| // Copyright 2021 The Chromium OS Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| #include "ml/dbus_service/adaptive_charging_service.h" |
| |
| #include <utility> |
| |
| namespace ml { |
| namespace { |
| |
| using ::chromeos::machine_learning::mojom::BuiltinModelId; |
| using ::chromeos::machine_learning::mojom::TensorPtr; |
| // TODO(alanlxl): replace with adaptive charging pb config (and BuiltinModelId). |
| constexpr char kPreprocessorFileName[] = |
| "mlservice-model-smart_dim-20190521-preprocessor.pb"; |
| |
| } // namespace |
| |
| AdaptiveChargingService::AdaptiveChargingService( |
| std::unique_ptr<brillo::dbus_utils::DBusObject> dbus_object) |
| : org::chromium::MachineLearning::AdaptiveChargingAdaptor(this), |
| dbus_object_(std::move(dbus_object)), |
| tf_model_graph_executor_(new TfModelGraphExecutor( |
| BuiltinModelId::SMART_DIM_20190521, kPreprocessorFileName)) {} |
| |
| AdaptiveChargingService::~AdaptiveChargingService() = default; |
| |
| void AdaptiveChargingService::RegisterAsync( |
| const brillo::dbus_utils::AsyncEventSequencer::CompletionAction& |
| completion_callback) { |
| RegisterWithDBusObject(dbus_object_.get()); |
| dbus_object_->RegisterAsync(completion_callback); |
| } |
| |
| void AdaptiveChargingService::RequestAdaptiveChargingDecision( |
| std::unique_ptr< |
| brillo::dbus_utils::DBusMethodResponse<bool, std::vector<double>>> |
| response, |
| const std::string& serialized_example_proto) { |
| if (!tf_model_graph_executor_->Ready()) { |
| LOG(ERROR) << "TfModelGraphExecutor is not properly initialized."; |
| response->Return(false, std::vector<double>()); |
| return; |
| } |
| |
| assist_ranker::RankerExample example; |
| if (!example.ParseFromString(serialized_example_proto)) { |
| LOG(ERROR) << "Failed to parse serialized_example_proto"; |
| response->Return(false, std::vector<double>()); |
| return; |
| } |
| |
| std::vector<TensorPtr> output_tensors; |
| if (!tf_model_graph_executor_->Execute(true /*clear_other_features*/, |
| &example, &output_tensors)) { |
| LOG(ERROR) << "TfModelGraphExecutor::Execute failed!"; |
| response->Return(false, std::vector<double>()); |
| return; |
| } |
| |
| // TODO(alanlxl): deal with the output_tensors and return |
| response->Return(true, std::vector<double>{4.0, 4.0, 4.0}); |
| } |
| |
| } // namespace ml |