blob: fd698a66d833cfbaea1553ac27358d8fabffeef0 [file] [log] [blame]
// Copyright 2021 The Chromium OS Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include <errno.h>
#include <fcntl.h>
#include <sys/ioctl.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <unistd.h>
#include <xf86drm.h>
#include <gbm.h>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include "virtgpu_cross_domain_protocol.h" // NOLINT(build/include_directory)
#include "linux-headers/virtgpu_drm.h" // NOLINT(build/include_directory)
#include "wayland_channel.h" // NOLINT(build/include_directory)
// The size of a page for the guest kernel
#define PAGE_SIZE (getpagesize())
// We require six virtgpu params to use the virtgpu channel
#define REQUIRED_PARAMS_SIZE 6
// The capset for the virtgpu cross domain context type (defined internally
// for now)
#define CAPSET_CROSS_DOMAIN 5
// Constants taken from pipe_loader_drm.c in Mesa
#define DRM_NUM_NODES 63
// DRM Render nodes start at 128
#define DRM_RENDER_NODE_START 128
#define MAX_SEND_SIZE \
(DEFAULT_BUFFER_SIZE - sizeof(struct CrossDomainSendReceive))
#define MAX_WRITE_SIZE \
(DEFAULT_BUFFER_SIZE - sizeof(struct CrossDomainReadWrite))
struct virtgpu_param {
uint64_t param;
const char* name;
uint32_t value;
};
#define PARAM(x) \
(struct virtgpu_param) { x, #x, 0 }
int open_virtgpu(char** drm_device) {
int fd;
char* node;
drmVersionPtr drm_version;
uint32_t num_nodes = DRM_NUM_NODES;
uint32_t min_render_node = DRM_RENDER_NODE_START;
uint32_t max_render_node = (min_render_node + num_nodes);
for (uint32_t idx = min_render_node; idx < max_render_node; idx++) {
if (asprintf(&node, "%s/renderD%d", DRM_DIR_NAME, idx) < 0)
continue;
fd = open(node, O_RDWR | O_CLOEXEC);
if (fd < 0) {
free(node);
continue;
}
drm_version = drmGetVersion(fd);
if (!drm_version) {
free(node);
close(fd);
continue;
}
if (!strcmp(drm_version->name, "virtio_gpu")) {
drmFreeVersion(drm_version);
*drm_device = strdup(node);
free(node);
return fd;
}
drmFreeVersion(drm_version);
free(node);
close(fd);
}
return -1;
}
int32_t fstat_pipe(int fd, uint32_t& inode) {
int32_t ret;
struct stat statbuf = {0};
ret = fstat(fd, &statbuf);
if (ret) {
fprintf(stderr, "fstat failed\n");
return ret;
}
// fstat + S_ISFIFO(..) will return true for both anonymous and named pipes.
if (!S_ISFIFO(statbuf.st_mode)) {
fprintf(stderr, "expected anonymous pipe\n");
return -EINVAL;
}
inode = statbuf.st_ino;
return 0;
}
VirtGpuChannel::~VirtGpuChannel() {
if (ring_addr_ != MAP_FAILED)
munmap(ring_addr_, PAGE_SIZE);
// An unwritten rule for the DRM subsystem is a valid GEM valid must be
// non-zero. Checkout drm_gem_handle_create_tail in the kernel.
if (ring_handle_)
close_gem_handle(ring_handle_);
if (virtgpu_ >= 0)
close(virtgpu_);
}
int32_t VirtGpuChannel::init() {
int32_t ret;
char* drm_device = NULL;
uint32_t supports_wayland;
struct drm_virtgpu_get_caps args = {0};
struct CrossDomainCapabilities cross_domain_caps = {0};
virtgpu_ = open_virtgpu(&drm_device);
if (virtgpu_ < 0) {
fprintf(stderr, "failed to open virtgpu\n");
return -errno;
}
// Not needed by the VirtGpuChannel.
free(drm_device);
struct virtgpu_param params[REQUIRED_PARAMS_SIZE] = {
PARAM(VIRTGPU_PARAM_3D_FEATURES),
PARAM(VIRTGPU_PARAM_CAPSET_QUERY_FIX),
PARAM(VIRTGPU_PARAM_RESOURCE_BLOB),
PARAM(VIRTGPU_PARAM_HOST_VISIBLE),
PARAM(VIRTGPU_PARAM_CONTEXT_INIT),
PARAM(VIRTGPU_PARAM_SUPPORTED_CAPSET_IDs),
};
for (uint32_t i = 0; i < REQUIRED_PARAMS_SIZE; i++) {
struct drm_virtgpu_getparam get_param = {0};
get_param.param = params[i].param;
get_param.value = (uint64_t)(uintptr_t)&params[i].value;
ret = drmIoctl(virtgpu_, DRM_IOCTL_VIRTGPU_GETPARAM, &get_param);
if (ret < 0) {
fprintf(stderr, "DRM_IOCTL_VIRTGPU_GET_PARAM failed with %s\n",
strerror(errno));
close(virtgpu_);
virtgpu_ = -1;
return -EINVAL;
}
if (params[i].param == VIRTGPU_PARAM_SUPPORTED_CAPSET_IDs) {
if ((params[i].value & (1 << CAPSET_CROSS_DOMAIN)) == 0)
return -ENOTSUP;
}
}
args.cap_set_id = CAPSET_CROSS_DOMAIN;
args.size = sizeof(struct CrossDomainCapabilities);
args.addr = (unsigned long long)&cross_domain_caps;
ret = drmIoctl(virtgpu_, DRM_IOCTL_VIRTGPU_GET_CAPS, &args);
if (ret) {
fprintf(stderr, "DRM_IOCTL_VIRTGPU_GET_CAPS failed with %s\n",
strerror(errno));
return ret;
}
if (cross_domain_caps.supports_dmabuf)
supports_dmabuf_ = true;
supports_wayland = cross_domain_caps.supported_channels &
(1 << CROSS_DOMAIN_CHANNEL_TYPE_WAYLAND);
if (!supports_wayland) {
fprintf(stderr, "Wayland support not present on host.\n");
return -ENOTSUP;
}
return 0;
}
bool VirtGpuChannel::supports_dmabuf(void) {
return supports_dmabuf_;
}
int32_t VirtGpuChannel::create_context(int& out_channel_fd) {
int ret;
struct drm_virtgpu_map map = {0};
struct drm_virtgpu_context_init init = {0};
struct drm_virtgpu_resource_create_blob drm_rc_blob = {0};
struct drm_virtgpu_context_set_param ctx_set_params[3] = {{0}};
struct CrossDomainInit cmd_init = {{0}};
// Initialize the cross domain context. Create one fence context to wait for
// metadata queries.
ctx_set_params[0].param = VIRTGPU_CONTEXT_PARAM_CAPSET_ID;
ctx_set_params[0].value = CAPSET_CROSS_DOMAIN;
ctx_set_params[1].param = VIRTGPU_CONTEXT_PARAM_NUM_RINGS;
ctx_set_params[1].value = 2;
ctx_set_params[2].param = VIRTGPU_CONTEXT_PARAM_POLL_RINGS_MASK;
ctx_set_params[2].value = 1 << CROSS_DOMAIN_CHANNEL_RING;
init.ctx_set_params = (unsigned long long)&ctx_set_params[0];
init.num_params = 3;
ret = drmIoctl(virtgpu_, DRM_IOCTL_VIRTGPU_CONTEXT_INIT, &init);
if (ret) {
fprintf(stderr, "DRM_IOCTL_VIRTGPU_CONTEXT_INIT failed with %s\n",
strerror(errno));
return ret;
}
// Create a shared ring buffer to read metadata queries.
drm_rc_blob.size = PAGE_SIZE;
drm_rc_blob.blob_mem = VIRTGPU_BLOB_MEM_GUEST;
drm_rc_blob.blob_flags = VIRTGPU_BLOB_FLAG_USE_MAPPABLE;
ret =
drmIoctl(virtgpu_, DRM_IOCTL_VIRTGPU_RESOURCE_CREATE_BLOB, &drm_rc_blob);
if (ret < 0) {
fprintf(stderr, "DRM_VIRTGPU_RESOURCE_CREATE_BLOB failed with %s\n",
strerror(errno));
return ret;
}
ring_handle_ = drm_rc_blob.bo_handle;
// Map shared ring buffer.
map.handle = ring_handle_;
ret = drmIoctl(virtgpu_, DRM_IOCTL_VIRTGPU_MAP, &map);
if (ret < 0) {
fprintf(stderr, "DRM_IOCTL_VIRTGPU_MAP failed with %s\n", strerror(errno));
return ret;
}
ring_addr_ = mmap(0, PAGE_SIZE, PROT_READ | PROT_WRITE, MAP_SHARED, virtgpu_,
map.offset);
if (ring_addr_ == MAP_FAILED) {
fprintf(stderr, "mmap failed with %s\n", strerror(errno));
return ret;
}
// Notify host about ring buffer
cmd_init.hdr.cmd = CROSS_DOMAIN_CMD_INIT;
cmd_init.hdr.cmd_size = sizeof(struct CrossDomainInit);
cmd_init.ring_id = drm_rc_blob.res_handle;
cmd_init.channel_type = CROSS_DOMAIN_CHANNEL_TYPE_WAYLAND;
ret = submit_cmd((uint32_t*)&cmd_init, cmd_init.hdr.cmd_size,
CROSS_DOMAIN_RING_NONE, false);
if (ret < 0)
return ret;
// Start polling right after initialization
ret = channel_poll();
if (ret < 0)
return ret;
out_channel_fd = virtgpu_;
return 0;
}
int32_t VirtGpuChannel::create_pipe(int& out_pipe_fd) {
// This may be undesirable given your point of view, since the host
// generates the descriptor IDs. However, given the way Sommelier is
// designed and the order of events that occurs, this is safe to do.
// The host will verify this assumption, and we can always change it
// later. But this avoids waiting for the host to create a pipe and
// return the ID.
descriptor_id_ += 2;
return create_pipe_internal(out_pipe_fd, descriptor_id_,
CROSS_DOMAIN_ID_TYPE_READ_PIPE);
}
int32_t VirtGpuChannel::send(const struct WaylandSendReceive& send) {
int32_t ret;
uint8_t cmd_buffer[DEFAULT_BUFFER_SIZE];
struct CrossDomainSendReceive* cmd_send =
(struct CrossDomainSendReceive*)cmd_buffer;
void* send_data = &cmd_buffer[sizeof(struct CrossDomainSendReceive)];
memset(cmd_send, 0, sizeof(struct CrossDomainSendReceive));
if (send.data_size > max_send_size())
return -EINVAL;
if (send.num_fds > CROSS_DOMAIN_MAX_IDENTIFIERS)
return -EINVAL;
cmd_send->hdr.cmd = CROSS_DOMAIN_CMD_SEND;
cmd_send->hdr.cmd_size =
sizeof(struct CrossDomainSendReceive) + send.data_size;
memcpy(send_data, send.data, send.data_size);
cmd_send->opaque_data_size = send.data_size;
for (uint32_t i = 0; i < CROSS_DOMAIN_MAX_IDENTIFIERS; i++) {
if (i >= send.num_fds)
break;
ret = fd_analysis(send.fds[i], cmd_send->identifiers[i],
cmd_send->identifier_types[i]);
if (ret)
return ret;
cmd_send->num_identifiers++;
}
ret = submit_cmd((uint32_t*)cmd_send, cmd_send->hdr.cmd_size,
CROSS_DOMAIN_RING_NONE, false);
if (ret < 0)
return ret;
return 0;
}
int32_t VirtGpuChannel::handle_channel_event(
enum WaylandChannelEvent& event_type,
struct WaylandSendReceive& receive,
int& out_read_pipe) {
int32_t ret;
struct CrossDomainHeader* cmd_hdr = (struct CrossDomainHeader*)ring_addr_;
ssize_t bytes_read;
struct drm_event dummy_event;
bytes_read = read(virtgpu_, &dummy_event, sizeof(struct drm_event));
if (bytes_read < (int)sizeof(struct drm_event)) {
fprintf(stderr, "invalid event size\n");
return -EINVAL;
}
if (dummy_event.type != VIRTGPU_EVENT_FENCE_SIGNALED) {
fprintf(stderr, "invalid event type\n");
return -EINVAL;
}
if (cmd_hdr->cmd == CROSS_DOMAIN_CMD_RECEIVE) {
event_type = WaylandChannelEvent::Receive;
ret = handle_receive(event_type, receive, out_read_pipe);
if (ret)
return ret;
} else if (cmd_hdr->cmd == CROSS_DOMAIN_CMD_READ) {
event_type = WaylandChannelEvent::Read;
ret = handle_read();
if (ret)
return ret;
} else {
return -EINVAL;
}
// Start polling again
ret = channel_poll();
if (ret < 0)
return ret;
return 0;
}
int32_t VirtGpuChannel::allocate(
const struct WaylandBufferCreateInfo& create_info,
struct WaylandBufferCreateOutput& create_output) {
int32_t ret;
uint64_t blob_id;
ret = image_query(create_info, create_output, blob_id);
if (ret < 0) {
fprintf(stderr, "image query failed\n");
return ret;
}
return create_host_blob(blob_id, create_output.host_size, create_output.fd);
}
int32_t VirtGpuChannel::sync(int dmabuf_fd, uint64_t flags) {
// Unimplemented for now, but just need CROSS_DOMAIN_CMD_SYNC.
return 0;
}
int32_t VirtGpuChannel::handle_pipe(int read_fd, bool readable, bool& hang_up) {
uint8_t cmd_buffer[DEFAULT_BUFFER_SIZE];
ssize_t bytes_read;
int ret;
size_t index;
struct CrossDomainReadWrite* cmd_write =
(struct CrossDomainReadWrite*)cmd_buffer;
void* write_data = &cmd_buffer[sizeof(struct CrossDomainReadWrite)];
memset(cmd_write, 0, sizeof(struct CrossDomainReadWrite));
cmd_write->hdr.cmd = CROSS_DOMAIN_CMD_WRITE;
cmd_write->identifier = 0xffffffff;
ret = pipe_lookup(CROSS_DOMAIN_ID_TYPE_WRITE_PIPE, cmd_write->identifier,
read_fd, index);
if (ret < 0)
return -EINVAL;
if (readable) {
bytes_read = read(read_fd, write_data, MAX_WRITE_SIZE);
if (bytes_read > 0) {
cmd_write->opaque_data_size = bytes_read;
if ((size_t)bytes_read < MAX_WRITE_SIZE)
hang_up = true;
else
hang_up = false;
} else if (bytes_read == 0) {
hang_up = true;
} else {
return -EINVAL;
}
}
cmd_write->hdr.cmd_size =
sizeof(struct CrossDomainReadWrite) + cmd_write->opaque_data_size;
cmd_write->hang_up = hang_up;
ret = submit_cmd((uint32_t*)cmd_write, cmd_write->hdr.cmd_size,
CROSS_DOMAIN_RING_NONE, false);
if (ret < 0)
return ret;
if (hang_up) {
close(read_fd);
std::swap(pipe_cache_[index], pipe_cache_.back());
pipe_cache_.pop_back();
}
return 0;
}
int32_t VirtGpuChannel::submit_cmd(uint32_t* cmd,
uint32_t size,
uint32_t ring_idx,
bool wait) {
int32_t ret;
struct drm_virtgpu_3d_wait wait_3d = {0};
struct drm_virtgpu_execbuffer exec = {0};
exec.command = (uint64_t)&cmd[0];
exec.size = size;
if (ring_idx != CROSS_DOMAIN_RING_NONE) {
exec.flags = VIRTGPU_EXECBUF_RING_IDX;
exec.ring_idx = ring_idx;
exec.bo_handles = (uint64_t)&ring_handle_;
exec.num_bo_handles = 1;
}
ret = drmIoctl(virtgpu_, DRM_IOCTL_VIRTGPU_EXECBUFFER, &exec);
if (ret < 0) {
fprintf(stderr, "DRM_IOCTL_VIRTGPU_EXECBUFFER failed with %s\n",
strerror(errno));
return -EINVAL;
}
// This is the most traditional way to wait for virtgpu to be finished. We
// submit a list of handles to the GPU, and wait for the GPU to be done
// processing them. In our case, the handle is the shared ring buffer between
// the guest proxy (Sommelier) and host compositor proxy (cross domain context
// type in crosvm). More sophistication will be needed in the future if the
// virtgpu approach has any hope of success.
if (wait) {
ret = -EAGAIN;
while (ret == -EAGAIN) {
wait_3d.handle = ring_handle_;
ret = drmIoctl(virtgpu_, DRM_IOCTL_VIRTGPU_WAIT, &wait_3d);
}
}
if (ret < 0) {
fprintf(stderr, "DRM_IOCTL_VIRTGPU_WAIT failed with %s\n", strerror(errno));
return ret;
}
return 0;
}
int32_t VirtGpuChannel::image_query(const struct WaylandBufferCreateInfo& input,
struct WaylandBufferCreateOutput& output,
uint64_t& blob_id) {
int32_t ret = 0;
uint32_t* addr = (uint32_t*)ring_addr_;
struct CrossDomainGetImageRequirements cmd_get_reqs = {{0}};
struct BufferDescription new_desc = {{0}};
// Sommelier is single threaded, so no need for locking.
for (const auto& desc : description_cache_) {
if (desc.input.width == input.width && desc.input.height == input.height &&
desc.input.drm_format == input.drm_format) {
memcpy(&output, &desc.output, sizeof(struct WaylandBufferCreateOutput));
blob_id = (uint64_t)desc.blob_id;
return 0;
}
}
cmd_get_reqs.hdr.cmd = CROSS_DOMAIN_CMD_GET_IMAGE_REQUIREMENTS;
cmd_get_reqs.hdr.cmd_size = sizeof(struct CrossDomainGetImageRequirements);
cmd_get_reqs.width = input.width;
cmd_get_reqs.height = input.height;
cmd_get_reqs.drm_format = input.drm_format;
// Assumes a gbm-like API on the host
cmd_get_reqs.flags = GBM_BO_USE_LINEAR | GBM_BO_USE_SCANOUT;
ret = submit_cmd((uint32_t*)&cmd_get_reqs, cmd_get_reqs.hdr.cmd_size,
CROSS_DOMAIN_QUERY_RING, true);
if (ret < 0)
return ret;
new_desc.output.fd = -1;
memcpy(&new_desc.input, &input, sizeof(struct WaylandBufferCreateInfo));
memcpy(&new_desc.output.strides, &addr[0], 4 * sizeof(uint32_t));
memcpy(&new_desc.output.offsets, &addr[4], 4 * sizeof(uint32_t));
memcpy(&new_desc.output.host_size, &addr[10], sizeof(uint64_t));
memcpy(&new_desc.blob_id, &addr[12], sizeof(uint32_t));
// Sanity check
if (!input.dmabuf) {
if (new_desc.output.host_size < input.size) {
fprintf(stderr, "invalid host size\n");
return -EINVAL;
}
}
memcpy(&output.strides, &new_desc.output.strides, 4 * sizeof(uint32_t));
memcpy(&output.offsets, &new_desc.output.offsets, 4 * sizeof(uint32_t));
output.host_size = new_desc.output.host_size;
blob_id = (uint64_t)new_desc.blob_id;
description_cache_.push_back(new_desc);
return 0;
}
int32_t VirtGpuChannel::close_gem_handle(uint32_t gem_handle) {
int32_t ret;
struct drm_gem_close gem_close = {0};
gem_close.handle = gem_handle;
ret = drmIoctl(virtgpu_, DRM_IOCTL_GEM_CLOSE, &gem_close);
if (ret) {
fprintf(stderr, "DRM_IOCTL_GEM_CLOSE failed (handle=%x) error %s\n",
gem_handle, strerror(errno));
return -errno;
}
return 0;
}
int32_t VirtGpuChannel::channel_poll(void) {
int32_t ret;
struct CrossDomainPoll cmd_poll = {{0}};
cmd_poll.hdr.cmd = CROSS_DOMAIN_CMD_POLL;
cmd_poll.hdr.cmd_size = sizeof(struct CrossDomainPoll);
ret = submit_cmd((uint32_t*)&cmd_poll, cmd_poll.hdr.cmd_size,
CROSS_DOMAIN_CHANNEL_RING, false);
if (ret < 0)
return ret;
return 0;
}
int32_t VirtGpuChannel::create_host_blob(uint64_t blob_id,
uint64_t size,
int& out_fd) {
int32_t ret;
struct drm_virtgpu_resource_create_blob drm_rc_blob = {0};
drm_rc_blob.size = size;
drm_rc_blob.blob_mem = VIRTGPU_BLOB_MEM_HOST3D;
drm_rc_blob.blob_flags =
VIRTGPU_BLOB_FLAG_USE_MAPPABLE | VIRTGPU_BLOB_FLAG_USE_SHAREABLE;
drm_rc_blob.blob_id = blob_id;
ret =
drmIoctl(virtgpu_, DRM_IOCTL_VIRTGPU_RESOURCE_CREATE_BLOB, &drm_rc_blob);
if (ret < 0) {
fprintf(stderr, "DRM_VIRTGPU_RESOURCE_CREATE_BLOB failed with %s\n",
strerror(errno));
return -errno;
}
ret = drmPrimeHandleToFD(virtgpu_, drm_rc_blob.bo_handle,
DRM_CLOEXEC | DRM_RDWR, &out_fd);
if (ret < 0) {
fprintf(stderr, "drmPrimeHandleToFD failed with with %s\n",
strerror(errno));
return -errno;
}
// dma-buf owns the reference to underlying memory now.
ret = close_gem_handle(drm_rc_blob.bo_handle);
if (ret < 0)
return ret;
return 0;
}
int32_t VirtGpuChannel::create_fd(uint32_t identifier,
uint32_t identifier_type,
uint32_t identifier_size,
int& out_fd) {
// Update descriptor ID based on latest host information.
descriptor_id_ = identifier;
if (identifier_type == CROSS_DOMAIN_ID_TYPE_VIRTGPU_BLOB) {
return create_host_blob((uint64_t)identifier, (uint64_t)identifier_size,
out_fd);
} else if (identifier_type == CROSS_DOMAIN_ID_TYPE_WRITE_PIPE) {
return create_pipe_internal(out_fd, identifier, identifier_type);
} else {
return -EINVAL;
}
}
int32_t VirtGpuChannel::fd_analysis(int fd,
uint32_t& identifier,
uint32_t& identifier_type) {
int32_t ret = 0;
uint32_t gem_handle;
ret = drmPrimeFDToHandle(virtgpu_, fd, &gem_handle);
if (ret == 0) {
struct drm_virtgpu_resource_info drm_res_info = {0};
drm_res_info.bo_handle = gem_handle;
ret = drmIoctl(virtgpu_, DRM_IOCTL_VIRTGPU_RESOURCE_INFO, &drm_res_info);
if (ret) {
fprintf(stderr, "resource info failed\n");
return ret;
}
identifier = drm_res_info.res_handle;
identifier_type = CROSS_DOMAIN_ID_TYPE_VIRTGPU_BLOB;
} else {
// If it's not a blob, the only other option is a pipe. Check to confirm.
uint32_t inode;
ret = fstat_pipe(fd, inode);
if (ret)
return ret;
for (const auto& pipe_desc : pipe_cache_) {
if (pipe_desc.inode == inode) {
identifier = pipe_desc.identifier;
identifier_type = pipe_desc.identifier_type;
return 0;
}
}
return -EINVAL;
}
return 0;
}
int32_t VirtGpuChannel::create_pipe_internal(int& out_pipe_fd,
uint32_t identifier,
uint32_t identifier_type) {
int32_t ret;
int fds[2];
struct PipeDescription pipe_desc = {0};
bool return_read_pipe = false;
// When proxying a Wayland pipe, we return one end to the WaylandChannel
// consumer and keep one end to ourselves. Keeping both ends isn't useful.
if (identifier_type == CROSS_DOMAIN_ID_TYPE_READ_PIPE)
return_read_pipe = true;
else if (identifier_type == CROSS_DOMAIN_ID_TYPE_WRITE_PIPE)
return_read_pipe = false;
else
return -EINVAL;
ret = pipe(fds);
if (ret < 0) {
fprintf(stderr, "pipe creation failed with %s\n", strerror(errno));
return -errno;
}
// The same inode number is used for the read/write ends of the pipe.
ret = fstat_pipe(fds[0], pipe_desc.inode);
if (ret < 0)
return ret;
pipe_desc.read_fd = fds[0];
pipe_desc.write_fd = fds[1];
pipe_desc.identifier = identifier;
pipe_desc.identifier_type = identifier_type;
pipe_cache_.push_back(pipe_desc);
if (return_read_pipe)
out_pipe_fd = fds[0];
else
out_pipe_fd = fds[1];
return 0;
}
int32_t VirtGpuChannel::handle_receive(enum WaylandChannelEvent& event_type,
struct WaylandSendReceive& receive,
int& out_read_pipe) {
int ret;
struct CrossDomainSendReceive* cmd_receive =
(struct CrossDomainSendReceive*)ring_addr_;
uint8_t* recv_data =
(uint8_t*)ring_addr_ + sizeof(struct CrossDomainSendReceive);
for (uint32_t i = 0; i < CROSS_DOMAIN_MAX_IDENTIFIERS; i++) {
if (i < cmd_receive->num_identifiers) {
ret = create_fd(cmd_receive->identifiers[i],
cmd_receive->identifier_types[i],
cmd_receive->identifier_sizes[i], receive.fds[i]);
if (ret)
return ret;
receive.num_fds++;
if (cmd_receive->identifier_types[i] == CROSS_DOMAIN_ID_TYPE_WRITE_PIPE) {
size_t index;
int ret = 0;
if (out_read_pipe >= 0)
return -EINVAL;
ret = pipe_lookup(cmd_receive->identifier_types[i],
cmd_receive->identifiers[i], out_read_pipe, index);
if (ret < 0)
return -EINVAL;
event_type = WaylandChannelEvent::ReceiveAndProxy;
}
} else {
break;
}
}
if (cmd_receive->opaque_data_size > 0) {
receive.data =
reinterpret_cast<uint8_t*>(calloc(1, cmd_receive->opaque_data_size));
if (!receive.data)
return -ENOMEM;
memcpy(receive.data, recv_data, cmd_receive->opaque_data_size);
}
receive.data_size = cmd_receive->opaque_data_size;
return 0;
}
int32_t VirtGpuChannel::handle_read() {
int write_fd = -1;
int ret = 0;
ssize_t bytes_written;
size_t index;
struct CrossDomainReadWrite* cmd_read =
(struct CrossDomainReadWrite*)ring_addr_;
uint8_t* read_data =
(uint8_t*)ring_addr_ + sizeof(struct CrossDomainReadWrite);
ret = pipe_lookup(CROSS_DOMAIN_ID_TYPE_READ_PIPE, cmd_read->identifier,
write_fd, index);
if (ret < 0)
return -EINVAL;
bytes_written = write(write_fd, read_data, cmd_read->opaque_data_size);
if (bytes_written < (ssize_t)cmd_read->opaque_data_size) {
fprintf(stderr, "failed to write all necessary bytes\n");
return -EINVAL;
}
if (cmd_read->hang_up) {
close(write_fd);
std::swap(pipe_cache_[index], pipe_cache_.back());
pipe_cache_.pop_back();
}
return 0;
}
int32_t VirtGpuChannel::pipe_lookup(uint32_t identifier_type,
uint32_t& identifier,
int& fd,
size_t& index) {
index = 0;
for (const auto& pipe_desc : pipe_cache_) {
if (pipe_desc.identifier == identifier) {
// The host and guest are proxying the read operation, need to write to
// internally owned file descriptor.
if (identifier_type == CROSS_DOMAIN_ID_TYPE_READ_PIPE) {
fd = pipe_desc.write_fd;
return 0;
}
// The host and guest are proxying the write operation, need to read from
// internally owned file descriptor.
if (identifier_type == CROSS_DOMAIN_ID_TYPE_WRITE_PIPE) {
fd = pipe_desc.read_fd;
return 0;
}
}
if (fd == pipe_desc.read_fd || fd == pipe_desc.write_fd) {
identifier = pipe_desc.identifier;
return 0;
}
index++;
}
return -EINVAL;
}
size_t VirtGpuChannel::max_send_size(void) {
return MAX_SEND_SIZE;
}