < swath_height; j2++) {
GLushort first = (j + j2) * (width + 1) + i;
GLushort second = first + 1;
GLushort third = first + (width + 1);
GLushort fourth = third + 1;
bool flag = rand() < culled_ratio;
*iptr++ = first;
*iptr++ = flag ? second : third;
*iptr++ = flag ? third : second;
*iptr++ = fourth;
*iptr++ = flag ? third : second;
*iptr++ = flag ? second : third;
}
}
}
*size = (iptr - *indices) * sizeof(GLushort);
return iptr - *indices;
}
static void print_info_log(int obj, bool shader) {
char info_log[4096];
int length;
if (shader)
glGetShaderInfoLog(obj, sizeof(info_log) - 1, &length, info_log);
else
glGetProgramInfoLog(obj, sizeof(info_log) - 1, &length, info_log);
char* p = info_log;
while (p < info_log + length) {
char* newline = strchr(p, '\n');
if (newline)
*newline = '\0';
printf("# Info: glGet%sInfoLog: %s\n", shader ? "Shader" : "Program", p);
if (!newline)
break;
p = newline + 1;
}
}
static void print_shader_log(int shader) {
print_info_log(shader, true);
}
static void print_program_log(int program) {
print_info_log(program, false);
}
GLuint InitShaderProgram(const char* vertex_src, const char* fragment_src) {
return InitShaderProgramWithHeader(NULL, vertex_src, fragment_src);
}
GLuint InitShaderProgramWithHeader(const char* header,
const char* vertex_src,
const char* fragment_src) {
const char* headers[] = {kGlesHeader, header};
return InitShaderProgramWithHeaders(
headers, arraysize(headers) - (header ? 0 : 1), vertex_src, fragment_src);
}
GLuint InitShaderProgramWithHeaders(const char** headers,
int count,
const char* vertex_src,
const char* fragment_src) {
GLuint vertex_shader = glCreateShader(GL_VERTEX_SHADER);
GLuint fragment_shader = glCreateShader(GL_FRAGMENT_SHADER);
const char** header_and_body = new const char*[count + 1];
if (count != 0)
memcpy(header_and_body, headers, count * sizeof(const char*));
header_and_body[count] = vertex_src;
glShaderSource(vertex_shader, count + 1, header_and_body, NULL);
header_and_body[count] = fragment_src;
glShaderSource(fragment_shader, count + 1, header_and_body, NULL);
delete[] header_and_body;
glCompileShader(vertex_shader);
print_shader_log(vertex_shader);
glCompileShader(fragment_shader);
print_shader_log(fragment_shader);
GLuint program = glCreateProgram();
glAttachShader(program, vertex_shader);
glAttachShader(program, fragment_shader);
glLinkProgram(program);
print_program_log(program);
glUseProgram(program);
glDeleteShader(vertex_shader);
glDeleteShader(fragment_shader);
return program;
}
void ClearBuffers() {
glClearColor(1.f, 0, 0, 1.f);
glClear(GL_DEPTH_BUFFER_BIT | GL_COLOR_BUFFER_BIT);
g_main_gl_interface->SwapBuffers();
glClearColor(0, 1.f, 0, 1.f);
glClear(GL_DEPTH_BUFFER_BIT | GL_COLOR_BUFFER_BIT);
g_main_gl_interface->SwapBuffers();
glClearColor(0, 0, 0.f, 1.f);
}
} // namespace glbench