blob: 90ff46de34813327a39971bc4e50fce0af5d7dc6 [file] [log] [blame]
"""
Utility functions to deal with ppm (qemu screendump format) files.
@copyright: Red Hat 2008-2009
"""
import os, struct, time, re
from autotest_lib.client.bin import utils
# Some directory/filename utils, for consistency
def find_id_for_screendump(md5sum, dir):
"""
Search dir for a PPM file whose name ends with md5sum.
@param md5sum: md5 sum string
@param dir: Directory that holds the PPM files.
@return: The file's basename without any preceding path, e.g.
'20080101_120000_d41d8cd98f00b204e9800998ecf8427e.ppm'.
"""
try:
files = os.listdir(dir)
except OSError:
files = []
for file in files:
exp = re.compile(r"(.*_)?" + md5sum + r"\.ppm", re.IGNORECASE)
if exp.match(file):
return file
def generate_id_for_screendump(md5sum, dir):
"""
Generate a unique filename using the given MD5 sum.
@return: Only the file basename, without any preceding path. The
filename consists of the current date and time, the MD5 sum and a .ppm
extension, e.g. '20080101_120000_d41d8cd98f00b204e9800998ecf8427e.ppm'.
"""
filename = time.strftime("%Y%m%d_%H%M%S") + "_" + md5sum + ".ppm"
return filename
def get_data_dir(steps_filename):
"""
Return the data dir of the given steps filename.
"""
filename = os.path.basename(steps_filename)
return os.path.join(os.path.dirname(steps_filename), "..", "steps_data",
filename + "_data")
# Functions for working with PPM files
def image_read_from_ppm_file(filename):
"""
Read a PPM image.
@return: A 3 element tuple containing the width, height and data of the
image.
"""
fin = open(filename,"rb")
l1 = fin.readline()
l2 = fin.readline()
l3 = fin.readline()
data = fin.read()
fin.close()
(w, h) = map(int, l2.split())
return (w, h, data)
def image_write_to_ppm_file(filename, width, height, data):
"""
Write a PPM image with the given width, height and data.
@param filename: PPM file path
@param width: PPM file width (pixels)
@param height: PPM file height (pixels)
"""
fout = open(filename,"wb")
fout.write("P6\n")
fout.write("%d %d\n" % (width, height))
fout.write("255\n")
fout.write(data)
fout.close()
def image_crop(width, height, data, x1, y1, dx, dy):
"""
Crop an image.
@param width: Original image width
@param height: Original image height
@param data: Image data
@param x1: Desired x coordinate of the cropped region
@param y1: Desired y coordinate of the cropped region
@param dx: Desired width of the cropped region
@param dy: Desired height of the cropped region
@return: A 3-tuple containing the width, height and data of the
cropped image.
"""
if x1 > width - 1: x1 = width - 1
if y1 > height - 1: y1 = height - 1
if dx > width - x1: dx = width - x1
if dy > height - y1: dy = height - y1
newdata = ""
index = (x1 + y1*width) * 3
for i in range(dy):
newdata += data[index:(index+dx*3)]
index += width*3
return (dx, dy, newdata)
def image_md5sum(width, height, data):
"""
Return the md5sum of an image.
@param width: PPM file width
@param height: PPM file height
@data: PPM file data
"""
header = "P6\n%d %d\n255\n" % (width, height)
hash = utils.hash('md5', header)
hash.update(data)
return hash.hexdigest()
def get_region_md5sum(width, height, data, x1, y1, dx, dy,
cropped_image_filename=None):
"""
Return the md5sum of a cropped region.
@param width: Original image width
@param height: Original image height
@param data: Image data
@param x1: Desired x coord of the cropped region
@param y1: Desired y coord of the cropped region
@param dx: Desired width of the cropped region
@param dy: Desired height of the cropped region
@param cropped_image_filename: if not None, write the resulting cropped
image to a file with this name
"""
(cw, ch, cdata) = image_crop(width, height, data, x1, y1, dx, dy)
# Write cropped image for debugging
if cropped_image_filename:
image_write_to_ppm_file(cropped_image_filename, cw, ch, cdata)
return image_md5sum(cw, ch, cdata)
def image_verify_ppm_file(filename):
"""
Verify the validity of a PPM file.
@param filename: Path of the file being verified.
@return: True if filename is a valid PPM image file. This function
reads only the first few bytes of the file so it should be rather fast.
"""
try:
size = os.path.getsize(filename)
fin = open(filename, "rb")
assert(fin.readline().strip() == "P6")
(width, height) = map(int, fin.readline().split())
assert(width > 0 and height > 0)
assert(fin.readline().strip() == "255")
size_read = fin.tell()
fin.close()
assert(size - size_read == width*height*3)
return True
except:
return False
def image_comparison(width, height, data1, data2):
"""
Generate a green-red comparison image from two given images.
@param width: Width of both images
@param height: Height of both images
@param data1: Data of first image
@param data2: Data of second image
@return: A 3-element tuple containing the width, height and data of the
generated comparison image.
@note: Input images must be the same size.
"""
newdata = ""
i = 0
while i < width*height*3:
# Compute monochromatic value of current pixel in data1
pixel1_str = data1[i:i+3]
temp = struct.unpack("BBB", pixel1_str)
value1 = int((temp[0] + temp[1] + temp[2]) / 3)
# Compute monochromatic value of current pixel in data2
pixel2_str = data2[i:i+3]
temp = struct.unpack("BBB", pixel2_str)
value2 = int((temp[0] + temp[1] + temp[2]) / 3)
# Compute average of the two values
value = int((value1 + value2) / 2)
# Scale value to the upper half of the range [0, 255]
value = 128 + value / 2
# Compare pixels
if pixel1_str == pixel2_str:
# Equal -- give the pixel a greenish hue
newpixel = [0, value, 0]
else:
# Not equal -- give the pixel a reddish hue
newpixel = [value, 0, 0]
newdata += struct.pack("BBB", newpixel[0], newpixel[1], newpixel[2])
i += 3
return (width, height, newdata)
def image_fuzzy_compare(width, height, data1, data2):
"""
Return the degree of equality of two given images.
@param width: Width of both images
@param height: Height of both images
@param data1: Data of first image
@param data2: Data of second image
@return: Ratio equal_pixel_count / total_pixel_count.
@note: Input images must be the same size.
"""
equal = 0.0
different = 0.0
i = 0
while i < width*height*3:
pixel1_str = data1[i:i+3]
pixel2_str = data2[i:i+3]
# Compare pixels
if pixel1_str == pixel2_str:
equal += 1.0
else:
different += 1.0
i += 3
return equal / (equal + different)