blob: f0707cb7a036112b9e21c7bbd79e89684bf09176 [file] [log] [blame]
// Copyright 2015 The Chromium OS Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include <inttypes.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <errno.h>
#include <unistd.h>
#include <fcntl.h>
#include <sys/mman.h>
#include "simplebinder.h"
#define MAX_BIO_SIZE (1 << 30)
#define TRACE 0
#define LOG_TAG "Binder"
//#include <cutils/log.h>
void bio_init_from_txn(struct binder_io* io,
struct binder_transaction_data* txn);
#if TRACE
void hexdump(void* _data, size_t len) {
unsigned char* data = _data;
size_t count;
for (count = 0; count < len; count++) {
if ((count & 15) == 0)
fprintf(stderr, "%04zu:", count);
fprintf(stderr, " %02x %c", *data,
(*data < 32) || (*data > 126) ? '.' : *data);
data++;
if ((count & 15) == 15)
fprintf(stderr, "\n");
}
if ((count & 15) != 0)
fprintf(stderr, "\n");
}
void binder_dump_txn(struct binder_transaction_data* txn) {
struct flat_binder_object* obj;
binder_size_t* offs = (binder_size_t*)(uintptr_t)txn->data.ptr.offsets;
size_t count = txn->offsets_size / sizeof(binder_size_t);
fprintf(stderr, " target %016" PRIx64 " cookie %016" PRIx64
" code %08x flags %08x\n",
(uint64_t)txn->target.ptr, (uint64_t)txn->cookie, txn->code,
txn->flags);
fprintf(stderr, " pid %8d uid %8d data %" PRIu64 " offs %" PRIu64 "\n",
txn->sender_pid, txn->sender_euid, (uint64_t)txn->data_size,
(uint64_t)txn->offsets_size);
hexdump((void*)(uintptr_t)txn->data.ptr.buffer, txn->data_size);
while (count--) {
obj =
(struct flat_binder_object*)(((char*)(uintptr_t)txn->data.ptr.buffer) +
*offs++);
fprintf(stderr, " - type %08x flags %08x ptr %016" PRIx64
" cookie %016" PRIx64 "\n",
obj->type, obj->flags, (uint64_t)obj->binder,
(uint64_t)obj->cookie);
}
}
#define NAME(n) \
case n: \
return #n
const char* cmd_name(uint32_t cmd) {
switch (cmd) {
NAME(BR_NOOP);
NAME(BR_TRANSACTION_COMPLETE);
NAME(BR_INCREFS);
NAME(BR_ACQUIRE);
NAME(BR_RELEASE);
NAME(BR_DECREFS);
NAME(BR_TRANSACTION);
NAME(BR_REPLY);
NAME(BR_FAILED_REPLY);
NAME(BR_DEAD_REPLY);
NAME(BR_DEAD_BINDER);
default:
return "???";
}
}
#else
#define hexdump(a, b) \
do { \
} while (0)
#define binder_dump_txn(txn) \
do { \
} while (0)
#endif
#define BIO_F_SHARED 0x01 /* needs to be buffer freed */
#define BIO_F_OVERFLOW 0x02 /* ran out of space */
#define BIO_F_IOERROR 0x04
#define BIO_F_MALLOCED 0x08 /* needs to be free()'d */
struct binder_state {
int fd;
void* mapped;
size_t mapsize;
};
struct binder_state* binder_open(size_t mapsize) {
struct binder_state* bs;
struct binder_version vers;
bs = malloc(sizeof(*bs));
if (!bs) {
errno = ENOMEM;
return NULL;
}
bs->fd = open("/dev/binder", O_RDWR);
if (bs->fd < 0) {
fprintf(stderr, "binder: cannot open device (%s)\n", strerror(errno));
goto fail_open;
}
if ((ioctl(bs->fd, BINDER_VERSION, &vers) == -1) ||
(vers.protocol_version != BINDER_CURRENT_PROTOCOL_VERSION)) {
fprintf(stderr, "binder: driver version differs from user space\n");
goto fail_open;
}
bs->mapsize = mapsize;
bs->mapped = mmap(NULL, mapsize, PROT_READ, MAP_PRIVATE, bs->fd, 0);
if (bs->mapped == MAP_FAILED) {
fprintf(stderr, "binder: cannot map device (%s)\n", strerror(errno));
goto fail_map;
}
return bs;
fail_map:
close(bs->fd);
fail_open:
free(bs);
return NULL;
}
void binder_close(struct binder_state* bs) {
munmap(bs->mapped, bs->mapsize);
close(bs->fd);
free(bs);
}
int binder_become_context_manager(struct binder_state* bs) {
return ioctl(bs->fd, BINDER_SET_CONTEXT_MGR, 0);
}
int binder_write(struct binder_state* bs, void* data, size_t len) {
struct binder_write_read bwr;
int res;
bwr.write_size = len;
bwr.write_consumed = 0;
bwr.write_buffer = (uintptr_t)data;
bwr.read_size = 0;
bwr.read_consumed = 0;
bwr.read_buffer = 0;
res = ioctl(bs->fd, BINDER_WRITE_READ, &bwr);
if (res < 0) {
fprintf(stderr, "binder_write: ioctl failed (%s)\n", strerror(errno));
}
return res;
}
void binder_send_reply(struct binder_state* bs,
struct binder_io* reply,
binder_uintptr_t buffer_to_free,
int status) {
struct {
uint32_t cmd_free;
binder_uintptr_t buffer;
uint32_t cmd_reply;
struct binder_transaction_data txn;
} __attribute__((packed)) data;
data.cmd_free = BC_FREE_BUFFER;
data.buffer = buffer_to_free;
data.cmd_reply = BC_REPLY;
data.txn.target.ptr = 0;
data.txn.cookie = 0;
data.txn.code = 0;
if (status) {
data.txn.flags = TF_STATUS_CODE;
data.txn.data_size = sizeof(int);
data.txn.offsets_size = 0;
data.txn.data.ptr.buffer = (uintptr_t)&status;
data.txn.data.ptr.offsets = 0;
} else {
data.txn.flags = 0;
data.txn.data_size = reply->data - reply->data0;
data.txn.offsets_size = ((char*)reply->offs) - ((char*)reply->offs0);
data.txn.data.ptr.buffer = (uintptr_t)reply->data0;
data.txn.data.ptr.offsets = (uintptr_t)reply->offs0;
}
binder_write(bs, &data, sizeof(data));
}
int binder_parse(struct binder_state* bs,
struct binder_io* bio,
uintptr_t ptr,
size_t size,
binder_handler func) {
int r = 1;
uintptr_t end = ptr + (uintptr_t)size;
while (ptr < end) {
uint32_t cmd = *(uint32_t*)ptr;
ptr += sizeof(uint32_t);
#if TRACE
fprintf(stderr, "%s:\n", cmd_name(cmd));
#endif
switch (cmd) {
case BR_NOOP:
break;
case BR_TRANSACTION_COMPLETE:
break;
case BR_INCREFS:
case BR_ACQUIRE:
case BR_RELEASE:
case BR_DECREFS:
#if TRACE
fprintf(stderr, " %p, %p\n", (void*)ptr, (void*)(ptr + sizeof(void*)));
#endif
ptr += sizeof(struct binder_ptr_cookie);
break;
case BR_TRANSACTION: {
struct binder_transaction_data* txn =
(struct binder_transaction_data*)ptr;
if ((end - ptr) < sizeof(*txn)) {
// ALOGE("parse: txn too small!\n");
return -1;
}
binder_dump_txn(txn);
if (func) {
unsigned rdata[256 / 4];
struct binder_io msg;
struct binder_io reply;
int res;
bio_init(&reply, rdata, sizeof(rdata), 4);
bio_init_from_txn(&msg, txn);
res = func(bs, txn, &msg, &reply);
binder_send_reply(bs, &reply, txn->data.ptr.buffer, res);
}
ptr += sizeof(*txn);
break;
}
case BR_REPLY: {
struct binder_transaction_data* txn =
(struct binder_transaction_data*)ptr;
if ((end - ptr) < sizeof(*txn)) {
// ALOGE("parse: reply too small!\n");
return -1;
}
binder_dump_txn(txn);
if (bio) {
bio_init_from_txn(bio, txn);
bio = 0;
} else {
/* todo FREE BUFFER */
}
ptr += sizeof(*txn);
r = 0;
break;
}
case BR_DEAD_BINDER: {
struct binder_death* death =
(struct binder_death*)(uintptr_t) * (binder_uintptr_t*)ptr;
ptr += sizeof(binder_uintptr_t);
death->func(bs, death->ptr);
break;
}
case BR_FAILED_REPLY:
r = -1;
break;
case BR_DEAD_REPLY:
r = -1;
break;
default:
// ALOGE("parse: OOPS %d\n", cmd);
return -1;
}
}
return r;
}
void binder_acquire(struct binder_state* bs, uint32_t target) {
uint32_t cmd[2];
cmd[0] = BC_ACQUIRE;
cmd[1] = target;
binder_write(bs, cmd, sizeof(cmd));
}
void binder_release(struct binder_state* bs, uint32_t target) {
uint32_t cmd[2];
cmd[0] = BC_RELEASE;
cmd[1] = target;
binder_write(bs, cmd, sizeof(cmd));
}
void binder_link_to_death(struct binder_state* bs,
uint32_t target,
struct binder_death* death) {
struct {
uint32_t cmd;
struct binder_handle_cookie payload;
} __attribute__((packed)) data;
data.cmd = BC_REQUEST_DEATH_NOTIFICATION;
data.payload.handle = target;
data.payload.cookie = (uintptr_t)death;
binder_write(bs, &data, sizeof(data));
}
int binder_call(struct binder_state* bs,
struct binder_io* msg,
struct binder_io* reply,
uint32_t target,
uint32_t code) {
int res;
struct binder_write_read bwr;
struct {
uint32_t cmd;
struct binder_transaction_data txn;
} __attribute__((packed)) writebuf;
unsigned readbuf[32];
if (msg->flags & BIO_F_OVERFLOW) {
fprintf(stderr, "binder: txn buffer overflow\n");
goto fail;
}
writebuf.cmd = BC_TRANSACTION;
writebuf.txn.target.handle = target;
writebuf.txn.code = code;
writebuf.txn.flags = 0;
writebuf.txn.data_size = msg->data - msg->data0;
writebuf.txn.offsets_size = ((char*)msg->offs) - ((char*)msg->offs0);
writebuf.txn.data.ptr.buffer = (uintptr_t)msg->data0;
writebuf.txn.data.ptr.offsets = (uintptr_t)msg->offs0;
bwr.write_size = sizeof(writebuf);
bwr.write_consumed = 0;
bwr.write_buffer = (uintptr_t)&writebuf;
hexdump(msg->data0, msg->data - msg->data0);
for (;;) {
bwr.read_size = sizeof(readbuf);
bwr.read_consumed = 0;
bwr.read_buffer = (uintptr_t)readbuf;
res = ioctl(bs->fd, BINDER_WRITE_READ, &bwr);
if (res < 0) {
fprintf(stderr, "binder: ioctl failed (%s)\n", strerror(errno));
goto fail;
}
res = binder_parse(bs, reply, (uintptr_t)readbuf, bwr.read_consumed, 0);
if (res == 0)
return 0;
if (res < 0)
goto fail;
}
fail:
memset(reply, 0, sizeof(*reply));
reply->flags |= BIO_F_IOERROR;
return -1;
}
void binder_loop(struct binder_state* bs, binder_handler func) {
int res;
struct binder_write_read bwr;
uint32_t readbuf[32];
bwr.write_size = 0;
bwr.write_consumed = 0;
bwr.write_buffer = 0;
readbuf[0] = BC_ENTER_LOOPER;
binder_write(bs, readbuf, sizeof(uint32_t));
for (;;) {
bwr.read_size = sizeof(readbuf);
bwr.read_consumed = 0;
bwr.read_buffer = (uintptr_t)readbuf;
res = ioctl(bs->fd, BINDER_WRITE_READ, &bwr);
if (res < 0) {
// ALOGE("binder_loop: ioctl failed (%s)\n", strerror(errno));
break;
}
res = binder_parse(bs, 0, (uintptr_t)readbuf, bwr.read_consumed, func);
if (res == 0) {
// ALOGE("binder_loop: unexpected reply?!\n");
break;
}
if (res < 0) {
// ALOGE("binder_loop: io error %d %s\n", res, strerror(errno));
break;
}
}
}
void bio_init_from_txn(struct binder_io* bio,
struct binder_transaction_data* txn) {
bio->data = bio->data0 = (char*)(intptr_t)txn->data.ptr.buffer;
bio->offs = bio->offs0 = (binder_size_t*)(intptr_t)txn->data.ptr.offsets;
bio->data_avail = txn->data_size;
bio->offs_avail = txn->offsets_size / sizeof(size_t);
bio->flags = BIO_F_SHARED;
}
void bio_init(struct binder_io* bio,
void* data,
size_t maxdata,
size_t maxoffs) {
size_t n = maxoffs * sizeof(size_t);
if (n > maxdata) {
bio->flags = BIO_F_OVERFLOW;
bio->data_avail = 0;
bio->offs_avail = 0;
return;
}
bio->data = bio->data0 = (char*)data + n;
bio->offs = bio->offs0 = data;
bio->data_avail = maxdata - n;
bio->offs_avail = maxoffs;
bio->flags = 0;
}
static void* bio_alloc(struct binder_io* bio, size_t size) {
size = (size + 3) & (~3);
if (size > bio->data_avail) {
bio->flags |= BIO_F_OVERFLOW;
return NULL;
} else {
void* ptr = bio->data;
bio->data += size;
bio->data_avail -= size;
return ptr;
}
}
void binder_done(struct binder_state* bs,
struct binder_io* msg,
struct binder_io* reply) {
struct {
uint32_t cmd;
uintptr_t buffer;
} __attribute__((packed)) data;
if (reply->flags & BIO_F_SHARED) {
data.cmd = BC_FREE_BUFFER;
data.buffer = (uintptr_t)reply->data0;
binder_write(bs, &data, sizeof(data));
reply->flags = 0;
}
}
static struct flat_binder_object* bio_alloc_obj(struct binder_io* bio) {
struct flat_binder_object* obj;
obj = bio_alloc(bio, sizeof(*obj));
if (obj && bio->offs_avail) {
bio->offs_avail--;
*bio->offs++ = ((char*)obj) - ((char*)bio->data0);
return obj;
}
bio->flags |= BIO_F_OVERFLOW;
return NULL;
}
void bio_put_uint32(struct binder_io* bio, uint32_t n) {
uint32_t* ptr = bio_alloc(bio, sizeof(n));
if (ptr)
*ptr = n;
}
void bio_put_obj(struct binder_io* bio, void* ptr) {
struct flat_binder_object* obj;
obj = bio_alloc_obj(bio);
if (!obj)
return;
obj->flags = 0x7f | FLAT_BINDER_FLAG_ACCEPTS_FDS;
obj->type = BINDER_TYPE_BINDER;
obj->binder = (uintptr_t)ptr;
obj->cookie = 0;
}
void bio_put_ref(struct binder_io* bio, uint32_t handle) {
struct flat_binder_object* obj;
if (handle)
obj = bio_alloc_obj(bio);
else
obj = bio_alloc(bio, sizeof(*obj));
if (!obj)
return;
obj->flags = 0x7f | FLAT_BINDER_FLAG_ACCEPTS_FDS;
obj->type = BINDER_TYPE_HANDLE;
obj->handle = handle;
obj->cookie = 0;
}
void bio_put_string16(struct binder_io* bio, const uint16_t* str) {
size_t len;
uint16_t* ptr;
if (!str) {
bio_put_uint32(bio, 0xffffffff);
return;
}
len = 0;
while (str[len])
len++;
if (len >= (MAX_BIO_SIZE / sizeof(uint16_t))) {
bio_put_uint32(bio, 0xffffffff);
return;
}
/* Note: The payload will carry 32bit size instead of size_t */
bio_put_uint32(bio, (uint32_t)len);
len = (len + 1) * sizeof(uint16_t);
ptr = bio_alloc(bio, len);
if (ptr)
memcpy(ptr, str, len);
}
void bio_put_string16_x(struct binder_io* bio, const char* _str) {
unsigned char* str = (unsigned char*)_str;
size_t len;
uint16_t* ptr;
if (!str) {
bio_put_uint32(bio, 0xffffffff);
return;
}
len = strlen(_str);
if (len >= (MAX_BIO_SIZE / sizeof(uint16_t))) {
bio_put_uint32(bio, 0xffffffff);
return;
}
/* Note: The payload will carry 32bit size instead of size_t */
bio_put_uint32(bio, len);
ptr = bio_alloc(bio, (len + 1) * sizeof(uint16_t));
if (!ptr)
return;
while (*str)
*ptr++ = *str++;
*ptr++ = 0;
}
static void* bio_get(struct binder_io* bio, size_t size) {
size = (size + 3) & (~3);
if (bio->data_avail < size) {
bio->data_avail = 0;
bio->flags |= BIO_F_OVERFLOW;
return NULL;
} else {
void* ptr = bio->data;
bio->data += size;
bio->data_avail -= size;
return ptr;
}
}
uint32_t bio_get_uint32(struct binder_io* bio) {
uint32_t* ptr = bio_get(bio, sizeof(*ptr));
return ptr ? *ptr : 0;
}
uint16_t* bio_get_string16(struct binder_io* bio, size_t* sz) {
size_t len;
/* Note: The payload will carry 32bit size instead of size_t */
len = (size_t)bio_get_uint32(bio);
if (sz)
*sz = len;
return bio_get(bio, (len + 1) * sizeof(uint16_t));
}
static struct flat_binder_object* _bio_get_obj(struct binder_io* bio) {
size_t n;
size_t off = bio->data - bio->data0;
/* TODO: be smarter about this? */
for (n = 0; n < bio->offs_avail; n++) {
if (bio->offs[n] == off)
return bio_get(bio, sizeof(struct flat_binder_object));
}
bio->data_avail = 0;
bio->flags |= BIO_F_OVERFLOW;
return NULL;
}
uint32_t bio_get_ref(struct binder_io* bio) {
struct flat_binder_object* obj;
obj = _bio_get_obj(bio);
if (!obj)
return 0;
if (obj->type == BINDER_TYPE_HANDLE)
return obj->handle;
return 0;
}