blob: c4ec6c73e37ca23457776fbc0bc09d107b57017c [file] [log] [blame] [edit]
// Copyright 2021 The Chromium OS Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "ml/dbus_service/tf_model_graph_executor.h"
#include <cstdint>
#include <memory>
#include <utility>
#include <base/files/file_path.h>
#include <base/files/file_util.h>
#include <tensorflow/lite/model.h>
#include "chrome/knowledge/assist_ranker/ranker_example.pb.h"
#include "ml/example_preprocessor/example_preprocessing.h"
#include "ml/request_metrics.h"
namespace ml {
namespace {
using ::chromeos::machine_learning::mojom::CreateGraphExecutorResult;
using ::chromeos::machine_learning::mojom::FloatList;
using ::chromeos::machine_learning::mojom::Int64List;
using ::chromeos::machine_learning::mojom::Tensor;
using ::chromeos::machine_learning::mojom::ValueList;
constexpr char kSystemModelDir[] = "/opt/google/chrome/ml_models/";
// TODO(alanlxl): need to modify xml to support
// MachineLearningService.<model_name>.TfModelGraphExecutor.Event,
// We don't log memory and time cost here, because they are logged by
// ModelDelegate and GraphExecutorDelegate.
constexpr char kMetricsRequestName[] = "TfModelGraphExecutor";
enum class TfModelGraphExecutorEvent {
kOk = 0,
kReadBuiltinModelError = 1,
kCreateGraphExecutorError = 2,
kInitializePreprocessorError = 3,
kMaxValue = kInitializePreprocessorError,
};
} // namespace
TfModelGraphExecutor::TfModelGraphExecutor(
BuiltinModelId model_id,
const std::string& preprocessor_file_name,
const std::string& asset_dir)
: asset_dir_(asset_dir) {
// Unsupported models do not have metadata entries.
const auto builtin_model_metadata = GetBuiltinModelMetadata();
const auto metadata_lookup = builtin_model_metadata.find(model_id);
if (metadata_lookup == builtin_model_metadata.end()) {
LOG(ERROR) << "Construct TfModelGraphExecutor with unsupported model ID "
<< model_id;
return;
}
const BuiltinModelMetadata& metadata = metadata_lookup->second;
DCHECK(!metadata.metrics_model_name.empty());
RequestMetrics request_metrics(metadata.metrics_model_name,
kMetricsRequestName);
request_metrics.StartRecordingPerformanceMetrics();
// Attempts to load model.
const std::string model_path = asset_dir_ + metadata.model_file;
std::unique_ptr<tflite::FlatBufferModel> flat_buffer_model =
tflite::FlatBufferModel::BuildFromFile(model_path.c_str());
if (flat_buffer_model == nullptr) {
LOG(ERROR) << "Failed to load model file '" << model_path << "'.";
request_metrics.RecordRequestEvent(
TfModelGraphExecutorEvent::kReadBuiltinModelError);
return;
}
model_delegate_ = std::make_unique<ModelDelegate>(
metadata.required_inputs, metadata.required_outputs,
std::move(flat_buffer_model), metadata.metrics_model_name);
for (const auto& kv : metadata.required_outputs) {
output_names_.push_back(kv.first);
}
GraphExecutorDelegate* graph_executor_delegate;
if (model_delegate_->CreateGraphExecutorDelegate(
false /*use_nnapi*/, false /*use_gpu*/, &graph_executor_delegate) !=
CreateGraphExecutorResult::OK) {
request_metrics.RecordRequestEvent(
TfModelGraphExecutorEvent::kCreateGraphExecutorError);
return;
}
graph_executor_delegate_.reset(graph_executor_delegate);
// Attempts to read the preprocessor config.
config_ = std::make_unique<assist_ranker::ExamplePreprocessorConfig>();
std::string preprocessor_proto;
if (!base::ReadFileToString(
base::FilePath(asset_dir_ + preprocessor_file_name),
&preprocessor_proto) ||
!config_->ParseFromString(preprocessor_proto)) {
LOG(ERROR) << "Failed to read preprocessor from " << preprocessor_file_name;
request_metrics.RecordRequestEvent(
TfModelGraphExecutorEvent::kInitializePreprocessorError);
config_.reset();
return;
}
}
TfModelGraphExecutor::TfModelGraphExecutor(
BuiltinModelId model_id, const std::string& preprocessor_file_name)
: TfModelGraphExecutor(model_id, preprocessor_file_name, kSystemModelDir) {}
TfModelGraphExecutor::~TfModelGraphExecutor() = default;
bool TfModelGraphExecutor::Ready() const {
return model_delegate_ && graph_executor_delegate_ && config_;
}
bool TfModelGraphExecutor::Execute(
bool clear_other_features,
assist_ranker::RankerExample* example,
std::vector<TensorPtr>* output_tensors) const {
DCHECK(Ready());
DCHECK(example);
const int preprocessor_result = assist_ranker::ExamplePreprocessor::Process(
*config_, example, clear_other_features);
if (preprocessor_result != assist_ranker::ExamplePreprocessor::kSuccess) {
LOG(ERROR) << "Preprocess example failed! Error type = "
<< preprocessor_result;
return false;
}
const auto& extracted_features =
example->features()
.at(assist_ranker::ExamplePreprocessor::kVectorizedFeatureDefaultName)
.float_list()
.float_value();
const std::vector<float> vectorized_features(extracted_features.begin(),
extracted_features.end());
base::flat_map<std::string, TensorPtr> inputs;
auto tensor = Tensor::New();
tensor->shape = Int64List::New();
tensor->shape->value = std::vector<int64_t>(
{1, static_cast<int64_t>(vectorized_features.size())});
tensor->data = ValueList::New();
tensor->data->set_float_list(FloatList::New());
tensor->data->get_float_list()->value = std::vector<double>(
std::begin(vectorized_features), std::end(vectorized_features));
// TODO(alanlxl): input node name
inputs.emplace("input", std::move(tensor));
auto execute_result = graph_executor_delegate_->Execute(
std::move(inputs), output_names_, *output_tensors);
return execute_result == ExecuteResult::OK;
}
// static
std::unique_ptr<TfModelGraphExecutor> TfModelGraphExecutor::CreateForTesting(
BuiltinModelId model_id,
const std::string& preprocessor_file_name,
const std::string& assert_dir) {
return base::WrapUnique(
new TfModelGraphExecutor(model_id, preprocessor_file_name, assert_dir));
}
} // namespace ml