blob: 643cdc402f2aed00a8fddbe826adb238947a39e7 [file] [log] [blame] [edit]
// Copyright 2021 The Chromium OS Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "ml/dbus_service/adaptive_charging_service.h"
#include <utility>
namespace ml {
namespace {
using ::chromeos::machine_learning::mojom::BuiltinModelId;
using ::chromeos::machine_learning::mojom::TensorPtr;
// TODO(alanlxl): replace with adaptive charging pb config (and BuiltinModelId).
constexpr char kPreprocessorFileName[] =
"mlservice-model-smart_dim-20190521-preprocessor.pb";
} // namespace
AdaptiveChargingService::AdaptiveChargingService(
std::unique_ptr<brillo::dbus_utils::DBusObject> dbus_object)
: org::chromium::MachineLearning::AdaptiveChargingAdaptor(this),
dbus_object_(std::move(dbus_object)),
tf_model_graph_executor_(new TfModelGraphExecutor(
BuiltinModelId::SMART_DIM_20190521, kPreprocessorFileName)) {}
AdaptiveChargingService::~AdaptiveChargingService() = default;
void AdaptiveChargingService::RegisterAsync(
const brillo::dbus_utils::AsyncEventSequencer::CompletionAction&
completion_callback) {
RegisterWithDBusObject(dbus_object_.get());
dbus_object_->RegisterAsync(completion_callback);
}
void AdaptiveChargingService::RequestAdaptiveChargingDecision(
std::unique_ptr<
brillo::dbus_utils::DBusMethodResponse<bool, std::vector<double>>>
response,
const std::string& serialized_example_proto) {
if (!tf_model_graph_executor_->Ready()) {
LOG(ERROR) << "TfModelGraphExecutor is not properly initialized.";
response->Return(false, std::vector<double>());
return;
}
assist_ranker::RankerExample example;
if (!example.ParseFromString(serialized_example_proto)) {
LOG(ERROR) << "Failed to parse serialized_example_proto";
response->Return(false, std::vector<double>());
return;
}
std::vector<TensorPtr> output_tensors;
if (!tf_model_graph_executor_->Execute(true /*clear_other_features*/,
&example, &output_tensors)) {
LOG(ERROR) << "TfModelGraphExecutor::Execute failed!";
response->Return(false, std::vector<double>());
return;
}
// TODO(alanlxl): deal with the output_tensors and return
response->Return(true, std::vector<double>{4.0, 4.0, 4.0});
}
} // namespace ml