blob: db97f5a60febc5c3fa5f02e8fbbe3fd12d8b13d0 [file] [log] [blame]
#ifndef HIDL_GENERATED_ANDROID_HARDWARE_NEURALNETWORKS_V1_2_TYPES_H
#define HIDL_GENERATED_ANDROID_HARDWARE_NEURALNETWORKS_V1_2_TYPES_H
#include <android/hardware/neuralnetworks/1.0/types.h>
#include <android/hardware/neuralnetworks/1.1/types.h>
#include <android/hidl/safe_union/1.0/types.h>
#include <hidl/HidlSupport.h>
#include <hidl/MQDescriptor.h>
#include <utils/NativeHandle.h>
#include <utils/misc.h>
namespace android {
namespace hardware {
namespace neuralnetworks {
namespace V1_2 {
// Forward declaration for forward reference support:
enum class Constant : uint32_t;
enum class OperandType : int32_t;
enum class OperandTypeRange : uint32_t;
enum class OperationType : int32_t;
enum class OperationTypeRange : uint32_t;
enum class DeviceType : int32_t;
struct Capabilities;
struct Operation;
struct SymmPerChannelQuantParams;
struct Operand;
struct Model;
struct OutputShape;
enum class MeasureTiming : int32_t;
struct Timing;
struct FmqRequestDatum;
struct FmqResultDatum;
struct Extension;
enum class Constant : uint32_t {
/**
* The byte size of the cache token.
*/
BYTE_SIZE_OF_CACHE_TOKEN = 32u,
/**
* The maximum number of files for each type of cache in compilation caching.
*/
MAX_NUMBER_OF_CACHE_FILES = 32u,
};
enum class OperandType : int32_t {
/**
* A 32 bit floating point scalar value.
*/
FLOAT32 = 0,
/**
* A signed 32 bit integer scalar value.
*/
INT32 = 1,
/**
* An unsigned 32 bit integer scalar value.
*/
UINT32 = 2,
/**
* A tensor of 32 bit floating point values.
*/
TENSOR_FLOAT32 = 3,
/**
* A tensor of 32 bit integer values.
*/
TENSOR_INT32 = 4,
/**
* A tensor of 8 bit unsigned integers that represent real numbers.
*
* Attached to this tensor are two numbers that can be used to convert the
* 8 bit integer to the real value and vice versa. These two numbers are:
* - scale: a 32 bit floating point value greater than zero.
* - zeroPoint: a 32 bit integer, in range [0, 255].
*
* The formula is:
* real_value = (integer_value - zeroPoint) * scale.
*/
TENSOR_QUANT8_ASYMM = 5,
/**
* DEPRECATED. Since HAL version 1.2, extensions are the preferred
* alternative to OEM operation and data types.
*
* OEM specific scalar value.
*/
OEM = 10000,
/**
* DEPRECATED. Since HAL version 1.2, extensions are the preferred
* alternative to OEM operation and data types.
*
* A tensor of OEM specific values.
*/
TENSOR_OEM_BYTE = 10001,
/**
* An 8 bit boolean scalar value.
*
* Values of this operand type are either true or false. A zero value
* represents false; any other value represents true.
*/
BOOL = 6,
/**
* A tensor of 16 bit signed integers that represent real numbers.
*
* Attached to this tensor is a number representing real value scale that is
* used to convert the 16 bit number to a real value in the following way:
* realValue = integerValue * scale.
*
* scale is a 32 bit floating point with value greater than zero.
*/
TENSOR_QUANT16_SYMM = 7,
/**
* A tensor of IEEE 754 16 bit floating point values.
*/
TENSOR_FLOAT16 = 8,
/**
* A tensor of 8 bit boolean values.
*
* Values of this operand type are either true or false. A zero value
* represents false; any other value represents true.
*/
TENSOR_BOOL8 = 9,
/**
* An IEEE 754 16 bit floating point scalar value.
*/
FLOAT16 = 10,
/**
* A tensor of 8 bit signed integers that represent real numbers.
*
* This tensor is associated with additional fields that can
* be used to convert the 8 bit signed integer to the real value and vice versa.
* These fields are:
* - channelDim: a 32 bit unsigned integer indicating channel dimension.
* - scales: an array of positive 32 bit floating point values.
* The size of the scales array must be equal to dimensions[channelDim].
*
* {@link SymmPerChannelQuantParams} must hold the parameters for an Operand of this type.
* The channel dimension of this tensor must not be unknown (dimensions[channelDim] != 0).
*
* The formula is:
* realValue[..., C, ...] =
* integerValue[..., C, ...] * scales[C]
* where C is an index in the Channel dimension.
*/
TENSOR_QUANT8_SYMM_PER_CHANNEL = 11,
/**
* A tensor of 16 bit unsigned integers that represent real numbers.
*
* Attached to this tensor are two numbers that can be used to convert the
* 16 bit integer to the real value and vice versa. These two numbers are:
* - scale: a 32 bit floating point value greater than zero.
* - zeroPoint: a 32 bit integer, in range [0, 65535].
*
* The formula is:
* real_value = (integer_value - zeroPoint) * scale.
*/
TENSOR_QUANT16_ASYMM = 12,
/**
* A tensor of 8 bit signed integers that represent real numbers.
*
* Attached to this tensor is a number representing real value scale that is
* used to convert the 8 bit number to a real value in the following way:
* realValue = integerValue * scale.
*
* scale is a 32 bit floating point with value greater than zero.
*/
TENSOR_QUANT8_SYMM = 13,
};
/**
* The range of operand values in the OperandType enum.
*/
enum class OperandTypeRange : uint32_t {
BASE_MIN = 0u,
FUNDAMENTAL_MIN = 0u,
FUNDAMENTAL_MAX = 13u,
OEM_MIN = 10000u,
OEM_MAX = 10001u,
BASE_MAX = 65535u /* 0xFFFF */,
};
/**
* Operation types.
*
* The type of an operation in a model.
*/
enum class OperationType : int32_t {
/**
* Adds two tensors, element-wise.
*
* Takes two input tensors of identical {@link OperandType} and compatible
* dimensions. The output is the sum of both input tensors, optionally
* modified by an activation function.
*
* Two dimensions are compatible when:
* 1. they are equal, or
* 2. one of them is 1
*
* The size of the output is the maximum size along each dimension of the
* input operands. It starts with the trailing dimensions, and works its
* way forward.
*
* Example:
*
* input1.dimension = {4, 1, 2}
* input2.dimension = {5, 4, 3, 1}
* output.dimension = {5, 4, 3, 2}
*
* Since HAL version 1.2, generic zero-sized input tensor is supported. Zero
* dimension is only compatible with 0 or 1. The size of the output
* dimension is zero if either of corresponding input dimension is zero.
*
* Supported tensor {@link OperandType}:
* * {@link OperandType::TENSOR_FLOAT16} (since HAL version 1.2)
* * {@link OperandType::TENSOR_FLOAT32}
* * {@link OperandType::TENSOR_QUANT8_ASYMM}
*
* Supported tensor rank: up to 4
*
* Inputs:
* * 0: A tensor.
* * 1: A tensor of the same {@link OperandType}, and compatible dimensions
* as input0.
* For a {@link OperandType::TENSOR_QUANT8_ASYMM} tensor,
* the scales and zeroPoint can be different from input0 scale and zeroPoint.
* * 2: An {@link OperandType::INT32} scalar, and has to be one of the
* {@link FusedActivationFunc} values. Specifies the activation to
* invoke on the result.
*
* Outputs:
* * 0: The sum, a tensor of the same {@link OperandType} as input0.
* For a {@link OperandType::TENSOR_QUANT8_ASYMM} tensor,
* the scale and zeroPoint can be different from inputs' scale and zeroPoint.
*/
ADD = 0 /* @1.1::OperationType:ADD */,
/**
* Performs a 2-D average pooling operation.
*
* The output dimensions are functions of the filter dimensions, stride, and
* padding.
*
* The values in the output tensor are computed as:
*
* output[b, i, j, channel] =
* sum_{di, dj}(
* input[b, strides[1] * i + di, strides[2] * j + dj, channel]
* ) / sum(1)
*
* Supported tensor {@link OperandType}:
* * {@link OperandType::TENSOR_FLOAT16} (since HAL version 1.2)
* * {@link OperandType::TENSOR_FLOAT32}
* * {@link OperandType::TENSOR_QUANT8_ASYMM}
*
* Supported tensor rank: 4, with "NHWC" or "NCHW" data layout.
* With the default data layout NHWC, the data is stored in the order of:
* [batch, height, width, channels]. Alternatively, the data layout could
* be NCHW, the data storage order of: [batch, channels, height, width].
* NCHW is supported since HAL version 1.2.
*
* Both explicit padding and implicit padding are supported.
*
* Inputs (explicit padding):
* * 0: A 4-D tensor, of shape [batches, height, width, depth], specifying
* the input.
* Since HAL version 1.2, zero batches is supported for this tensor.
* * 1: An {@link OperandType::INT32} scalar, specifying the padding on
* the left, in the ‘width’ dimension.
* * 2: An {@link OperandType::INT32} scalar, specifying the padding on
* the right, in the ‘width’ dimension.
* * 3: An {@link OperandType::INT32} scalar, specifying the padding on
* the top, in the ‘height’ dimension.
* * 4: An {@link OperandType::INT32} scalar, specifying the padding on
* the bottom, in the ‘height’ dimension.
* * 5: An {@link OperandType::INT32} scalar, specifying the stride when
* walking through input in the ‘width’ dimension.
* * 6: An {@link OperandType::INT32} scalar, specifying the stride when
* walking through input in the ‘height’ dimension.
* * 7: An {@link OperandType::INT32} scalar, specifying the filter
* width.
* * 8: An {@link OperandType::INT32} scalar, specifying the filter
* height.
* * 9: An {@link OperandType::INT32} scalar, and has to be one of the
* {@link FusedActivationFunc} values. Specifies the activation to
* invoke on the result.
* * 10: An optional {@link OperandType::BOOL} scalar, default to false.
* Set to true to specify NCHW data layout for input0 and output0.
* Available since HAL version 1.2.
*
* Inputs (implicit padding):
* * 0: A 4-D tensor, of shape [batches, height, width, depth], specifying
* the input.
* Since HAL version 1.2, zero batches is supported for this tensor.
* * 1: An {@link OperandType::INT32} scalar, specifying the implicit
* padding scheme, has to be one of the
* following values: {0 (NONE), 1 (SAME), 2 (VALID)}.
* * 2: An {@link OperandType::INT32} scalar, specifying the stride when
* walking through input in the ‘width’ dimension.
* * 3: An {@link OperandType::INT32} scalar, specifying the stride when
* walking through input in the ‘height’ dimension.
* * 4: An {@link OperandType::INT32} scalar, specifying the filter
* width.
* * 5: An {@link OperandType::INT32} scalar, specifying the filter
* height.
* * 6: An {@link OperandType::INT32} scalar, and has to be one of the
* {@link FusedActivationFunc} values. Specifies the activation to
* invoke on the result.
* * 7: An optional {@link OperandType::BOOL} scalar, default to false.
* Set to true to specify NCHW data layout for input0 and output0.
* Available since HAL version 1.2.
*
* Outputs:
* * 0: The output 4-D tensor, of shape
* [batches, out_height, out_width, depth].
* For a {@link OperandType::TENSOR_QUANT8_ASYMM} tensor,
* the scale and zeroPoint must be the same as input0.
*/
AVERAGE_POOL_2D = 1 /* @1.1::OperationType:AVERAGE_POOL_2D */,
/**
* Concatenates the input tensors along the given dimension.
*
* The input tensors must have identical {@link OperandType} and the same
* dimensions except the dimension along the concatenation axis.
*
* Supported tensor {@link OperandType}:
* * {@link OperandType::TENSOR_FLOAT16} (since HAL version 1.2)
* * {@link OperandType::TENSOR_FLOAT32}
* * {@link OperandType::TENSOR_QUANT8_ASYMM}
* (full support since HAL version 1.2, see the input section)
*
* Supported tensor rank: up to 4
*
* Inputs:
* * 0 ~ n-1: The list of n input tensors, of shape
* [D0, D1, ..., Daxis(i), ..., Dm].
* Before HAL version 1.2, all input tensors of
* {@link OperandType::TENSOR_QUANT8_ASYMM}
* must have the same scale and zeroPoint as the output tensor.
* Since HAL version 1.2, zero-sized tensors are supported.
* * n: An {@link OperandType::INT32} scalar, specifying the
* concatenation axis.
*
* Outputs:
* * 0: The output, a tensor of the same {@link OperandType} as the input
* tensors. The output shape is [D0, D1, ..., sum(Daxis(i)), ..., Dm].
* Since HAL version 1.2, for a {@link OperandType::TENSOR_QUANT8_ASYMM} tensor,
* the scale and zeroPoint values can be different from
* input tensors. Before HAL version 1.2 they have to be the same as for the input tensors.
*/
CONCATENATION = 2 /* @1.1::OperationType:CONCATENATION */,
/**
* Performs a 2-D convolution operation.
*
* The CONV_2D op sweeps a 2-D filter that can mix channels together over a
* batch of images, applying the filter to each window of each image of the
* appropriate size.
*
* The output dimensions are functions of the filter dimensions, stride, and
* padding.
*
* The values in the output tensor are computed as:
*
* output[b, i, j, channel] =
* sum_{di, dj, k} (
* input[b, strides[1] * i + di, strides[2] * j + dj, k] *
* filter[channel, di, dj, k]
* ) + bias[channel]
*
* Supported tensor {@link OperandType} configurations:
* * 32 bit floating point:
* * * {@link OperandType::TENSOR_FLOAT32} for input, filter, output, and bias.
*
* * Quantized:
* * * {@link OperandType::TENSOR_QUANT8_ASYMM} for input, filter, and output.
* * * {@link OperandType::TENSOR_INT32} for bias (with scale set to
* * * input.scale * filter.scale).
*
* Available since HAL version 1.2:
* * 16 bit floating point:
* * * {@link OperandType::TENSOR_FLOAT16} for input, filter, output, and bias.
*
* * Quantized with symmetric per channel quantization for the filter:
* * * {@link OperandType::TENSOR_QUANT8_ASYMM} for input, and output.
* * * {@link OperandType::TENSOR_QUANT8_SYMM_PER_CHANNEL} for filter.
* * * {@link OperandType::TENSOR_INT32} for bias (scale set to 0.0,
* * * each value scaling is separate and equal to input.scale * filter.scales[channel]).
*
* Supported tensor rank: 4, with "NHWC" or "NCHW" data layout.
* With the default data layout NHWC, the data is stored in the order of:
* [batch, height, width, channels]. Alternatively, the data layout could
* be NCHW, the data storage order of: [batch, channels, height, width].
* NCHW is supported since HAL version 1.2.
*
* Both explicit padding and implicit padding are supported.
*
* Inputs (explicit padding):
* * 0: A 4-D tensor, of shape [batches, height, width, depth_in],
* specifying the input.
* Since HAL version 1.2, zero batches is supported for this tensor.
* * 1: A 4-D tensor, of shape
* [depth_out, filter_height, filter_width, depth_in], specifying the
* filter.
* For tensor of type {@link OperandType::TENSOR_QUANT8_SYMM_PER_CHANNEL}
* the channel dimension (SymmPerChannelQuantParams::channelDim)
* must be set to 0.
* * 2: A 1-D tensor, of shape [depth_out], specifying the bias. For input
* tensor of type {@link OperandType::TENSOR_FLOAT32}
* or {@link OperandType::TENSOR_FLOAT16} the bias must be of the same type.
* For filter tensor of {@link OperandType::TENSOR_QUANT8_ASYMM},
* the bias should be of {@link OperandType::TENSOR_INT32}, with zeroPoint
* of 0 and bias_scale == input_scale * filter_scale.
* For filter tensor of {@link OperandType::TENSOR_QUANT8_SYMM_PER_CHANNEL},
* the bias should be of {@link OperandType::TENSOR_INT32}, with zeroPoint of 0
* and bias_scale of 0. The actual scale of each value 'i' is equal to
* bias_scale[i] = input_scale * filter_scale[i].
* * 3: An {@link OperandType::INT32} scalar, specifying the padding on
* the left, in the ‘width’ dimension.
* * 4: An {@link OperandType::INT32} scalar, specifying the padding on
* the right, in the ‘width’ dimension.
* * 5: An {@link OperandType::INT32} scalar, specifying the padding on
* the top, in the ‘height’ dimension.
* * 6: An {@link OperandType::INT32} scalar, specifying the padding on
* the bottom, in the ‘height’ dimension.
* * 7: An {@link OperandType::INT32} scalar, specifying the stride when
* walking through input in the ‘width’ dimension.
* * 8: An {@link OperandType::INT32} scalar, specifying the stride when
* walking through input in the ‘height’ dimension.
* * 9: An {@link OperandType::INT32} scalar, and has to be one of the
* {@link FusedActivationFunc} values. Specifies the activation to
* invoke on the result.
* * 10: An optional {@link OperandType::BOOL} scalar, default to false.
* Set to true to specify NCHW data layout for input0 and output0.
* Available since HAL version 1.2.
* * 11: An optional {@link OperandType::INT32} scalar, specifying the dilation
* factor for width. Defaults to 1. If set to k > 1, there will be k-1 skipped
* cells between each filter element on width dimension. If this input is set,
* input 12 (dilation factor for height) must be specified as well.
* Available since HAL version 1.2.
* * 12: An optional {@link OperandType::INT32} scalar, specifying the dilation
* factor for height. Defaults to 1. If set to k > 1, there will be k-1 skipped
* cells between each filter element on height dimension. If this input is set,
* input 11 (dilation factor for width) must be specified as well.
* Available since HAL version 1.2.
*
* Inputs (implicit padding):
* * 0: A 4-D tensor, of shape [batches, height, width, depth_in],
* specifying the input.
* Since HAL version 1.2, zero batches is supported for this tensor.
* * 1: A 4-D tensor, of shape
* [depth_out, filter_height, filter_width, depth_in], specifying the
* filter.
* For tensor of type {@link OperandType::TENSOR_QUANT8_SYMM_PER_CHANNEL}
* the channel dimension (SymmPerChannelQuantParams::channelDim)
* must be set to 0.
* * 2: A 1-D tensor, of shape [depth_out], specifying the bias. For input
* tensor of type {@link OperandType::TENSOR_FLOAT32}
* or {@link OperandType::TENSOR_FLOAT16} the bias must be of the same
* type.
* For filter tensor of {@link OperandType::TENSOR_QUANT8_ASYMM},
* the bias should be of {@link OperandType::TENSOR_INT32}, with zeroPoint
* of 0 and bias_scale == input_scale * filter_scale.
* For filter tensor of {@link OperandType::TENSOR_QUANT8_SYMM_PER_CHANNEL},
* the bias should be of {@link OperandType::TENSOR_INT32}, with zeroPoint of 0
* and bias_scale of 0. The actual scale of each value 'i' is equal to
* bias_scale[i] = input_scale * filter_scale[i].
* * 3: An {@link OperandType::INT32} scalar, specifying the implicit
* padding scheme, has to be one of the
* following values: {0 (NONE), 1 (SAME), 2 (VALID)}.
* * 4: An {@link OperandType::INT32} scalar, specifying the stride when
* walking through input in the ‘width’ dimension.
* * 5: An {@link OperandType::INT32} scalar, specifying the stride when
* walking through input in the ‘height’ dimension.
* * 6: An {@link OperandType::INT32} scalar, and has to be one of the
* {@link FusedActivationFunc} values. Specifies the activation to
* invoke on the result.
* * 7: An optional {@link OperandType::BOOL} scalar, default to false.
* Set to true to specify NCHW data layout for input0 and output0.
* Available since HAL version 1.2.
* * 8: An optional {@link OperandType::INT32} scalar, specifying the dilation
* factor for width. Defaults to 1. If set to k > 1, there will be k-1 skipped
* cells between each filter element on width dimension. If this input is set,
* input 9 (dilation factor for height) must be specified as well.
* Available since HAL version 1.2.
* * 9: An optional {@link OperandType::INT32} scalar, specifying the dilation
* factor for height. Defaults to 1. If set to k > 1, there will be k-1 skipped
* cells between each filter element on height dimension. If this input is set,
* input 8 (dilation factor for width) must be specified as well.
* Available since HAL version 1.2.
*
* Outputs:
* * 0: The output 4-D tensor, of shape
* [batches, out_height, out_width, depth_out].
* Before HAL version 1.2, for output tensor of {@link OperandType::TENSOR_QUANT8_ASYMM},
* the following condition must be satisfied: output_scale > input_scale * filter_scale
*/
CONV_2D = 3 /* @1.1::OperationType:CONV_2D */,
/**
* Performs a depthwise 2-D convolution operation.
*
* Given an input tensor of shape [batches, height, width, depth_in] and a
* filter tensor of shape [1, filter_height, filter_width, depth_out]
* containing depth_out convolutional filters of depth 1, DEPTHWISE_CONV
* applies a different filter to each input channel (expanding from 1
* channel to channel_multiplier channels for each), then concatenates the
* results together.
*
* The output has depth_out = depth_in * depth_multiplier channels.
* The output dimensions are functions of the filter dimensions, stride, and
* padding.
*
* The values in the output tensor are computed as:
*
* output[b, i, j, k * channel_multiplier + q] =
* sum_{di, dj} (
* input[b, strides[1] * i + di, strides[2] * j + dj, k] *
* filter[1, di, dj, k * channel_multiplier + q]
* ) + bias[k * channel_multiplier + q]
*
* Supported tensor {@link OperandType} configurations:
* * 32 bit floating point:
* * * {@link OperandType::TENSOR_FLOAT32} for input, filter, output, and bias.
*
* * Quantized:
* * * {@link OperandType::TENSOR_QUANT8_ASYMM} for input, filter, and output.
* * * {@link OperandType::TENSOR_INT32} for bias (with scale set to
* * * input.scale * filter.scale).
*
* Available since HAL version 1.2:
* * 16 bit floating point:
* * * {@link OperandType::TENSOR_FLOAT16} for input, filter, output, and bias.
*
* * Quantized with symmetric per channel quantization for the filter:
* * * {@link OperandType::TENSOR_QUANT8_ASYMM} for input, and output.
* * * {@link OperandType::TENSOR_QUANT8_SYMM_PER_CHANNEL} for filter.
* * * {@link OperandType::TENSOR_INT32} for bias (scale set to 0.0,
* * * each value scaling is separate and equal to input.scale * filter.scales[channel]).
*
* Supported tensor rank: 4, with "NHWC" or "NCHW" data layout.
* With the default data layout NHWC, the data is stored in the order of:
* [batch, height, width, channels]. Alternatively, the data layout could
* be NCHW, the data storage order of: [batch, channels, height, width].
* NCHW is supported since HAL version 1.2.
*
* Both explicit padding and implicit padding are supported.
*
* Inputs (explicit padding):
* * 0: A 4-D tensor, of shape [batches, height, width, depth_in],
* specifying the input.
* * 1: A 4-D tensor, of shape [1, filter_height, filter_width, depth_out],
* specifying the filter.
* For tensor of type {@link OperandType::TENSOR_QUANT8_SYMM_PER_CHANNEL}
* the channel dimension (SymmPerChannelQuantParams::channelDim)
* must be set to 3.
* * 2: A 1-D tensor, of shape [depth_out], specifying the bias. For input
* tensor of type {@link OperandType::TENSOR_FLOAT32}
* or {@link OperandType::TENSOR_FLOAT16} the bias must be of the same type.
* For filter tensor of {@link OperandType::TENSOR_QUANT8_ASYMM},
* the bias should be of {@link OperandType::TENSOR_INT32}, with zeroPoint
* of 0 and bias_scale == input_scale * filter_scale.
* For filter tensor of {@link OperandType::TENSOR_QUANT8_SYMM_PER_CHANNEL},
* the bias should be of {@link OperandType::TENSOR_INT32}, with zeroPoint of 0
* and bias_scale of 0. The actual scale of each value 'i' is equal to
* bias_scale[i] = input_scale * filter_scale[i].
* * 3: An {@link OperandType::INT32} scalar, specifying the padding on
* the left, in the ‘width’ dimension.
* * 4: An {@link OperandType::INT32} scalar, specifying the padding on
* the right, in the ‘width’ dimension.
* * 5: An {@link OperandType::INT32} scalar, specifying the padding on
* the top, in the ‘height’ dimension.
* * 6: An {@link OperandType::INT32} scalar, specifying the padding on
* the bottom, in the ‘height’ dimension.
* * 7: An {@link OperandType::INT32} scalar, specifying the stride when
* walking through input in the ‘width’ dimension.
* * 8: An {@link OperandType::INT32} scalar, specifying the stride when
* walking through input in the ‘height’ dimension.
* * 9: An {@link OperandType::INT32} scalar, specifying the depthwise
* multiplier.
* * 10: An {@link OperandType::INT32} scalar, and has to be one of the
* {@link FusedActivationFunc} values. Specifies the activation to
* invoke on the result.
* * 11: An optional {@link OperandType::BOOL} scalar, default to false.
* Set to true to specify NCHW data layout for input0 and output0.
* Available since HAL version 1.2.
* * 12: An optional {@link OperandType::INT32} scalar, specifying the dilation
* factor for width. Defaults to 1. If set to k > 1, there will be k-1 skipped
* cells between each filter element on width dimension. If this input is set,
* input 13 (dilation factor for height) must be specified as well.
* Available since HAL version 1.2.
* * 13: An optional {@link OperandType::INT32} scalar, specifying the dilation
* factor for height. Defaults to 1. If set to k > 1, there will be k-1 skipped
* cells between each filter element on height dimension. If this input is set,
* input 12 (dilation factor for width) must be specified as well.
* Available since HAL version 1.2.
*
* Inputs (implicit padding):
* * 0: A 4-D tensor, of shape [batches, height, width, depth_in],
* specifying the input.
* * 1: A 4-D tensor, of shape [1, filter_height, filter_width, depth_out],
* specifying the filter.
* * 2: A 1-D tensor, of shape [depth_out], specifying the bias. For input
* tensor of type {@link OperandType::TENSOR_FLOAT32}
* or {@link OperandType::TENSOR_FLOAT16} the bias must be of the same type.
* For filter tensor of {@link OperandType::TENSOR_QUANT8_ASYMM},
* the bias should be of {@link OperandType::TENSOR_INT32}, with zeroPoint
* of 0 and bias_scale == input_scale * filter_scale.
* For filter tensor of {@link OperandType::TENSOR_QUANT8_SYMM_PER_CHANNEL},
* the bias should be of {@link OperandType::TENSOR_INT32}, with zeroPoint of 0
* and bias_scale of 0. The actual scale of each value 'i' is equal to
* bias_scale[i] = input_scale * filter_scale[i].
* * 3: An {@link OperandType::INT32} scalar, specifying the implicit
* padding scheme, has to be one of the
* following values: {0 (NONE), 1 (SAME), 2 (VALID)}.
* * 4: An {@link OperandType::INT32} scalar, specifying the stride when
* walking through input in the ‘width’ dimension.
* * 5: An {@link OperandType::INT32} scalar, specifying the stride when
* walking through input in the ‘height’ dimension.
* * 6: An {@link OperandType::INT32} scalar, specifying the depthwise
* multiplier.
* * 7: An {@link OperandType::INT32} scalar, and has to be one of the
* {@link FusedActivationFunc} values. Specifies the activation to
* invoke on the result.
* * 8: An optional {@link OperandType::BOOL} scalar, default to false.
* Set to true to specify NCHW data layout for input0 and output0.
* Available since HAL version 1.2.
* * 9: An optional {@link OperandType::INT32} scalar, specifying the dilation
* factor for width. Defaults to 1. If set to k > 1, there will be k-1 skipped
* cells between each filter element on width dimension. If this input is set,
* input 10 (dilation factor for height) must be specified as well.
* Available since HAL version 1.2.
* * 10: An optional {@link OperandType::INT32} scalar, specifying the dilation
* factor for height. Defaults to 1. If set to k > 1, there will be k-1 skipped
* cells between each filter element on height dimension. If this input is set,
* input 9 (dilation factor for width) must be specified as well.
* Available since HAL version 1.2.
*
* Outputs:
* * 0: The output 4-D tensor, of shape
* [batches, out_height, out_width, depth_out]. Before HAL version 1.2, for
* output tensor of {@link OperandType::TENSOR_QUANT8_ASYMM},
* the following condition must be satisfied:
* output_scale > input_scale * filter_scale
*/
DEPTHWISE_CONV_2D = 4 /* @1.1::OperationType:DEPTHWISE_CONV_2D */,
/**
* Rearranges data from depth into blocks of spatial data.
*
* More specifically, this op outputs a copy of the input tensor where
* values from the depth dimension are moved in spatial blocks to the height
* and width dimensions. The value block_size indicates the input block size
* and how the data is moved.
*
* Chunks of data of size block_size * block_size from depth are rearranged
* into non-overlapping blocks of size block_size x block_size.
*
* The width of the output tensor is input_depth * block_size, whereas the
* height is input_height * block_size. The depth of the input tensor must
* be divisible by block_size * block_size
*
* Supported tensor {@link OperandType}:
* * {@link OperandType::TENSOR_FLOAT16} (since HAL version 1.2)
* * {@link OperandType::TENSOR_FLOAT32}
* * {@link OperandType::TENSOR_QUANT8_ASYMM}
*
* Supported tensor rank: 4, with "NHWC" or "NCHW" data layout.
* With the default data layout NHWC, the data is stored in the order of:
* [batch, height, width, channels]. Alternatively, the data layout could
* be NCHW, the data storage order of: [batch, channels, height, width].
* NCHW is supported since HAL version 1.2.
*
* Inputs:
* * 0: A 4-D tensor, of shape [batches, height, width, depth_in],
* specifying the input.
* * 1: An {@link OperandType::INT32} scalar, specifying the block_size.
* block_size must be >=1 and block_size * block_size must be a divisor
* of the input depth.
* * 2: An optional {@link OperandType::BOOL} scalar, default to false.
* Set to true to specify NCHW data layout for input0 and output0.
* Available since HAL version 1.2.
*
* Outputs:
* * 0: The output 4-D tensor, of shape [batch, height*block_size,
* width*block_size, depth/(block_size*block_size)].
* For a {@link OperandType::TENSOR_QUANT8_ASYMM} tensor,
* the scale and zeroPoint must be the same as input0.
*/
DEPTH_TO_SPACE = 5 /* @1.1::OperationType:DEPTH_TO_SPACE */,
/**
* Dequantizes the input tensor.
*
* The formula is:
*
* output = (input - zeroPoint) * scale.
*
* Supported input tensor {@link OperandType}:
* * {@link OperandType::TENSOR_QUANT8_ASYMM}
* * {@link OperandType::TENSOR_QUANT8_SYMM} (since HAL version 1.2)
* * {@link OperandType::TENSOR_QUANT8_SYMM_PER_CHANNEL} (since HAL version 1.2)
*
* Supported output tensor {@link OperandType}:
* * {@link OperandType::TENSOR_FLOAT16} (since HAL version 1.2)
* * {@link OperandType::TENSOR_FLOAT32}.
*
* Supported tensor rank: up to 4
*
* Inputs:
* * 0: A tensor.
* Since HAL version 1.2, this tensor may be zero-sized.
*
* Outputs:
* * 0: A tensor with the same shape as input0.
*/
DEQUANTIZE = 6 /* @1.1::OperationType:DEQUANTIZE */,
/**
* Looks up sub-tensors in the input tensor.
*
* This operator takes for input a tensor of values (Values) and
* a one-dimensional tensor of selection indices (Lookups).
* The output tensor is the concatenation of sub-tensors of Values as
* selected by Lookups.
*
* Think of Values as being sliced along its first dimension:
* The entries in Lookups select which slices are concatenated together
* to create the output tensor.
*
* For example, if Values has shape of [40, 200, 300] and
* Lookups has shape of [3], all three values found in Lookups are
* expected to be between 0 and 39. The resulting tensor must
* have shape of [3, 200, 300].
*
* If a value in Lookups is out of bounds, the operation must fail
* and an error must be reported.
*
* Supported value tensor {@link OperandType}:
* * {@link OperandType::TENSOR_FLOAT32}
* * {@link OperandType::TENSOR_INT32} (since HAL version 1.2)
* * {@link OperandType::TENSOR_QUANT8_ASYMM} (since HAL version 1.2)
*
* Supported value tensor rank: from 2
*
* Inputs:
* * 0: Lookups. A 1-D tensor of {@link OperandType::TENSOR_INT32}.
* The values are indices into the first dimension of Values.
* * 1: Values. An n-D tensor, where n >= 2, from which sub-tensors are
* extracted.
*
* Output:
* * 0: A n-D tensor with the same rank and shape as the Values
* tensor, except for the first dimension which has the same size
* as Lookups' only dimension.
* For a {@link OperandType::TENSOR_QUANT8_ASYMM} tensor,
* the scale and zeroPoint must be the same as input1.
*/
EMBEDDING_LOOKUP = 7 /* @1.1::OperationType:EMBEDDING_LOOKUP */,
/**
* Computes element-wise floor() on the input tensor.
*
* Supported tensor {@link OperandType}:
* * {@link OperandType::TENSOR_FLOAT16} (since HAL version 1.2)
* * {@link OperandType::TENSOR_FLOAT32}
*
* Supported tensor rank: up to 4
*
* Inputs:
* * 0: A tensor.
*
* Outputs:
* * 0: The output tensor, of the same {@link OperandType} and dimensions as
* the input tensor.
*/
FLOOR = 8 /* @1.1::OperationType:FLOOR */,
/**
* Denotes a fully (densely) connected layer, which connects all elements
* in the input tensor with each element in the output tensor.
*
* This layer implements the operation:
*
* outputs = activation(inputs * weights’ + bias)
*
* Supported tensor {@link OperandType}:
* * {@link OperandType::TENSOR_FLOAT16} (since HAL version 1.2)
* * {@link OperandType::TENSOR_FLOAT32}
* * {@link OperandType::TENSOR_QUANT8_ASYMM}
*
* Supported tensor rank: up to 4.
*
* Inputs:
* * 0: A tensor of at least rank 2, specifying the input. If rank is
* greater than 2, then it gets flattened to a 2-D Tensor. The
* (flattened) 2-D Tensor is reshaped (if necessary) to
* [batch_size, input_size], where "input_size" corresponds to the
* number of inputs to the layer, matching the second dimension of
* weights, and "batch_size" is calculated by dividing the number of
* elements by "input_size".
* Since HAL version 1.2, zero batch_size is supported for this tensor.
* * 1: A 2-D tensor, specifying the weights, of shape
* [num_units, input_size], where "num_units" corresponds to the number
* of output nodes.
* * 2: A 1-D tensor, of shape [num_units], specifying the bias. For input
* tensor of {@link OperandType::TENSOR_FLOAT32}, the bias should
* also be of {@link OperandType::TENSOR_FLOAT32}.
* For input tensor of {@link OperandType::TENSOR_QUANT8_ASYMM},
* the bias should be of {@link OperandType::TENSOR_INT32},
* with zeroPoint of 0 and bias_scale == input_scale * filter_scale.
* * 3: An {@link OperandType::INT32} scalar, and has to be one of the
* {@link FusedActivationFunc} values. Specifies the activation to
* invoke on the result.
*
* Outputs:
* * 0: The output tensor, of shape [batch_size, num_units]. Before HAL version 1.2, for
* output tensor of {@link OperandType::TENSOR_QUANT8_ASYMM}, the following
* condition must be satisfied: output_scale > input_scale * filter_scale.
*/
FULLY_CONNECTED = 9 /* @1.1::OperationType:FULLY_CONNECTED */,
/**
* Looks up sub-tensors in the input tensor using a key-value map.
*
* This operator takes for input a tensor of values (Values),
* a one-dimensional tensor of selection values (Lookups) and
* a one-dimensional tensor that maps these values to Values
* indexes. The output tensor is the concatenation of sub-tensors of
* Values as selected by Lookups via Keys.
*
* Think of Values as being sliced along its outer-most dimension.
* The output is a concatenation of selected slices, with one slice
* for each entry of Lookups. The slice selected is the one at the
* same index as the Maps entry that matches the value in Lookups.
*
* For a hit, the corresponding sub-tensor of Values is included
* in the Output tensor. For a miss, the corresponding sub-tensor in
* Output must have zero values.
*
* For example, if Values has shape of [40, 200, 300],
* Keys should have a shape of [40]. If Lookups tensor has shape
* of [3], three slices are being concatenated, so the resulting tensor
* must have the shape of [3, 200, 300]. If the first entry in Lookups
* has the value 123456, that value must be located in Keys tensor.
* If the sixth entry of Keys contains 123456, the sixth slice of Values
* must be selected. If no entry in Keys has 123456, a slice of zeroes
* must be concatenated.
*
* Supported value tensor {@link OperandType}:
* * {@link OperandType::TENSOR_FLOAT32}
* * {@link OperandType::TENSOR_INT32}
* * {@link OperandType::TENSOR_QUANT8_ASYMM}
*
* Supported value tensor rank: from 2
*
* Inputs:
* * 0: Lookups. A 1-D {@link OperandType::TENSOR_INT32} tensor with
* shape [ k ].
* * 1: Keys. A 1-D {@link OperandType::TENSOR_INT32} tensor with shape
* [ n ]; Keys and Values pair represent a map, i.e., the ith element
* in Keys (Keys[i]) is the key to select the ith sub-tensor in Values
* (Values[i]), where 0 <= i <= n-1. Keys tensor *MUST* be sorted in
* ascending order.
* * 2: Values. A tensor with shape of [ n, … ]; i.e., the first dimension
* must be n.
*
* Outputs:
* * 0: Output. A tensor with shape [ k …].
* For a {@link OperandType::TENSOR_QUANT8_ASYMM} tensor,
* the scale and zeroPoint must be the same as input2.
* * 1: Hits. A boolean tensor with shape [ k ] indicates whether the lookup
* hits (True) or not (False).
* Stored as {@link OperandType::TENSOR_QUANT8_ASYMM} with offset 0
* and scale 1.0f.
* A non-zero byte represents True, a hit. A zero indicates otherwise.
*/
HASHTABLE_LOOKUP = 10 /* @1.1::OperationType:HASHTABLE_LOOKUP */,
/**
* Applies L2 normalization along the axis dimension.
*
* The values in the output tensor are computed as:
*
* output[batch, row, col, channel] =
* input[batch, row, col, channel] /
* sqrt(sum_{c} pow(input[batch, row, col, c], 2))
*
* By default the axis dimension is the last dimension of the input tensor.
*
* Supported tensor {@link OperandType}:
* * {@link OperandType::TENSOR_FLOAT16} (since HAL version 1.2)
* * {@link OperandType::TENSOR_FLOAT32}
* * {@link OperandType::TENSOR_QUANT8_ASYMM} (since HAL version 1.2)
*
* Supported tensor rank: up to 4
* Tensors with rank less than 4 are only supported since HAL version 1.2.
*
* Inputs:
* * 0: An n-D tensor, specifying the tensor to be normalized.
* * 1: An optional {@link OperandType::INT32} scalar, default to -1,
* specifying the dimension normalization would be performed on.
* Negative index is used to specify axis from the end (e.g. -1 for
* the last axis). Must be in the range [-n, n).
* Available since HAL version 1.2.
*
* Outputs:
* * 0: A tensor of the same {@link OperandType} and same shape as input0.
* For {@link OperandType::TENSOR_QUANT8_ASYMM},
* the scale must be 1.f / 128 and the zeroPoint must be 128.
*/
L2_NORMALIZATION = 11 /* @1.1::OperationType:L2_NORMALIZATION */,
/**
* Performs an 2-D L2 pooling operation.
*
* The output dimensions are functions of the filter dimensions, stride, and
* padding.
*
* The values in the output tensor are computed as:
*
* output[b, i, j, c] =
* sqrt(sum_{di, dj} pow(input[b, strides[1] * i + di, strides[2] * j + dj, c], 2) /
* sum(1))
*
* Supported tensor {@link OperandType}:
* * {@link OperandType::TENSOR_FLOAT16} (since HAL version 1.2)
* * {@link OperandType::TENSOR_FLOAT32}
*
* Supported tensor rank: 4, with "NHWC" or "NCHW" data layout.
* With the default data layout NHWC, the data is stored in the order of:
* [batch, height, width, channels]. Alternatively, the data layout could
* be NCHW, the data storage order of: [batch, channels, height, width].
* NCHW is supported since HAL version 1.2.
*
* Both explicit padding and implicit padding are supported.
*
* Inputs (explicit padding):
* * 0: A 4-D tensor, of shape [batches, height, width, depth], specifying
* the input.
* Since HAL version 1.2, zero batches is supported for this tensor.
* * 1: An {@link OperandType::INT32} scalar, specifying the padding on
* the left, in the ‘width’ dimension.
* * 2: An {@link OperandType::INT32} scalar, specifying the padding on
* the right, in the ‘width’ dimension.
* * 3: An {@link OperandType::INT32} scalar, specifying the padding on
* the top, in the ‘height’ dimension.
* * 4: An {@link OperandType::INT32} scalar, specifying the padding on
* the bottom, in the ‘height’ dimension.
* * 5: An {@link OperandType::INT32} scalar, specifying the stride when
* walking through input in the ‘width’ dimension.
* * 6: An {@link OperandType::INT32} scalar, specifying the stride when
* walking through input in the ‘height’ dimension.
* * 7: An {@link OperandType::INT32} scalar, specifying the filter
* width.
* * 8: An {@link OperandType::INT32} scalar, specifying the filter
* height.
* * 9: An {@link OperandType::INT32} scalar, and has to be one of the
* {@link FusedActivationFunc} values. Specifies the activation to
* invoke on the result.
* * 10: An optional {@link OperandType::BOOL} scalar, default to false.
* Set to true to specify NCHW data layout for input0 and output0.
* Available since HAL version 1.2.
*
* Inputs (implicit padding):
* * 0: A 4-D tensor, of shape [batches, height, width, depth], specifying
* the input.
* Since HAL version 1.2, zero batches is supported for this tensor.
* * 1: An {@link OperandType::INT32} scalar, specifying the implicit
* padding scheme, has to be one of the
* following values: {0 (NONE), 1 (SAME), 2 (VALID)}.
* * 2: An {@link OperandType::INT32} scalar, specifying the stride when
* walking through input in the ‘width’ dimension.
* * 3: An {@link OperandType::INT32} scalar, specifying the stride when
* walking through input in the ‘height’ dimension.
* * 4: An {@link OperandType::INT32} scalar, specifying the filter
* width.
* * 5: An {@link OperandType::INT32} scalar, specifying the filter
* height.
* * 6: An {@link OperandType::INT32} scalar, and has to be one of the
* {@link FusedActivationFunc} values. Specifies the activation to
* invoke on the result.
* * 7: An optional {@link OperandType::BOOL} scalar, default to false.
* Set to true to specify NCHW data layout for input0 and output0.
* Available since HAL version 1.2.
*
* Outputs:
* * 0: The output 4-D tensor, of shape
* [batches, out_height, out_width, depth].
*/
L2_POOL_2D = 12 /* @1.1::OperationType:L2_POOL_2D */,
/**
* Applies Local Response Normalization along the depth dimension.
*
* The 4-D input tensor is treated as a 3-D array of 1-D vectors (along the
* last dimension), and each vector is normalized independently. Within a
* given vector, each component is divided by the weighted, squared sum of
* inputs within depth_radius.
*
* The output is calculated using this formula:
*
* sqr_sum[a, b, c, d] = sum(
* pow(input[a, b, c, d - depth_radius : d + depth_radius + 1], 2))
* output = input / pow((bias + alpha * sqr_sum), beta)
*
* For input tensor with rank less than 4, independently normalizes each
* 1-D slice along specified dimension.
*
* Supported tensor {@link OperandType}:
* * {@link OperandType::TENSOR_FLOAT16} (since HAL version 1.2)
* * {@link OperandType::TENSOR_FLOAT32}
*
* Supported tensor rank: up to 4
* Tensors with rank less than 4 are only supported since HAL version 1.2.
*
* Inputs:
* * 0: A 4-D tensor, of shape [batches, height, width, depth], specifying
* the input.
* * 1: An {@link OperandType::INT32} scalar, specifying the radius of
* the normalization window.
* * 2: A scalar, specifying the bias, must not be zero.
* For input tensor of {@link OperandType::TENSOR_FLOAT16}, the bias
* value must be of {@link OperandType::FLOAT16}.
* For input tensor of {@link OperandType::TENSOR_FLOAT32}, the bias
* value must be of {@link OperandType::FLOAT32}.
* * 3: A scalar, specifying the scale factor, alpha.
* For input tensor of {@link OperandType::TENSOR_FLOAT16}, the
* alpha value must be of {@link OperandType::FLOAT16}.
* For input tensor of {@link OperandType::TENSOR_FLOAT32}, the
* alpha value must be of {@link OperandType::FLOAT32}.
* * 4: A scalar, specifying the exponent, beta.
* For input tensor of {@link OperandType::TENSOR_FLOAT16}, the beta
* value must be of {@link OperandType::FLOAT16}.
* For input tensor of {@link OperandType::TENSOR_FLOAT32}, the beta
* value must be of {@link OperandType::FLOAT32}.
* * 5: An optional {@link OperandType::INT32} scalar, default to -1,
* specifying the dimension normalization would be performed on.
* Negative index is used to specify axis from the end (e.g. -1 for
* the last axis). Must be in the range [-n, n).
* Available since HAL version 1.2.
*
* Outputs:
* * 0: The output tensor of same shape as input0.
*/
LOCAL_RESPONSE_NORMALIZATION = 13 /* @1.1::OperationType:LOCAL_RESPONSE_NORMALIZATION */,
/**
* Computes sigmoid activation on the input tensor element-wise.
*
* The output is calculated using this formula:
*
* output = 1 / (1 + exp(-input))
*
* Supported tensor {@link OperandType}:
* * {@link OperandType::TENSOR_FLOAT16} (since HAL version 1.2)
* * {@link OperandType::TENSOR_FLOAT32}
* * {@link OperandType::TENSOR_QUANT8_ASYMM}
*
* Supported tensor rank: up to 4.
*
* Inputs:
* * 0: A tensor, specifying the input.
* Since HAL version 1.2, this tensor may be zero-sized.
*
* Outputs:
* * 0: The output tensor of same shape as input0.
* For {@link OperandType::TENSOR_QUANT8_ASYMM},
* the scale must be 1.f / 256 and the zeroPoint must be 0.
*/
LOGISTIC = 14 /* @1.1::OperationType:LOGISTIC */,
/**
* Projects an input to a bit vector via locality senstive hashing.
*
* Supported input tensor {@link OperandType}:
* * {@link OperandType::TENSOR_FLOAT16} (since HAL version 1.2)
* * {@link OperandType::TENSOR_FLOAT32}
* * {@link OperandType::TENSOR_INT32}
* * {@link OperandType::TENSOR_QUANT8_ASYMM}
*
* Supported input tensor rank: from 1
*
* Inputs:
* * 0: Hash functions. Dim.size == 2, DataType: Float.
* Tensor[0].Dim[0]: Number of hash functions.
* Tensor[0].Dim[1]: Number of projected output bits generated by each
* hash function.
* If the projection type is Sparse:
* Tensor[0].Dim[1] + ceil(log2(Tensor[0].Dim[0])) <= 32
*
* * 1: Input. Dim.size >= 1, no restriction on DataType.
* * 2: Weight. Optional. Dim.size == 1, DataType: Float.
* If not set, each input element is considered to have the same weight
* of 1.0.
* Tensor[1].Dim[0] == Tensor[2].Dim[0]
* * 3: Type:
* Sparse:
* Value LSHProjectionType_SPARSE(=3) (since HAL version 1.2).
* Computed bit vector is considered to be sparse.
* Each output element is an int32 made up of multiple bits
* computed from hash functions.
*
* NOTE: To avoid collisions across hash functions, an offset value
* of k * (1 << Tensor[0].Dim[1]) will be added to each signature,
* where k is the index of the hash function.
*
* Value LSHProjectionType_SPARSE_DEPRECATED(=1).
* Legacy behavior that does not include the offset value.
*
* Dense:
* Value LSHProjectionType_DENSE(=2).
* Computed bit vector is considered to be dense. Each output
* element represents a bit and can take the value of either
* 0 or 1.
*
* Outputs:
* * 0: If the projection type is Sparse:
* Output.Dim == { Tensor[0].Dim[0] }
* A tensor of int32 that represents hash signatures.
*
* If the projection type is Dense:
* Output.Dim == { Tensor[0].Dim[0] * Tensor[0].Dim[1] }
* A flattened tensor that represents projected bit vectors.
* The offset value for sparse projections was added in HAL version 1.2.
*/
LSH_PROJECTION = 15 /* @1.1::OperationType:LSH_PROJECTION */,
/**
* Performs a single time step in a Long Short-Term Memory (LSTM) layer
*
* The LSTM operation is described by the following equations.
*
* \f{eqnarray*}{
* i_t =& \sigma(W_{xi}x_t+W_{hi}h_{t-1}+W_{ci}C_{t-1}+b_i) & \\
* f_t =& \sigma(W_{xf}x_t+W_{hf}h_{t-1}+W_{cf}C_{t-1}+b_f) & \\
* C_t =& clip(f_t \odot C_{t-1} + i_t \odot
* g(W_{xc}x_t+W_{hc}h_{t-1}+b_c),\ t_{cell}) & \\
* o_t =& \sigma(W_{xo}x_t+W_{ho}h_{t-1}+W_{co}C_t+b_o) & \\
* & & \\
* & clip(W_{proj}(o_t \odot g(C_t))+b_{proj},\ t_{proj})
* & if\ there\ is\ a\ projection; \\
* h_t =& & \\
* & o_t \odot g(C_t) & otherwise. \\
* \f}
* Where:
* * \f$x_t\f$ is the input,
* * \f$i_t\f$ is the input gate,
* * \f$f_t\f$ is the forget gate,
* * \f$C_t\f$ is the cell state,
* * \f$o_t\f$ is the output,
* * \f$h_t\f$ is the output state,
* * \f$\sigma\f$ is the logistic sigmoid function,
* * \f$g\f$ is the cell input and cell output activation function, usually
* \f$tahn\f$,
* * \f$W_{xi}\f$ is the input-to-input weight matrix,
* * \f$W_{hi}\f$ is the recurrent to input weight matrix,
* * \f$W_{ci}\f$ is the cell-to-input weight matrix,
* * \f$b_i\f$ is the input gate bias,
* * \f$W_{xf}\f$ is the input-to-forget weight matrix,
* * \f$W_{hf}\f$ is the recurrent-to-forget weight matrix,
* * \f$W_{cf}\f$ is the cell-to-forget weight matrix,
* * \f$b_f\f$ is the forget gate bias,
* * \f$W_{xc}\f$ is the input-to-cell weight matrix,
* * \f$W_{hc}\f$ is the recurrent-to-cell weight matrix,
* * \f$b_c\f$ is the cell bias,
* * \f$W_{xo}\f$ is the input-to-output weight matrix,
* * \f$W_{ho}\f$ is the recurrent-to-output weight matrix,
* * \f$W_{co}\f$ is the cell-to-output weight matrix,
* * \f$b_o\f$ is the output gate bias,
* * \f$W_{proj}\f$ is the projection weight matrix,
* * \f$b_{proj}\f$ is the projection bias,
* * \f$t_{cell}\f$ is the threshold for clipping the cell state, and
* * \f$t_{proj}\f$ is the threshold for clipping the projected output.
* * \f$\odot\f$ is the
* <a href="https://en.wikipedia.org/wiki/Hadamard_product_(matrices)">
* Hadamard product</a> that takes two matrices and produces another
* matrix, each element of which is the product of the corresponding
* elements of the input matrices.
*
* Since HAL version 1.2 LSTM supports layer normalization.
* In case layer normalization is used, the inputs to internal activation
* functions (sigmoid and \f$g\f$) are normalized, rescaled and recentered
* following an approach from section 3.1 from
* https://arxiv.org/pdf/1607.06450.pdf
*
* The operation has the following independently optional inputs:
* * The cell-to-input weights (\f$W_{ci}\f$), cell-to-forget weights
* (\f$W_{cf}\f$) and cell-to-output weights (\f$W_{co}\f$) either all
* have values or neither of them have values (i.e., all set to null). If
* they have values, the peephole optimization is used.
* * The input-to-input weights (\f$W_{xi}\f$), recurrent-to-input weights
* (\f$W_{hi}\f$) and input gate bias (\f$b_i\f$) either all have values,
* or none of them have values. If they have no values, coupling of input
* and forget gates (CIFG) is used, in which case the input gate
* (\f$i_t\f$) is calculated using the following equation instead.
* \f{eqnarray*}{
* i_t = 1 - f_t
* \f}
* In case peephole optimization is used and CIFG is not used
* cell-to-input (\f$W_{ci}\f$) weights must be present. Otherwise, the
* cell-to-input weights must have no value.
* * The projection weights (\f$W_{proj}\f$) is required only for the
* recurrent projection layer, and should otherwise have no value.
* * The projection bias (\f$b_{proj}\f$) may (but not required to) have a
* value if the recurrent projection layer exists, and should otherwise
* have no value.
* * (HAL version 1.2 or later) The four layer normalization weights either all have
* values or none of them have values. Additionally, if CIFG is used,
* input layer normalization weights tensor is omitted and the other layer
* normalization weights either all have values or none of them have
* values. Layer normalization is used when the values of all the layer
* normalization weights are present.
*
* References:
*
* The default non-peephole non-CIFG implementation is based on:
* http://www.bioinf.jku.at/publications/older/2604.pdf
* S. Hochreiter and J. Schmidhuber. "Long Short-Term Memory". Neural
* Computation, 9(8):1735-1780, 1997.
*
* The peephole implementation and projection layer is based on:
* https://research.google.com/pubs/archive/43905.pdf
* Hasim Sak, Andrew Senior, and Francoise Beaufays. "Long short-term memory
* recurrent neural network architectures for large scale acoustic
* modeling." INTERSPEECH, 2014.
* (However, the concept of peephole optimization was introduced in work
* prior to this paper.)
*
* The coupling of input and forget gate (CIFG) is based on:
* http://arxiv.org/pdf/1503.04069.pdf
* Greff et al. "LSTM: A Search Space Odyssey"
*
* The layer normalization is based on:
* https://arxiv.org/pdf/1607.06450.pdf
* Jimmy Ba et al. "Layer Normalization"
*
* Supported tensor {@link OperandType}:
* * {@link OperandType::TENSOR_FLOAT16} (since HAL version 1.2)
* * {@link OperandType::TENSOR_FLOAT32}
*
* All input and output tensors must be of the same type.
*
* Inputs:
* * 0: The input (\f$x_t\f$).
* A 2-D tensor of shape [batch_size, input_size], where “batch_size”
* corresponds to the batching dimension, and “input_size” is the size
* of the input.
* * 1: The input-to-input weights (\f$W_{xi}\f$). Optional.
* A 2-D tensor of shape [num_units, input_size], where “num_units”
* corresponds to the number of cell units.
* * 2: The input-to-forget weights (\f$W_{xf}\f$).
* A 2-D tensor of shape [num_units, input_size].
* * 3: The input-to-cell weights (\f$W_{xc}\f$).
* A 2-D tensor of shape [num_units, input_size].
* * 4: The input-to-output weights (\f$W_{xo}\f$).
* A 2-D tensor of shape [num_units, input_size].
* * 5: The recurrent-to-input weights (\f$W_{hi}\f$). Optional.
* A 2-D tensor of shape [num_units, output_size], where “output_size”
* corresponds to either the number of cell units (i.e., “num_units”),
* or the second dimension of the “projection_weights”, if defined.
* * 6: The recurrent-to-forget weights (\f$W_{hf}\f$).
* A 2-D tensor of shape [num_units, output_size].
* * 7: The recurrent-to-cell weights (\f$W_{hc}\f$).
* A 2-D tensor of shape [num_units, output_size].
* * 8: The recurrent-to-output weights (\f$W_{ho}\f$).
* A 2-D tensor of shape [num_units, output_size].
* * 9: The cell-to-input weights (\f$W_{ci}\f$). Optional.
* A 1-D tensor of shape [num_units].
* * 10:The cell-to-forget weights (\f$W_{cf}\f$). Optional.
* A 1-D tensor of shape [num_units].
* * 11:The cell-to-output weights (\f$W_{co}\f$). Optional.
* A 1-D tensor of shape [num_units].
* * 12:The input gate bias (\f$b_i\f$). Optional.
* A 1-D tensor of shape [num_units].
* * 13:The forget gate bias (\f$b_f\f$).
* A 1-D tensor of shape [num_units].
* * 14:The cell bias (\f$b_c\f$).
* A 1-D tensor of shape [num_units].
* * 15:The output gate bias (\f$b_o\f$).
* A 1-D tensor of shape [num_units].
* * 16:The projection weights (\f$W_{proj}\f$). Optional.
* A 2-D tensor of shape [output_size, num_units].
* * 17:The projection bias (\f$b_{proj}\f$). Optional.
* A 1-D tensor of shape [output_size].
* * 18:The output state (in) (\f$h_{t-1}\f$).
* A 2-D tensor of shape [batch_size, output_size].
* * 19:The cell state (in) (\f$C_{t-1}\f$).
* A 2-D tensor of shape [batch_size, num_units].
* * 20:The activation function (\f$g\f$).
* A value indicating the activation function:
* <ul>
* <li>0: None;
* <li>1: Relu;
* <li>3: Relu6;
* <li>4: Tanh;
* <li>6: Sigmoid.
* </ul>
* * 21:The clipping threshold (\f$t_{cell}\f$) for the cell state, such
* that values are bound within [-cell_clip, cell_clip]. If set to 0.0
* then clipping is disabled.
* Until HAL version 1.2 this scalar must be of type {@link
* OperandType::FLOAT32}. Since HAL version 1.2, if all the input
* tensors have type {@link OperandType::TENSOR_FLOAT32}, this
* scalar must be of the type {@link OperandType::FLOAT32},
* otherwise if all the input tensors have the type {@link
* OperandType::TENSOR_FLOAT16}, this scalar must be of type {@link
* OperandType::FLOAT16}.
* * 22:The clipping threshold (\f$t_{proj}\f$) for the output from the
* projection layer, such that values are bound within
* [-proj_clip, proj_clip]. If set to 0.0 then clipping is disabled.
* Until HAL version 1.2 this scalar must be of type {@link
* OperandType::FLOAT32}. Since HAL version 1.2, if all the input
* tensors have type {@link OperandType::TENSOR_FLOAT32}, this
* scalar must be of the type {@link OperandType::FLOAT32},
* otherwise if all the input tensors have the type {@link
* OperandType::TENSOR_FLOAT16}, this scalar must be of type {@link
* OperandType::FLOAT16}.
* Since HAL version 1.2 there are additional inputs to this op:
* * 23:The input layer normalization weights.
* A 1-D tensor of shape [num_units]. Used to rescale normalized inputs
* to activation at input gate.
* * 24:The forget layer normalization weights.
* A 1-D tensor of shape [num_units]. Used to rescale normalized inputs
* to activation at forget gate.
* * 25:The cell layer normalization weights.
* A 1-D tensor of shape [num_units]. Used to rescale normalized inputs
* to activation at cell gate.
* * 26:The output layer normalization weights.
* A 1-D tensor of shape [num_units]. Used to rescale normalized inputs
* to activation at output gate.
*
* Outputs:
* * 0: The scratch buffer.
* A 2-D tensor of shape [batch_size, num_units * 3] with CIFG, or
* [batch_size, num_units * 4] without CIFG.
* * 1: The output state (out) (\f$h_t\f$).
* A 2-D tensor of shape [batch_size, output_size].
* * 2: The cell state (out) (\f$C_t\f$).
* A 2-D tensor of shape [batch_size, num_units].
* * 3: The output (\f$o_t\f$).
* A 2-D tensor of shape [batch_size, output_size]. This is effectively
* the same as the current “output state (out)” value.
*/
LSTM = 16 /* @1.1::OperationType:LSTM */,
/**
* Performs an 2-D max pooling operation.
*
* The output dimensions are functions of the filter dimensions, stride, and
* padding.
*
* The values in the output tensor are computed as:
*
* output[b, i, j, channel] =
* max_{di, dj} (
* input[b, strides[1] * i + di, strides[2] * j + dj, channel]
* )
*
* Supported tensor {@link OperandType}:
* * {@link OperandType::TENSOR_FLOAT16} (since HAL version 1.2)
* * {@link OperandType::TENSOR_FLOAT32}
* * {@link OperandType::TENSOR_QUANT8_ASYMM}
*
* Supported tensor rank: 4, with "NHWC" or "NCHW" data layout.
* With the default data layout NHWC, the data is stored in the order of:
* [batch, height, width, channels]. Alternatively, the data layout could
* be NCHW, the data storage order of: [batch, channels, height, width].
* NCHW is supported since HAL version 1.2.
*
* Both explicit padding and implicit padding are supported.
*
* Inputs (explicit padding):
* * 0: A 4-D tensor, of shape [batches, height, width, depth], specifying
* the input.
* Since HAL version 1.2, zero batches is supported for this tensor.
* * 1: An {@link OperandType::INT32} scalar, specifying the padding on
* the left, in the ‘width’ dimension.
* * 2: An {@link OperandType::INT32} scalar, specifying the padding on
* the right, in the ‘width’ dimension.
* * 3: An {@link OperandType::INT32} scalar, specifying the padding on
* the top, in the ‘height’ dimension.
* * 4: An {@link OperandType::INT32} scalar, specifying the padding on
* the bottom, in the ‘height’ dimension.
* * 5: An {@link OperandType::INT32} scalar, specifying the stride when
* walking through input in the ‘width’ dimension.
* * 6: An {@link OperandType::INT32} scalar, specifying the stride when
* walking through input in the ‘height’ dimension.
* * 7: An {@link OperandType::INT32} scalar, specifying the filter
* width.
* * 8: An {@link OperandType::INT32} scalar, specifying the filter
* height.
* * 9: An {@link OperandType::INT32} scalar, and has to be one of the
* {@link FusedActivationFunc} values. Specifies the activation to
* invoke on the result.
* * 10: An optional {@link OperandType::BOOL} scalar, default to false.
* Set to true to specify NCHW data layout for input0 and output0.
* Available since HAL version 1.2.
*
* Inputs (implicit padding):
* * 0: A 4-D tensor, of shape [batches, height, width, depth], specifying
* the input.
* Since HAL version 1.2, zero batches is supported for this tensor.
* * 1: An {@link OperandType::INT32} scalar, specifying the implicit
* padding scheme, has to be one of the
* following values: {0 (NONE), 1 (SAME), 2 (VALID)}.
* * 2: An {@link OperandType::INT32} scalar, specifying the stride when
* walking through input in the ‘width’ dimension.
* * 3: An {@link OperandType::INT32} scalar, specifying the stride when
* walking through input in the ‘height’ dimension.
* * 4: An {@link OperandType::INT32} scalar, specifying the filter
* width.
* * 5: An {@link OperandType::INT32} scalar, specifying the filter
* height.
* * 6: An {@link OperandType::INT32} scalar, and has to be one of the
* {@link FusedActivationFunc} values. Specifies the activation to
* invoke on the result.
* * 7: An optional {@link OperandType::BOOL} scalar, default to false.
* Set to true to specify NCHW data layout for input0 and output0.
* Available since HAL version 1.2.
*
* Outputs:
* * 0: The output 4-D tensor, of shape
* [batches, out_height, out_width, depth].
* For a {@link OperandType::TENSOR_QUANT8_ASYMM} tensor,
* the scale and zeroPoint must be the same as input0.
*/
MAX_POOL_2D = 17 /* @1.1::OperationType:MAX_POOL_2D */,
/**
* Multiplies two tensors, element-wise.
*
* Takes two input tensors of identical {@link OperandType} and compatible
* dimensions. The output is the product of both input tensors, optionally
* modified by an activation function.
*
* Two dimensions are compatible when:
* 1. they are equal, or
* 2. one of them is 1
*
* The size of the resulting output is the maximum size along each dimension
* of the input operands. It starts with the trailing dimensions, and works
* its way forward.
*
* Since HAL version 1.2, generic zero-sized input tensor is supported. Zero
* dimension is only compatible with 0 or 1. The size of the output
* dimension is zero if either of corresponding input dimension is zero.
*
* Supported tensor {@link OperandType}:
* * {@link OperandType::TENSOR_FLOAT16} (since HAL version 1.2)
* * {@link OperandType::TENSOR_FLOAT32}
* * {@link OperandType::TENSOR_QUANT8_ASYMM}
*
* Supported tensor rank: up to 4
*
* Inputs:
* * 0: A tensor.
* * 1: A tensor of the same {@link OperandType}, and compatible dimensions
* as input0.
* * 2: An {@link OperandType::INT32} scalar, and has to be one of the
* {@link FusedActivationFunc} values. Specifies the activation to
* invoke on the result.
*
* Outputs:
* * 0: The product, a tensor of the same {@link OperandType} as input0.
* For output tensor of {@link OperandType::TENSOR_QUANT8_ASYMM},
* the following condition must be satisfied:
* output_scale > input1_scale * input2_scale.
*/
MUL = 18 /* @1.1::OperationType:MUL */,
/**
* Computes rectified linear activation on the input tensor element-wise.
*
* The output is calculated using this formula:
*
* output = max(0, input)
*
* Supported tensor {@link OperandType}:
* * {@link OperandType::TENSOR_FLOAT16} (since HAL version 1.2)
* * {@link OperandType::TENSOR_FLOAT32}
* * {@link OperandType::TENSOR_QUANT8_ASYMM}
*
* Supported tensor rank: up to 4.
*
* Inputs:
* * 0: A tensor, specifying the input.
* Since HAL version 1.2, this tensor may be zero-sized.
*
* Outputs:
* * 0: The output tensor of same shape as input0.
* For a {@link OperandType::TENSOR_QUANT8_ASYMM} tensor,
* the scale and zeroPoint must be the same as input0.
*/
RELU = 19 /* @1.1::OperationType:RELU */,
/**
* Computes rectified linear 1 activation on the input tensor element-wise.
*
* The output is calculated using this formula:
*
* output = min(1.f, max(-1.f, input))
*
* Supported tensor {@link OperandType}:
* * {@link OperandType::TENSOR_FLOAT16} (since HAL version 1.2)
* * {@link OperandType::TENSOR_FLOAT32}
* * {@link OperandType::TENSOR_QUANT8_ASYMM}
*
* Supported tensor rank: up to 4.
*
* Inputs:
* * 0: A tensor, specifying the input.
* Since HAL version 1.2, this tensor may be zero-sized.
*
* Outputs:
* * 0: The output tensor of the same shape as input0.
* For a {@link OperandType::TENSOR_QUANT8_ASYMM} tensor,
* the scale and zeroPoint must be the same as input0.
*/
RELU1 = 20 /* @1.1::OperationType:RELU1 */,
/**
* Computes rectified linear 6 activation on the input tensor element-wise.
*
* The output is calculated using this formula:
*
* output = min(6, max(0, input))
*
* Supported tensor {@link OperandType}:
* * {@link OperandType::TENSOR_FLOAT16} (since HAL version 1.2)
* * {@link OperandType::TENSOR_FLOAT32}
* * {@link OperandType::TENSOR_QUANT8_ASYMM}
*
* Supported tensor rank: up to 4.
*
* Inputs:
* * 0: A tensor, specifying the input.
* Since HAL version 1.2, this tensor may be zero-sized.
*
* Outputs:
* * 0: The output tensor of same shape as input0.
* For a {@link OperandType::TENSOR_QUANT8_ASYMM} tensor,
* the scale and zeroPoint must be the same as input0.
*/
RELU6 = 21 /* @1.1::OperationType:RELU6 */,
/**
* Reshapes a tensor.
*
* Given tensor, this operation returns a tensor that has the same values as
* tensor, but with a newly specified shape.
*
* Supported tensor {@link OperandType}:
* * {@link OperandType::TENSOR_FLOAT16} (since HAL version 1.2)
* * {@link OperandType::TENSOR_FLOAT32}
* * {@link OperandType::TENSOR_QUANT8_ASYMM}
*
* Supported tensor rank: up to 4.
*
* Inputs:
* * 0: A tensor, specifying the tensor to be reshaped.
* * 1: A 1-D tensor of {@link OperandType::TENSOR_INT32}, defining the
* shape of the output tensor. The number of elements implied by shape
* must be the same as the number of elements in the input tensor.
*
* If one component of shape is the special value -1, the size of that
* dimension is computed so that the total size remains constant. In
* particular, a shape of [-1] flattens into 1-D. At most one component
* of shape can be -1.
*
* Outputs:
* * 0: The output tensor, of shape specified by the input shape.
* For a {@link OperandType::TENSOR_QUANT8_ASYMM} tensor,
* the scale and zeroPoint must be the same as input0.
*/
RESHAPE = 22 /* @1.1::OperationType:RESHAPE */,
/**
* Resizes images to given size using the bilinear interpretation.
*
* Resized images must be distorted if their output aspect ratio is not the
* same as input aspect ratio. The corner pixels of output may not be the
* same as corner pixels of input.
*
* Supported tensor {@link OperandType}:
* * {@link OperandType::TENSOR_FLOAT16} (since HAL version 1.2)
* * {@link OperandType::TENSOR_FLOAT32}
* * {@link OperandType::TENSOR_QUANT8_ASYMM} (since HAL version 1.2)
*
* Supported tensor rank: 4, with "NHWC" or "NCHW" data layout.
* With the default data layout NHWC, the data is stored in the order of:
* [batch, height, width, channels]. Alternatively, the data layout could
* be NCHW, the data storage order of: [batch, channels, height, width].
* NCHW is supported since HAL version 1.2.
*
* Both resizing by shape and resizing by scale are supported.
*
* Inputs (resizing by shape):
* * 0: A 4-D tensor, of shape [batches, height, width, depth], specifying
* the input.
* Since HAL version 1.2, zero batches is supported for this tensor.
* * 1: An {@link OperandType::INT32} scalar, specifying the output
* width of the output tensor.
* * 2: An {@link OperandType::INT32} scalar, specifying the output
* height of the output tensor.
* * 3: An optional {@link OperandType::BOOL} scalar, default to false.
* Set to true to specify NCHW data layout for input0 and output0.
* Available since HAL version 1.2.
*
* Inputs (resizing by scale, since HAL version 1.2):
* * 0: A 4-D tensor, of shape [batches, height, width, depth], specifying
* the input. Zero batches is supported for this tensor.
* * 1: A scalar, specifying width_scale, the scaling factor of the width
* dimension from the input tensor to the output tensor. The output
* width is calculated as new_width = floor(width * width_scale).
* The scalar must be of {@link OperandType::FLOAT16} if input0 is
* of {@link OperandType::TENSOR_FLOAT16} and of
* {@link OperandType::FLOAT32} otherwise.
* * 2: A scalar, specifying height_scale, the scaling factor of the height
* dimension from the input tensor to the output tensor. The output
* height is calculated as new_height = floor(height * height_scale).
* The scalar must be of {@link OperandType::FLOAT16} if input0 is
* of {@link OperandType::TENSOR_FLOAT16} and of
* {@link OperandType::FLOAT32} otherwise.
* * 3: An optional {@link OperandType::BOOL} scalar, default to false.
* Set to true to specify NCHW data layout for input0 and output0.
*
* Outputs:
* * 0: The output 4-D tensor, of shape
* [batches, new_height, new_width, depth].
* For a {@link OperandType::TENSOR_QUANT8_ASYMM} tensor,
* the scale and zeroPoint must be the same as input0.
*/
RESIZE_BILINEAR = 23 /* @1.1::OperationType:RESIZE_BILINEAR */,
/**
* A basic recurrent neural network layer.
*
* This layer implements the operation:
* outputs = state = activation(inputs * input_weights +
* state * recurrent_weights + bias)
*
* Where:
* * “input_weights” is a weight matrix that multiplies the inputs;
* * “recurrent_weights” is a weight matrix that multiplies the current
* “state” which itself is the output from the previous time step
* computation;
* * “bias” is a bias vector (added to each output vector in the batch);
* * “activation” is the function passed as the “fused_activation_function”
* argument (if not “NONE”).
*
* Supported tensor {@link OperandType}:
* * {@link OperandType::TENSOR_FLOAT16} (since HAL version 1.2)
* * {@link OperandType::TENSOR_FLOAT32}
*
* The input tensors must all be the same type.
*
* Inputs:
* * 0: input.
* A 2-D tensor of shape [batch_size, input_size], where “batch_size”
* corresponds to the batching dimension, and “input_size” is the size
* of the input.
* * 1: weights.
* A 2-D tensor of shape [num_units, input_size], where “num_units”
* corresponds to the number of units.
* * 2: recurrent_weights.
* A 2-D tensor of shape [num_units, num_units], with columns
* corresponding to the weights from each unit.
* * 3: bias.
* A 1-D tensor of shape [num_units].
* * 4: hidden state (in).
* A 2-D tensor of shape [batch_size, num_units].
* * 5: fused_activation_function.
* An optional {@link FusedActivationFunc} value indicating the
* activation function. If “NONE” is specified then it results in a
* linear activation.
*
* Outputs:
* * 0: hidden state (out).
* A 2-D tensor of shape [batch_size, num_units].
*
* * 1: output.
* A 2-D tensor of shape [batch_size, num_units]. This is effectively
* the same as the current state value.
*/
RNN = 24 /* @1.1::OperationType:RNN */,
/**
* Computes the softmax activation on the input tensor element-wise, per
* batch, by normalizing the input vector so the maximum coefficient is
* zero.
*
* The output is calculated using this formula:
*
* output[batch, i] =
* exp((input[batch, i] - max(input[batch, :])) * beta) /
* sum_{k}{exp((input[batch, k] - max(input[batch, :])) * beta)}
*
* For input tensor with rank other than 2, the activation will be applied
* independently on each 1-D slice along specified dimension.
*
* Supported tensor {@link OperandType}:
* * {@link OperandType::TENSOR_FLOAT16} (since HAL version 1.2)
* * {@link OperandType::TENSOR_FLOAT32}
* * {@link OperandType::TENSOR_QUANT8_ASYMM}
*
* Supported tensor rank: up to 4.
* Tensors with rank other than 2 or 4 are only supported since HAL version 1.2.
*
* Inputs:
* * 0: A 2-D or 4-D tensor, specifying the tensor to be reshaped.
* Since HAL version 1.2, this tensor may be zero-sized.
* * 1: A scalar, specifying the positive scaling factor for the exponent,
* beta. If input0 is of {@link OperandType::TENSOR_FLOAT32} or
* {@link OperandType::TENSOR_QUANT8_ASYMM}, the scalar must be of
* {@link OperandType::FLOAT32}.
* If input0 is of {@link OperandType::TENSOR_FLOAT16}, then the
* scalar must be of {@link OperandType::FLOAT16}.
* * 2: An optional {@link OperandType::INT32} scalar, default to -1,
* specifying the dimension the activation would be performed on.
* Negative index is used to specify axis from the end (e.g. -1 for
* the last axis). Must be in the range [-n, n).
* Available since HAL version 1.2.
*
* Outputs:
* * 0: The output tensor of same shape as input0.
* For {@link OperandType::TENSOR_QUANT8_ASYMM},
* the scale must be 1.f / 256 and the zeroPoint must be 0.
*/
SOFTMAX = 25 /* @1.1::OperationType:SOFTMAX */,
/**
* Rearranges blocks of spatial data, into depth.
*
* More specifically, this op outputs a copy of the input tensor where
* values from the height and width dimensions are moved to the depth
* dimension. The value block_size indicates the input block size and how
* the data is moved.
*
* Chunks of data of size block_size * block_size from depth are rearranged
* into non-overlapping blocks of size block_size x block_size.
*
* The depth of the output tensor is input_depth * block_size * block_size.
* The input tensor's height and width must be divisible by block_size.
*
* Supported tensor {@link OperandType}:
* * {@link OperandType::TENSOR_FLOAT16} (since HAL version 1.2)
* * {@link OperandType::TENSOR_FLOAT32}
* * {@link OperandType::TENSOR_QUANT8_ASYMM}
*
* Supported tensor rank: 4, with "NHWC" or "NCHW" data layout.
* With the default data layout NHWC, the data is stored in the order of:
* [batch, height, width, channels]. Alternatively, the data layout could
* be NCHW, the data storage order of: [batch, channels, height, width].
* NCHW is supported since HAL version 1.2.
*
* Inputs:
* * 0: A 4-D tensor, of shape [batches, height, width, depth_in],
* specifying the input.
* * 1: An {@link OperandType::INT32} scalar, specifying the block_size.
* block_size must be >=1 and block_size must be a divisor of both the
* input height and width.
* * 2: An optional {@link OperandType::BOOL} scalar, default to false.
* Set to true to specify NCHW data layout for input0 and output0.
* Available since HAL version 1.2.
*
* Outputs:
* * 0: The output 4-D tensor, of shape [batches, height/block_size,
* width/block_size, depth_in*block_size*block_size].
* For a {@link OperandType::TENSOR_QUANT8_ASYMM} tensor,
* the scale and zeroPoint must be the same as input0.
*/
SPACE_TO_DEPTH = 26 /* @1.1::OperationType:SPACE_TO_DEPTH */,
/**
* SVDF op is a kind of stateful layer derived from the notion that a
* densely connected layer that's processing a sequence of input frames can
* be approximated by using a singular value decomposition of each of its
* nodes. The implementation is based on:
*
* https://research.google.com/pubs/archive/43813.pdf
*
* P. Nakkiran, R. Alvarez, R. Prabhavalkar, C. Parada.
* “Compressing Deep Neural Networks using a Rank-Constrained Topology”.
* INTERSPEECH, 2015.
*
* It processes the incoming input using a 2-stage filtering mechanism:
* * stage 1 performs filtering on the "features" dimension, whose outputs
* get pushed into a memory of fixed-size memory_size.
* * stage 2 performs filtering on the "time" dimension of the memory_size
* memoized outputs of stage 1.
*
* Specifically, for rank 1, this layer implements the operation:
*
* memory = push(conv1d(inputs, weights_feature, feature_dim,
* "PADDING_VALID"));
* outputs = activation(memory * weights_time + bias);
*
* Where:
* * “weights_feature” is a weights matrix that processes the inputs (by
* convolving the input with every “feature filter”), and whose outputs
* get pushed, stacked in order, into the fixed-size “memory” (the oldest
* entry gets dropped);
* * “weights_time” is a weights matrix that processes the “memory” (by a
* batched matrix multiplication on the num_units);
* * “bias” is an optional bias vector (added to each output vector in the
* batch); and
* * “activation” is the function passed as the “fused_activation_function”
* argument (if not “NONE”).
*
* Each rank adds a dimension to the weights matrices by means of stacking
* the filters.
*
* Supported tensor {@link OperandType}:
* * {@link OperandType::TENSOR_FLOAT16} (since HAL version 1.2)
* * {@link OperandType::TENSOR_FLOAT32}
*
* All input tensors must be the same type.
*
* Inputs:
* * 0: input.
* A 2-D tensor of shape [batch_size, input_size], where “batch_size”
* corresponds to the batching dimension, and “input_size” is the size
* of the input.
* * 1: weights_feature.
* A 2-D tensor of shape [num_units, input_size], where “num_units”
* corresponds to the number of units.
* * 2: weights_time.
* A 2-D tensor of shape [num_units, memory_size], where “memory_size”
* corresponds to the fixed-size of the memory.
* * 3: bias.
* An optional 1-D tensor of shape [num_units].
* * 4: state (in).
* A 2-D tensor of shape [batch_size, (memory_size - 1) * num_units * rank].
* * 5: rank.
* The rank of the SVD approximation.
* * 6: fused_activation_function.
* An optional {@link FusedActivationFunc} value indicating the
* activation function. If “NONE” is specified then it results in a
* linear activation.
*
* Outputs:
* * 0: state (out).
* A 2-D tensor of the same {@link OperandType} as the inputs, with shape
* [batch_size, (memory_size - 1) * num_units * rank].
* * 1: output.
* A 2-D tensor of the same {@link OperandType} as the inputs, with shape
* [batch_size, num_units].
*/
SVDF = 27 /* @1.1::OperationType:SVDF */,
/**
* Computes hyperbolic tangent of input tensor element-wise.
*
* The output is calculated using this formula:
*
* output = tanh(input)
*
* Supported tensor {@link OperandType}:
* * {@link OperandType::TENSOR_FLOAT16} (since HAL version 1.2)
* * {@link OperandType::TENSOR_FLOAT32}
* * {@link OperandType::TENSOR_QUANT8_ASYMM} (since HAL version 1.2)
*
* Supported tensor rank: up to 4.
*
* Inputs:
* * 0: A tensor, specifying the input.
* Since HAL version 1.2, this tensor may be zero-sized.
*
* Outputs:
* * 0: The output tensor of same shape as input0.
* For {@link OperandType::TENSOR_QUANT8_ASYMM},
* the scale must be 1.f / 128 and the zeroPoint must be 128.
*/
TANH = 28 /* @1.1::OperationType:TANH */,
/**
* BatchToSpace for N-dimensional tensors.
*
* This operation reshapes the batch dimension (dimension 0) into M + 1
* dimensions of shape block_shape + [batch], interleaves these blocks back
* into the grid defined by the spatial dimensions [1, ..., M], to obtain a
* result with the same rank as the input.
*
* This is the reverse of SpaceToBatch.
*
* Supported tensor {@link OperandType}:
* * {@link OperandType::TENSOR_FLOAT16} (since HAL version 1.2)
* * {@link OperandType::TENSOR_FLOAT32}
* * {@link OperandType::TENSOR_QUANT8_ASYMM}
*
* Supported tensor rank: 4, with "NHWC" or "NCHW" data layout.
* With the default data layout NHWC, the data is stored in the order of:
* [batch, height, width, channels]. Alternatively, the data layout could
* be NCHW, the data storage order of: [batch, channels, height, width].
* NCHW is supported since HAL version 1.2.
*
* Inputs:
* * 0: An n-D tensor, specifying the tensor to be reshaped
* * 1: A 1-D Tensor of {@link OperandType::TENSOR_INT32}, the block
* sizes for each spatial dimension of the input tensor. All values
* must be >= 1.
* * 2: An optional {@link OperandType::BOOL} scalar, default to false.
* Set to true to specify NCHW data layout for input0 and output0.
* Available since API level 29.
*
* Outputs:
* * 0: A tensor of the same {@link OperandType} as input0.
* For a {@link OperandType::TENSOR_QUANT8_ASYMM} tensor,
* the scale and zeroPoint must be the same as input0.
*/
BATCH_TO_SPACE_ND = 29 /* @1.1::OperationType:BATCH_TO_SPACE_ND */,
/**
* Element-wise division of two tensors.
*
* Takes two input tensors of identical {@link OperandType} and compatible
* dimensions. The output is the result of dividing the first input tensor
* by the second, optionally modified by an activation function.
*
* Two dimensions are compatible when:
* 1. they are equal, or
* 2. one of them is 1
*
* The size of the output is the maximum size along each dimension of the
* input operands. It starts with the trailing dimensions, and works its way
* forward.
*
* Example:
* input1.dimension = {4, 1, 2}
* input2.dimension = {5, 4, 3, 1}
* output.dimension = {5, 4, 3, 2}
*
* Since HAL version 1.2, generic zero-sized input tensor is supported. Zero
* dimension is only compatible with 0 or 1. The size of the output
* dimension is zero if either of corresponding input dimension is zero.
*
* Supported tensor {@link OperandType}:
* * {@link OperandType::TENSOR_FLOAT16} (since HAL version 1.2)
* * {@link OperandType::TENSOR_FLOAT32}
*
* Supported tensor rank: up to 4
*
* Inputs:
* * 0: An n-D tensor, specifying the first input.
* * 1: A tensor of the same {@link OperandType}, and compatible dimensions
* as input0.
* * 2: An {@link OperandType::INT32} scalar, and has to be one of the
* {@link FusedActivationFunc} values. Specifies the activation to
* invoke on the result.
*
* Outputs:
* * 0: A tensor of the same {@link OperandType} as input0.
*/
DIV = 30 /* @1.1::OperationType:DIV */,
/**
* Computes the mean of elements across dimensions of a tensor.
*
* Reduces the input tensor along the given dimensions to reduce. Unless
* keep_dims is true, the rank of the tensor is reduced by 1 for each entry
* in axis. If keep_dims is true, the reduced dimensions are retained with
* length 1.
*
* Supported tensor {@link OperandType}:
* * {@link OperandType::TENSOR_FLOAT16} (since HAL version 1.2)
* * {@link OperandType::TENSOR_FLOAT32}
* * {@link OperandType::TENSOR_QUANT8_ASYMM}
*
* Supported tensor rank: up to 4
*
* Inputs:
* * 0: A tensor, specifying the input.
* * 1: A 1-D Tensor of {@link OperandType::TENSOR_INT32}. The dimensions
* to reduce. Must be in the range
* [-rank(input_tensor), rank(input_tensor)).
*
* NOTE: When the operation was introduced, the documentation
* incorrectly stated that if dimensions were empty, the operation
* would reduce across all dimensions. This behavior was never
* implemented.
*
* * 2: An {@link OperandType::INT32} scalar, keep_dims. If positive,
* retains reduced dimensions with length 1.
*
* Outputs:
* * 0: A tensor of the same {@link OperandType} as input0.
* For a {@link OperandType::TENSOR_QUANT8_ASYMM} tensor,
* the scale and zeroPoint must be the same as input0.
*/
MEAN = 31 /* @1.1::OperationType:MEAN */,
/**
* Pads a tensor.
*
* This operation pads a tensor according to the specified paddings.
*
* Supported tensor {@link OperandType}:
* * {@link OperandType::TENSOR_FLOAT16} (since HAL version 1.2)
* * {@link OperandType::TENSOR_FLOAT32}
* * {@link OperandType::TENSOR_QUANT8_ASYMM}
* (full support since HAL version 1.2, see the output section)
*
* Supported tensor rank: up to 4
*
* Inputs:
* * 0: An n-D tensor, specifying the tensor to be padded.
* * 1: A 2-D Tensor of {@link OperandType::TENSOR_INT32}, the paddings
* for each spatial dimension of the input tensor. The shape of the
* tensor must be {rank(input0), 2}.
* padding[i, 0] specifies the number of elements to be padded in the
* front of dimension i.
* padding[i, 1] specifies the number of elements to be padded after the
* end of dimension i.
*
* Outputs:
* * 0: A tensor of the same {@link OperandType} as input0. The
* output tensor has the same rank as input0, and each
* dimension of the output tensor has the same size as the
* corresponding dimension of the input tensor plus the size
* of the padding:
* output0.dimension[i] =
* padding[i, 0] + input0.dimension[i] + padding[i, 1]
* For a {@link OperandType::TENSOR_QUANT8_ASYMM} tensor,
* the scale and zeroPoint must be the same as input0.
*
* NOTE: Before HAL version 1.2, the pad value for
* {@link OperandType::TENSOR_QUANT8_ASYMM} is undefined.
* Since HAL version 1.2, the pad value is always the logical zero.
*/
PAD = 32 /* @1.1::OperationType:PAD */,
/**
* SpaceToBatch for N-Dimensional tensors.
*
* This operation divides "spatial" dimensions [1, ..., M] of the input into
* a grid of blocks of shape block_shape, and interleaves these blocks with
* the "batch" dimension (0) such that in the output, the spatial dimensions
* [1, ..., M] correspond to the position within the grid, and the batch
* dimension combines both the position within a spatial block and the
* original batch position. Prior to division into blocks, the spatial
* dimensions of the input are optionally zero padded according to paddings.
*
* Supported tensor {@link OperandType}:
* * {@link OperandType::TENSOR_FLOAT16} (since HAL version 1.2)
* * {@link OperandType::TENSOR_FLOAT32}
* * {@link OperandType::TENSOR_QUANT8_ASYMM}
* (full support since HAL version 1.2, see the output section)
*
* Supported tensor rank: 4, with "NHWC" or "NCHW" data layout.
* With the default data layout NHWC, the data is stored in the order of:
* [batch, height, width, channels]. Alternatively, the data layout could
* be NCHW, the data storage order of: [batch, channels, height, width].
* NCHW is supported since HAL version 1.2.
*
* Inputs:
* * 0: An n-D tensor, specifying the input.
* * 1: A 1-D Tensor of {@link OperandType::TENSOR_INT32}, the block
* sizes for each spatial dimension of the input tensor. All values
* must be >= 1.
* * 2: A 2-D Tensor of {@link OperandType::TENSOR_INT32}, the paddings
* for each spatial dimension of the input tensor. All values must be
* >= 0. The shape of the tensor must be {M, 2}, where M is the number
* of spatial dimensions.
* padding[i, 0] specifies the number of element to be padded in the
* front of dimension i.
* padding[i, 1] specifies the number of element to be padded after the
* end of dimension i.
* * 3: An optional {@link OperandType::BOOL} scalar, default to false.
* Set to true to specify NCHW data layout for input0 and output0.
* Available since HAL version 1.2.
*
* Outputs:
* * 0: A tensor of the same {@link OperandType} as input0.
* For a {@link OperandType::TENSOR_QUANT8_ASYMM} tensor,
* the scale and zeroPoint must be the same as input0.
*
* NOTE: Before HAL version 1.2, the pad value for
* {@link OperandType::TENSOR_QUANT8_ASYMM} is undefined.
* Since HAL version 1.2, the pad value is always the logical zero.
*/
SPACE_TO_BATCH_ND = 33 /* @1.1::OperationType:SPACE_TO_BATCH_ND */,
/**
* Removes dimensions of size 1 from the shape of a tensor.
*
* Given a tensor input, this operation returns a tensor of the same
* {@link OperandType} with all dimensions of size 1 removed. If you don't
* want to remove all size 1 dimensions, you can remove specific size 1
* dimensions by specifying the axes (input1).
*
* Supported tensor {@link OperandType}:
* * {@link OperandType::TENSOR_FLOAT16} (since HAL version 1.2)
* * {@link OperandType::TENSOR_FLOAT32}
* * {@link OperandType::TENSOR_QUANT8_ASYMM}
*
* Supported tensor rank: up to 4
*
* Inputs:
* * 0: An n-D tensor, the tensor to be squeezed.
* * 1: An optional 1-D tensor of {@link OperandType::TENSOR_INT32}. The
* dimensions to squeeze. If specified only squeezes the dimensions
* listed. Otherwise, squeezes all dimensions. The dimension index
* starts at 0. An error must be reported if squeezing a dimension that
* is not 1.
*
* Outputs:
* * 0: A tensor of the same {@link OperandType} as input0. Contains the
* same data as input, but has one or more dimensions of size 1
* removed.
* For a {@link OperandType::TENSOR_QUANT8_ASYMM} tensor,
* the scale and zeroPoint must be the same as input0.
*/
SQUEEZE = 34 /* @1.1::OperationType:SQUEEZE */,
/**
* Extracts a strided slice of a tensor.
*
* Roughly speaking, this op extracts a slice of size (end - begin) / stride
* from the given input tensor. Starting at the location specified by begin
* the slice continues by adding stride to the index until all dimensions
* are not less than end. Note that a stride can be negative, which causes a
* reverse slice.
*
* Supported tensor {@link OperandType}:
* * {@link OperandType::TENSOR_FLOAT16} (since HAL version 1.2)
* * {@link OperandType::TENSOR_FLOAT32}
* * {@link OperandType::TENSOR_QUANT8_ASYMM}
*
* Supported tensor rank: up to 4
*
* Inputs:
* * 0: An n-D tensor, specifying the tensor to be sliced.
* * 1: begin, a 1-D tensor of {@link OperandType::TENSOR_INT32}. The
* starts of the dimensions of the input tensor to be sliced. The
* length must be of rank(input0).
* * 2: end, a 1-D tensor of {@link OperandType::TENSOR_INT32}. The
* ends of the dimensions of the input tensor to be sliced. The length
* must be of rank(input0).
* * 3: strides, a 1-D tensor of {@link OperandType::TENSOR_INT32}. The
* strides of the dimensions of the input tensor to be sliced. The
* length must be of rank(input0). The entries must be non-zero.
* * 4: begin_mask, an {@link OperandType::INT32} scalar. If the ith bit
* of begin_mask is set, begin[i] is ignored and the fullest possible
* range in that dimension is used instead.
* * 5: end_mask, an {@link OperandType::INT32} scalar. If the ith bit of
* end_mask is set, end[i] is ignored and the fullest possible range in
* that dimension is used instead.
* * 6: shrink_axis_mask, an {@link OperandType::INT32} scalar. If the
* ith bit of shrink_axis_mask is set, the ith dimension specification
* shrinks the dimensionality by 1, taking on the value at index
* begin[i]. In this case, the ith specification must define a
* slice of size 1, e.g. begin[i] = x, end[i] = x + 1.
*
* Outputs:
* * 0: A tensor of the same {@link OperandType} as input0 and rank (n - k),
* where k is the number of bits set in shrink_axis_mask.
* For a {@link OperandType::TENSOR_QUANT8_ASYMM} tensor,
* the scale and zeroPoint must be the same as input0.
*/
STRIDED_SLICE = 35 /* @1.1::OperationType:STRIDED_SLICE */,
/**
* Element-wise subtraction of two tensors.
*
* Takes two input tensors of identical {@link OperandType} and compatible
* dimensions. The output is the result of subtracting the second input
* tensor from the first one, optionally modified by an activation function.
*
* Two dimensions are compatible when:
* 1. they are equal, or
* 2. one of them is 1
*
* The size of the output is the maximum size along each dimension of the
* input operands. It starts with the trailing dimensions, and works its way
* forward.
*
* Example:
* input1.dimension = {4, 1, 2}
* input2.dimension = {5, 4, 3, 1}
* output.dimension = {5, 4, 3, 2}
*
* Since HAL version 1.2, generic zero-sized input tensor is supported. Zero
* dimension is only compatible with 0 or 1. The size of the output
* dimension is zero if either of corresponding input dimension is zero.
*
* Supported tensor {@link OperandType}:
* * {@link OperandType::TENSOR_FLOAT16} (since HAL version 1.2)
* * {@link OperandType::TENSOR_FLOAT32}
* * {@link OperandType::TENSOR_QUANT8_ASYMM} (since HAL version 1.2)
*
* Supported tensor rank: up to 4
*
* Inputs:
* * 0: An n-D tensor, specifying the first input.
* * 1: A tensor of the same {@link OperandType}, and compatible dimensions
* as input0.
* * 2: An {@link OperandType::INT32} scalar, and has to be one of the
* {@link FusedActivationFunc} values. Specifies the activation to
* invoke on the result.
*
* Outputs:
* * 0: A tensor of the same {@link OperandType} as input0.
* For a {@link OperandType::TENSOR_QUANT8_ASYMM} tensor,
* the scale and zeroPoint can be different from inputs' scale and zeroPoint.
*/
SUB = 36 /* @1.1::OperationType:SUB */,
/**
* Transposes the input tensor, permuting the dimensions according to the
* perm tensor.
*
* The returned tensor's dimension i corresponds to the input dimension
* perm[i]. If perm is not given, it is set to (n-1...0), where n is the
* rank of the input tensor. Hence by default, this operation performs a
* regular matrix transpose on 2-D input Tensors.
*
* Supported tensor {@link OperandType}:
* * {@link OperandType::TENSOR_FLOAT16} (since HAL version 1.2)
* * {@link OperandType::TENSOR_FLOAT32}
* * {@link OperandType::TENSOR_QUANT8_ASYMM}
*
* Supported tensor rank: up to 4
*
* Inputs:
* * 0: An n-D tensor, specifying the tensor to be transposed.
* Since HAL version 1.2, this tensor may be zero-sized.
* * 1: An optional 1-D Tensor of {@link OperandType::TENSOR_INT32},
* the permutation of the dimensions of the input tensor.
*
* Outputs:
* * 0: A tensor of the same {@link OperandType} as input0.
* For a {@link OperandType::TENSOR_QUANT8_ASYMM} tensor,
* the scale and zeroPoint must be the same as input0.
*/
TRANSPOSE = 37 /* @1.1::OperationType:TRANSPOSE */,
/**
* Computes the absolute value of a tensor, element-wise.
*
* Supported tensor {@link OperandType}:
* * {@link OperandType::TENSOR_FLOAT16}
* * {@link OperandType::TENSOR_FLOAT32}
*
* Supported tensor rank: from 1.
*
* Inputs:
* * 0: A tensor.
*
* Outputs:
* * 0: The output tensor of same shape as input0.
*/
ABS = 38,
/**
* Returns the index of the largest element along an axis.
*
* Supported tensor {@link OperandType}:
* * {@link OperandType::TENSOR_FLOAT16}
* * {@link OperandType::TENSOR_FLOAT32}
* * {@link OperandType::TENSOR_INT32}
* * {@link OperandType::TENSOR_QUANT8_ASYMM}
*
* Supported tensor rank: from 1
*
* Inputs:
* * 0: An n-D tensor specifying the input. Must be non-empty.
* * 1: An {@link OperandType::INT32} scalar specifying the axis to
* reduce across. Negative index is used to specify axis from the
* end (e.g. -1 for the last axis). Must be in the range [-n, n).
*
* Outputs:
* * 0: An (n - 1)-D {@link OperandType::TENSOR_INT32} tensor.
*/
ARGMAX = 39,
/**
* Returns the index of the smallest element along an axis.
*
* Supported tensor {@link OperandType}:
* * {@link OperandType::TENSOR_FLOAT16}
* * {@link OperandType::TENSOR_FLOAT32}
* * {@link OperandType::TENSOR_INT32}
* * {@link OperandType::TENSOR_QUANT8_ASYMM}
*
* Supported tensor rank: from 1
*
* Inputs:
* * 0: An n-D tensor specifying the input. Must be non-empty.
* * 1: An {@link OperandType::INT32} scalar specifying the axis to
* reduce across. Negative index is used to specify axis from the
* end (e.g. -1 for the last axis). Must be in the range [-n, n).
*
* Outputs:
* * 0: An (n - 1)-D {@link OperandType::TENSOR_INT32} tensor.
*/
ARGMIN = 40,
/**
* Transform axis-aligned bounding box proposals using bounding box deltas.
*
* Given the positions of bounding box proposals and the corresponding
* bounding box deltas for each class, return the refined bounding box
* regions. The resulting bounding boxes are cliped against the edges of
* the image.
*
* Supported tensor {@link OperandType}:
* * {@link OperandType::TENSOR_FLOAT16}
* * {@link OperandType::TENSOR_FLOAT32}
* * {@link OperandType::TENSOR_QUANT16_ASYMM}
*
* Inputs:
* * 0: A 2-D Tensor of shape [num_rois, 4], specifying the locations of the
* bounding box proposals, each line with format [x1, y1, x2, y2].
* For tensor of type {@link OperandType::TENSOR_QUANT16_ASYMM},
* the zeroPoint must be 0 and the scale must be 0.125. Zero num_rois
* is supported for this tensor.
* * 1: A 2-D Tensor of shape [num_rois, num_classes * 4], specifying the
* bounding box delta for each region of interest and each class. The
* bounding box deltas are organized in the following order
* [dx, dy, dw, dh], where dx and dy is the relative correction factor
* for the center position of the bounding box with respect to the width
* and height, dw and dh is the log-scale relative correction factor
* for the width and height. For input0 of type
* {@link OperandType::TENSOR_QUANT16_ASYMM}, this tensor should be
* of {@link OperandType::TENSOR_QUANT8_ASYMM}. Zero num_rois is
* supported for this tensor.
* * 2: An 1-D {@link OperandType::TENSOR_INT32} tensor, of shape
* [num_rois], specifying the batch index of each box. Boxes with
* the same batch index are grouped together. Zero num_rois is
* supported for this tensor.
* * 3: A 2-D Tensor of shape [batches, 2], specifying the information of
* each image in the batch, each line with format
* [image_height, image_width].
*
* Outputs:
* * 0: A tensor of the same {@link OperandType} as input0, with shape
* [num_rois, num_classes * 4], specifying the coordinates of each
* output bounding box for each class, with format [x1, y1, x2, y2].
* For type of {@link OperandType::TENSOR_QUANT16_ASYMM}, the
* scale must be 0.125 and the zero point must be 0.
*/
AXIS_ALIGNED_BBOX_TRANSFORM = 41,
/**
* A recurrent neural network layer that applies an LSTM cell to a
* sequence of inputs in forward and backward directions.
*
* The op supports cross-linking via an auxiliary input. Regular cell feeds
* one input into the two RNN cells in the following way:
*
* INPUT (INPUT_REVERSED)
* | |
* ---------------------
* | FW_LSTM BW_LSTM |
* ---------------------
* | |
* FW_OUT BW_OUT
*
* An op with cross-linking takes two inputs and feeds them into the RNN
* cells in the following way:
*
* AUX_INPUT (AUX_INPUT_REVERSED)
* | |
* INPUT | (INPUT_R'D.)|
* | | | |
* -----------------------
* | \ / \ / |
* | FW_LSTM BW_LSTM |
* -----------------------
* | |
* FW_OUT BW_OUT
*
* The cross-linking mode is enabled iff auxiliary input and auxiliary
* weights are present. While stacking this op on top of itself, this
* allows to connect both forward and backward outputs from previous cell
* to the next cell's input.
*
* Supported tensor {@link OperandType}:
* * {@link OperandType::TENSOR_FLOAT16}
* * {@link OperandType::TENSOR_FLOAT32}
*
* Supported tensor rank: 3, either time-major or batch-major.
*
* All input and output tensors must be of the same type.
*
* Inputs:
* * 0: The input.
* A 3-D tensor of shape:
* If time-major: [max_time, batch_size, input_size]
* If batch-major: [batch_size, max_time, input_size]
* where "max_time" is the number of timesteps (sequence length),
* "batch_size" corresponds to the batching dimension, and
* "input_size" is the size of the input.
* * 1: The forward input-to-input weights. Optional.
* A 2-D tensor of shape [fw_num_units, input_size], where “fw_num_units”
* corresponds to the number of forward cell units.
* * 2: The forward input-to-forget weights.
* A 2-D tensor of shape [fw_num_units, input_size].
* * 3: The forward input-to-cell weights.
* A 2-D tensor of shape [fw_num_units, input_size].
* * 4: The forward input-to-output weights.
* A 2-D tensor of shape [fw_num_units, input_size].
* * 5: The forward recurrent-to-input weights. Optional.
* A 2-D tensor of shape [fw_num_units, fw_output_size], where “fw_output_size”
* corresponds to either the number of cell units (i.e., fw_num_units),
* or the second dimension of the “fw_projection_weights”, if defined.
* * 6: The forward recurrent-to-forget weights.
* A 2-D tensor of shape [fw_num_units, fw_output_size].
* * 7: The forward recurrent-to-cell weights.
* A 2-D tensor of shape [fw_num_units, fw_output_size].
* * 8: The forward recurrent-to-output weights.
* A 2-D tensor of shape [fw_num_units, fw_output_size].
* * 9: The forward cell-to-input weights. Optional.
* A 1-D tensor of shape [fw_num_units].
* * 10: The forward cell-to-forget weights. Optional.
* A 1-D tensor of shape [fw_num_units].
* * 11: The forward cell-to-output weights. Optional.
* A 1-D tensor of shape [fw_num_units].
* * 12: The forward input gate bias. Optional.
* A 1-D tensor of shape [fw_num_units].
* * 13: The forward forget gate bias.
* A 1-D tensor of shape [fw_num_units].
* * 14: The forward cell gate bias.
* A 1-D tensor of shape [fw_num_units].
* * 15: The forward output gate bias.
* A 1-D tensor of shape [fw_num_units].
* * 16: The forward projection weights. Optional.
* A 2-D tensor of shape [fw_output_size, fw_num_units].
* * 17: The forward projection bias. Optional.
* A 1-D tensor of shape [fw_output_size].
* * 18: The backward input-to-input weights. Optional.
* A 2-D tensor of shape [bw_num_units, input_size], where “bw_num_units”
* corresponds to the number of backward cell units.
* * 19: The backward input-to-forget weights.
* A 2-D tensor of shape [bw_num_units, input_size].
* * 20: The backward input-to-cell weights.
* A 2-D tensor of shape [bw_num_units, input_size].
* * 21: The backward input-to-output weights.
* A 2-D tensor of shape [bw_num_units, input_size].
* * 22: The backward recurrent-to-input weights. Optional.
* A 2-D tensor of shape [bw_num_units, bw_output_size], where “bw_output_size”
* corresponds to either the number of cell units (i.e., “bw_num_units”),
* or the second dimension of the “bw_projection_weights”, if defined.
* * 23: The backward recurrent-to-forget weights.
* A 2-D tensor of shape [bw_num_units, bw_output_size].
* * 24: The backward recurrent-to-cell weights.
* A 2-D tensor of shape [bw_num_units, bw_output_size].
* * 25: The backward recurrent-to-output weights.
* A 2-D tensor of shape [bw_num_units, bw_output_size].
* * 26: The backward cell-to-input weights. Optional.
* A 1-D tensor of shape [bw_num_units].
* * 27: The backward cell-to-forget weights. Optional.
* A 1-D tensor of shape [bw_num_units].
* * 28: The backward cell-to-output weights. Optional.
* A 1-D tensor of shape [bw_num_units].
* * 29: The backward input gate bias. Optional.
* A 1-D tensor of shape [bw_num_units].
* * 30: The backward forget gate bias.
* A 1-D tensor of shape [bw_num_units].
* * 31: The backward cell gate bias.
* A 1-D tensor of shape [bw_num_units].
* * 32: The backward output gate bias.
* A 1-D tensor of shape [bw_num_units].
* * 33: The backward projection weights. Optional.
* A 2-D tensor of shape [bw_output_size, bw_num_units].
* * 34: The backward projection bias. Optional.
* A 1-D tensor of shape [bw_output_size].
* * 35: The forward input activation state.
* A 2-D tensor of shape [batch_size, bw_output_size].
* * 36: The forward input cell state.
* A 2-D tensor of shape [batch_size, bw_num_units].
* * 37: The backward input activation state.
* A 2-D tensor of shape [batch_size, bw_output_size].
* * 38: The backward input cell state.
* A 2-D tensor of shape [batch_size, bw_num_units].
* * 39: The auxiliary input. Optional.
* A 3-D tensor of shape [max_time, batch_size, input_size], where “batch_size”
* corresponds to the batching dimension, and “input_size” is the size
* of the input.
* * 40: The forward auxiliary input-to-input weights. Optional.
* A 2-D tensor of shape [fw_num_units, input_size].
* * 41: The forward auxiliary input-to-forget weights. Optional.
* A 2-D tensor of shape [fw_num_units, input_size].
* * 42: The forward auxiliary input-to-cell weights. Optional.
* A 2-D tensor of shape [fw_num_units, input_size].
* * 43: The forward auxiliary input-to-output weights. Optional.
* A 2-D tensor of shape [fw_num_units, input_size].
* * 44: The backward auxiliary input-to-input weights. Optional.
* A 2-D tensor of shape [bw_num_units, input_size].
* * 45: The backward auxiliary input-to-forget weights. Optional.
* A 2-D tensor of shape [bw_num_units, input_size].
* * 46: The backward auxiliary input-to-cell weights. Optional.
* A 2-D tensor of shape [bw_num_units, input_size].
* * 47: The backward auxiliary input-to-output weights. Optional.
* A 2-D tensor of shape [bw_num_units, input_size].
* * 48: The activation function.
* A value indicating the activation function:
* <ul>
* <li>0: None;
* <li>1: Relu;
* <li>3: Relu6;
* <li>4: Tanh;
* <li>6: Sigmoid.
* </ul>
* * 49: The clipping threshold for the cell state, such
* that values are bound within [-cell_clip, cell_clip]. If set to 0.0
* then clipping is disabled.
* If all the input tensors have type {@link OperandType::TENSOR_FLOAT32},
* this scalar must be of the type {@link OperandType::FLOAT32},
* otherwise if all the input tensors have the type
* {@link OperandType::TENSOR_FLOAT16}, this scalar must be
* of type {@link OperandType::FLOAT16}.
* * 50: The clipping threshold for the output from the
* projection layer, such that values are bound within
* [-proj_clip, proj_clip]. If set to 0.0 then clipping is disabled.
* If all the input tensors have type {@link OperandType::TENSOR_FLOAT32},
* this scalar must be of the type {@link OperandType::FLOAT32},
* otherwise if all the input tensors have the type
* {@link OperandType::TENSOR_FLOAT16}, this scalar must be
* of type {@link OperandType::FLOAT16}.
* * 51: merge_outputs
* An {@link OperandType::BOOL} scalar specifying if the outputs
* from forward and backward cells should be merged.
* * 52: time_major
* An {@link OperandType::BOOL} scalar specifying the shape format
* of input and output tensors.
* * 53: The forward input layer normalization weights. Optional.
* A 1-D tensor of shape [fw_num_units]. Used to rescale normalized inputs
* to activation at input gate.
* * 54: The forward forget layer normalization weights. Optional.
* A 1-D tensor of shape [fw_num_units]. Used to rescale normalized inputs
* to activation at forget gate.
* * 55: The forward cell layer normalization weights. Optional.
* A 1-D tensor of shape [fw_num_units]. Used to rescale normalized inputs
* to activation at cell gate.
* * 56: The forward output layer normalization weights. Optional.
* A 1-D tensor of shape [fw_num_units]. Used to rescale normalized inputs
* to activation at output gate.
* * 57: The backward input layer normalization weights. Optional.
* A 1-D tensor of shape [bw_num_units]. Used to rescale normalized inputs
* to activation at input gate.
* * 58: The backward forget layer normalization weights. Optional.
* A 1-D tensor of shape [bw_num_units]. Used to rescale normalized inputs
* to activation at forget gate.
* * 59: The backward cell layer normalization weights. Optional.
* A 1-D tensor of shape [bw_num_units]. Used to rescale normalized inputs
* to activation at cell gate.
* * 60: The backward output layer normalization weights. Optional.
* A 1-D tensor of shape [bw_num_units]. Used to rescale normalized inputs
* to activation at output gate.
*
* Outputs:
* * 0: The forward output.
* A 3-D tensor of shape:
* If time-major and not merge_outputs:
* [max_time, batch_size, fw_output_size]
* If time-major and merge_outputs:
* [max_time, batch_size, fw_output_size + bw_output_size]
* If batch-major and not merge_outputs:
* [batch_size, max_time, fw_output_size]
* If batch-major and merge_outputs:
* [batch_size, max_time, fw_output_size + bw_output_size]
* * 1: The backward output. Unused if merge_outputs is true.
* A 3-D tensor of shape:
* If time-major: [max_time, batch_size, bw_output_size]
* If batch-major: [batch_size, max_time, bw_output_size]
*/
BIDIRECTIONAL_SEQUENCE_LSTM = 42,
/**
* A recurrent neural network layer that applies a basic RNN cell to a
* sequence of inputs in forward and backward directions.
*
* This Op unrolls the input along the sequence dimension, and implements
* the following operation for each element in the sequence s =
* 1...sequence_length:
* fw_outputs[s] = fw_state = activation(inputs[s] * fw_input_weights’ +
* fw_state * fw_recurrent_weights’ + fw_bias)
*
* And for each element in sequence t = sequence_length : 1
* bw_outputs[t] = bw_state = activation(inputs[t] * bw_input_weights’ +
* bw_state * bw_recurrent_weights’ + bw_bias)
*
* Where:
* * “{fw,bw}_input_weights” is a weight matrix that multiplies the inputs;
* * “{fw,bw}_recurrent_weights” is a weight matrix that multiplies the
* current “state” which itself is the output from the previous time step
* computation;
* * “{fw,bw}_bias” is a bias vector (added to each output vector in the
* batch);
* * “activation” is the function passed as the “fused_activation_function”
* argument (if not “NONE”).
*
* The op supports cross-linking via an auxiliary input. Regular cell feeds
* one input into the two RNN cells in the following way:
*
* INPUT (INPUT_REVERSED)
* | |
* ---------------------
* | FW_RNN BW_RNN |
* ---------------------
* | |
* FW_OUT BW_OUT
*
* An op with cross-linking takes two inputs and feeds them into the RNN
* cells in the following way:
*
* AUX_INPUT (AUX_INPUT_REVERSED)
* | |
* INPUT | (INPUT_R'D.)|
* | | | |
* -----------------------
* | \ / \ / |
* | FW_RNN BW_RNN |
* -----------------------
* | |
* FW_OUT BW_OUT
*
* The cross-linking mode is enabled iff auxiliary input and auxiliary
* weights are present. While stacking this op on top of itself, this
* allows to connect both forward and backward outputs from previous cell
* to the next cell's input.
*
* Supported tensor {@link OperandType}:
* * {@link OperandType::TENSOR_FLOAT16}
* * {@link OperandType::TENSOR_FLOAT32}
*
* The input tensors must all be the same type.
*
* Inputs:
* * 0: input.
* A 3-D tensor. The shape is defined by the input 6 (timeMajor). If
* it is set to true, then the input has a shape [maxTime, batchSize,
* inputSize], otherwise the input has a shape [batchSize, maxTime,
* inputSize].
* * 1: fwWeights.
* A 2-D tensor of shape [fwNumUnits, inputSize].
* * 2: fwRecurrentWeights.
* A 2-D tensor of shape [fwNumUnits, fwNumUnits].
* * 3: fwBias.
* A 1-D tensor of shape [fwNumUnits].
* * 4: fwHiddenState.
* A 2-D tensor of shape [batchSize, fwNumUnits]. Specifies a hidden
* state input for the first time step of the computation.
* * 5: bwWeights.
* A 2-D tensor of shape [bwNumUnits, inputSize].
* * 6: bwRecurrentWeights.
* A 2-D tensor of shape [bwNumUnits, bwNumUnits].
* * 7: bwBias.
* A 1-D tensor of shape [bwNumUnits].
* * 8: bwHiddenState
* A 2-D tensor of shape [batchSize, bwNumUnits]. Specifies a hidden
* state input for the first time step of the computation.
* * 9: auxInput.
* A 3-D tensor. The shape is the same as of the input 0.
* * 10:fwAuxWeights.
* A 2-D tensor of shape [fwNumUnits, inputSize].
* * 11:bwAuxWeights.
* A 2-D tensor of shape [bwNumUnits, inputSize].
* * 12:fusedActivationFunction.
* A {@link FusedActivationFunc} value indicating the activation function. If
* “NONE” is specified then it results in a linear activation.
* * 13:timeMajor
* An {@link OperandType::BOOL} scalar specifying the shape format
* of input and output tensors.
* * 14:mergeOutputs
* An {@link OperandType::BOOL} scalar specifying if the outputs
* from forward and backward cells are separate (if set to false) or
* concatenated (if set to true).
* Outputs:
* * 0: fwOutput.
* A 3-D tensor. The first two dimensions of the shape are defined by
* the input 6 (timeMajor) and the third dimension is defined by the
* input 14 (mergeOutputs). If timeMajor is set to true, then the first
* two dimensions are [maxTime, batchSize], otherwise they are set to
* [batchSize, maxTime]. If mergeOutputs is set to true, then the third
* dimension is equal to (fwNumUnits + bwNumUnits), otherwise it is set
* to fwNumUnits.
* * 1: bwOutput.
* A 3-D tensor. If the input 14 (mergeOutputs) is set to true, then
* this tensor is not produced. The shape is defined by the input 6
* (timeMajor). If it is set to true, then the shape is set to
* [maxTime, batchSize, bwNumUnits], otherwise the shape is set to
* [batchSize, maxTime, bwNumUnits].
*/
BIDIRECTIONAL_SEQUENCE_RNN = 43,
/**
* Greedily selects a subset of bounding boxes in descending order of score.
*
* This op applies NMS algorithm to each class. In each loop of execution,
* the box with maximum score gets selected and removed from the pending set.
* The scores of the rest of boxes are lowered according to the
* intersection-over-union (IOU) overlapping with the previously selected
* boxes and a specified NMS kernel method. Any boxes with score less
* than a threshold are removed from the pending set.
*
* Three NMS kernels are supported:
* * Hard: score_new = score_old * (1 if IoU < threshold else 0)
* * Linear: score_new = score_old * (1 if IoU < threshold else 1 - IoU)
* * Gaussian: score_new = score_old * exp(- IoU^2 / sigma)
*
* Axis-aligned bounding boxes are represented by its upper-left corner
* coordinate (x1,y1) and lower-right corner coordinate (x2,y2). A valid
* bounding box should satisfy x1 <= x2 and y1 <= y2.
*
* Supported tensor {@link OperandType}:
* * {@link OperandType::TENSOR_FLOAT16}
* * {@link OperandType::TENSOR_FLOAT32}
* * {@link OperandType::TENSOR_QUANT8_ASYMM}
*
* Inputs:
* * 0: A 2-D Tensor of shape [num_rois, num_classes], specifying the score
* of each bounding box proposal. The boxes are grouped by batches in the
* first dimension. Zero num_rois is supported for this tensor.
* * 1: A 2-D Tensor specifying the bounding boxes of shape
* [num_rois, num_classes * 4], organized in the order [x1, y1, x2, y2].
* The boxes are grouped by batches in the first dimension. The sequential
* order of the boxes corresponds with input0. For input0 of type
* {@link OperandType::TENSOR_QUANT8_ASYMM}, this tensor should be of
* {@link OperandType::TENSOR_QUANT16_ASYMM}, with zeroPoint of 0 and
* scale of 0.125.
* Zero num_rois is supported for this tensor.
* * 2: A 1-D {@link OperandType::TENSOR_INT32} tensor, of shape
* [num_rois], specifying the batch index of each box. Boxes with
* the same batch index are grouped together.
* * 3: An {@link OperandType::FLOAT32} scalar, score_threshold. Boxes
* with scores lower than the threshold are filtered before sending
* to the NMS algorithm.
* * 4: An {@link OperandType::INT32} scalar, specifying the maximum
* number of selected bounding boxes for each image. Set to a negative
* value for unlimited number of output bounding boxes.
* * 5: An {@link OperandType::INT32} scalar, specifying the NMS
* kernel method, options are 0:hard, 1:linear, 2:gaussian.
* * 6: An {@link OperandType::FLOAT32} scalar, specifying the IoU
* threshold in hard and linear NMS kernel. This field is ignored if
* gaussian kernel is selected.
* * 7: An {@link OperandType::FLOAT32} scalar, specifying the sigma in
* gaussian NMS kernel. This field is ignored if gaussian kernel is
* not selected.
* * 8: An {@link OperandType::FLOAT32} scalar, nms_score_threshold.
* Boxes with scores lower than the threshold are dropped during the
* score updating phase in soft NMS.
*
* Outputs:
* * 0: A 1-D Tensor of the same {@link OperandType} as input0, with shape
* [num_output_rois], specifying the score of each output box. The boxes
* are grouped by batches, but the sequential order in each batch is not
* guaranteed. For type of {@link OperandType::TENSOR_QUANT8_ASYMM},
* guaranteed. For type of {@link OperandType::TENSOR_QUANT8_ASYMM}
* the scale and zero point must be the same as input0.
* * 1: A 2-D Tensor of the same {@link OperandType} as input1, with shape
* [num_output_rois, 4], specifying the coordinates of each
* output bounding box with the same format as input1. The sequential
* order of the boxes corresponds with output0. For type of
* {@link OperandType::TENSOR_QUANT16_ASYMM}, the scale must be
* 0.125 and the zero point must be 0.
* * 2: A 1-D {@link OperandType::TENSOR_INT32} tensor, of shape
* [num_output_rois], specifying the class of each output box. The
* sequential order of the boxes corresponds with output0.
* * 3: A 1-D {@link OperandType::TENSOR_INT32} tensor, of shape
* [num_output_rois], specifying the batch index of each box. Boxes
* with the same batch index are grouped together.
*/
BOX_WITH_NMS_LIMIT = 44,
/**
* Casts a tensor to a type.
*
* This operation ignores the scale and zeroPoint of quanized tensors,
* e.g. it treats a {@link OperandType::TENSOR_QUANT8_ASYMM} input
* as a tensor of uint8 values.
*
* Supported tensor {@link OperandType}:
* * {@link OperandType::TENSOR_FLOAT16}
* * {@link OperandType::TENSOR_FLOAT32}
* * {@link OperandType::TENSOR_INT32}
* * {@link OperandType::TENSOR_QUANT8_ASYMM}
*
* Supported tensor rank: from 1
*
* Inputs:
* * 0: A tensor.
*
* Outputs:
* * 0: A tensor with the same shape as input0.
*/
CAST = 45,
/**
* Shuffle the channels of the input tensor.
*
* Given an input tensor and a integer value of num_groups, CHANNEL_SHUFFLE
* divide the channel dimension into num_groups groups, and reorganize the
* channels by grouping channels with the same index in each group.
*
* Along the channel dimension, the output is calculated using this formula:
*
* output_channel[k * num_groups + g] = input_channel[g * group_size + k]
*
* where group_size = num_channels / num_groups
*
* The number of channels must be divisible by num_groups.
*
* Supported tensor {@link OperandType}:
* * {@link OperandType::TENSOR_FLOAT16}
* * {@link OperandType::TENSOR_FLOAT32}
* * {@link OperandType::TENSOR_QUANT8_ASYMM}
*
* Supported tensor rank: up to 4
*
* Inputs:
* * 0: An n-D tensor, specifying the tensor to be shuffled.
* * 1: An {@link OperandType::INT32} scalar, specifying the number of
* groups.
* * 2: An {@link OperandType::INT32} scalar, specifying the dimension
* channel shuffle would be performed on. Negative index is used to
* specify axis from the end (e.g. -1 for the last axis). Must be in
* the range [-n, n).
*
* Outputs:
* * 0: A tensor of the same {@link OperandType} and same shape as input0.
* For a {@link OperandType::TENSOR_QUANT8_ASYMM} tensor,
* the scale and zeroPoint must be the same as input0.
*/
CHANNEL_SHUFFLE = 46,
/**
* Apply postprocessing steps to bounding box detections.
*
* Bounding box detections are generated by applying transformation on a set
* of predefined anchors with the bounding box deltas from bounding box
* regression. A final step of hard NMS is applied to limit the number of
* returned boxes.
*
* Supported tensor {@link OperandType}:
* * {@link OperandType::TENSOR_FLOAT16}
* * {@link OperandType::TENSOR_FLOAT32}
*
* Inputs:
* * 0: A 3-D Tensor of shape [batches, num_anchors, num_classes], specifying
* the score of each anchor with each class. Class 0 for each
* [batches, num_anchors, 0] is background and will be ignored.
* * 1: A 3-D Tensor of shape [batches, num_anchors, length_box_encoding], with
* the first four values in length_box_encoding specifying the bounding
* box deltas. The box deltas are encoded in the order of [dy, dx, dh, dw],
* where dy and dx is the linear-scale relative correction factor for the
* center position of the bounding box with respect to the width and height,
* dh and dw is the log-scale relative correction factor for the width and
* height. All the entries in length_box_encoding beyond the first four
* values are ignored in this operation.
* * 2: A 2-D Tensor of shape [num_anchors, 4], specifying the shape of each
* predefined anchor, with format [ctr_y, ctr_x, h, w], where ctr_y and
* ctr_x are the center position of the box, and h and w are the height
* and the width.
* * 3: An {@link OperandType::FLOAT32} scalar, specifying the scaling
* factor for dy in bounding box deltas.
* * 4: An {@link OperandType::FLOAT32} scalar, specifying the scaling
* factor for dx in bounding box deltas.
* * 5: An {@link OperandType::FLOAT32} scalar, specifying the scaling
* factor for dh in bounding box deltas.
* * 6: An {@link OperandType::FLOAT32} scalar, specifying the scaling
* factor for dw in bounding box deltas.
* * 7: An {@link OperandType::BOOL} scalar, set to true to use regular
* multi-class NMS algorithm that do NMS separately for each class,
* set to false for a faster algorithm that only do one single NMS
* using the highest class score..
* * 8: An {@link OperandType::INT32} scalar, max_num_detections, specifying
* the maximum number of boxes for the output. Boxes with the lowest
* scores are discarded to meet the limit.
* * 9: An {@link OperandType::INT32} scalar, only used when input7 is
* set to false, specifying the maximum number of classes per detection.
* * 10: An {@link OperandType::INT32} scalar, only used when input7 is
* set to true, specifying the maximum number of detections when
* applying NMS algorithm for each single class.
* * 11: A scalar, score_threshold. Boxes with scores lower than the
* threshold are filtered before sending to the NMS algorithm. The
* scalar must be of {@link OperandType::FLOAT16} if input0 is of
* {@link OperandType::TENSOR_FLOAT16} and of
* {@link OperandType::FLOAT32} if input0 is of
* {@link OperandType::TENSOR_FLOAT32}.
* * 12: A scalar, specifying the IoU threshold for hard NMS. The scalar
* must be of {@link OperandType::FLOAT16} if input0 is of
* {@link OperandType::TENSOR_FLOAT16} and of
* {@link OperandType::FLOAT32} if input0 is of
* {@link OperandType::TENSOR_FLOAT32}.
* * 13: An {@link OperandType::BOOL} scalar, set to true to include
* background class in the list of label map for the output, set
* to false to not include the background. When the background
* class is included, it has label 0 and the output classes start
* at 1 in the label map, otherwise, the output classes start at 0.
*
* Outputs:
* * 0: A 2-D tensor of the same {@link OperandType} as input0, with shape
* [batches, max_num_detections], specifying the score of each output
* detections.
* * 1: A 3-D tensor of shape [batches, max_num_detections, 4], specifying the
* coordinates of each output bounding box, with format
* [y1, x1, y2, x2].
* * 2: A 2-D {@link OperandType::TENSOR_INT32} tensor, of shape
* [batches, max_num_detections], specifying the class label for each
* output detection.
* * 3: An 1-D {@link OperandType::TENSOR_INT32} tensor, of shape [batches],
* specifying the number of valid output detections for each batch.
*/
DETECTION_POSTPROCESSING = 47,
/**
* For input tensors x and y, computes x == y elementwise.
*
* Supported tensor {@link OperandType}:
* * {@link OperandType::TENSOR_BOOL8}
* * {@link OperandType::TENSOR_FLOAT16}
* * {@link OperandType::TENSOR_FLOAT32}
* * {@link OperandType::TENSOR_INT32}
* * {@link OperandType::TENSOR_QUANT8_ASYMM}
*
* Supported tensor rank: from 1
*
* This operation supports broadcasting.
*
* Inputs:
* * 0: A tensor.
* * 1: A tensor of the same {@link OperandType} and dimensions compatible
* with input0.
*
* Outputs:
* * 0: A tensor of {@link OperandType::TENSOR_BOOL8}.
*/
EQUAL = 48,
/**
* Computes exponential of x element-wise.
*
* Supported tensor {@link OperandType}:
* * {@link OperandType::TENSOR_FLOAT16}
* * {@link OperandType::TENSOR_FLOAT32}
*
* Supported tensor rank: from 1.
*
* Inputs:
* * 0: A tensor.
*
* Outputs:
* * 0: The output tensor of same shape as input0.
*/
EXP = 49,
/**
* Inserts a dimension of 1 into a tensor's shape.
*
* Given a tensor input, this operation inserts a dimension of 1 at the
* given dimension index of input's shape. The dimension index starts at
* zero; if you specify a negative dimension index, it is counted backward
* from the end.
*
* Supported tensor {@link OperandType}:
* * {@link OperandType::TENSOR_FLOAT16}
* * {@link OperandType::TENSOR_FLOAT32}
* * {@link OperandType::TENSOR_INT32}
* * {@link OperandType::TENSOR_QUANT8_ASYMM}
*
* Supported tensor rank: from 1
*
* Inputs:
* * 0: An n-D tensor.
* * 1: An {@link OperandType::INT32} scalar specifying the dimension
* index to expand. Must be in the range [-(n + 1), (n + 1)).
*
* Outputs:
* * 0: An (n + 1)-D tensor with the same {@link OperandType} and data as
* input0.
* For a {@link OperandType::TENSOR_QUANT8_ASYMM} tensor,
* the scale and zeroPoint must be the same as input0.
*/
EXPAND_DIMS = 50,
/**
* Gathers values along an axis.
*
* Produces an output tensor with shape
* input0.dimension[:axis] + indices.dimension + input0.dimension[axis + 1:]
* where:
* # Vector indices (output is rank(input0)).
* output[a_0, ..., a_n, i, b_0, ..., b_n] =
* input0[a_0, ..., a_n, indices[i], b_0, ..., b_n]
*
* # Higher rank indices (output is rank(input0) + rank(indices) - 1).
* output[a_0, ..., a_n, i, ..., j, b_0, ... b_n] =
* input0[a_0, ..., a_n, indices[i, ..., j], b_0, ..., b_n]
*
* Supported tensor {@link OperandType}:
* * {@link OperandType::TENSOR_FLOAT16}
* * {@link OperandType::TENSOR_FLOAT32}
* * {@link OperandType::TENSOR_INT32}
* * {@link OperandType::TENSOR_QUANT8_ASYMM}
*
* Supported tensor rank: from 1
*
* Inputs:
* * 0: An n-D tensor from which to gather values.
* * 1: An {@link OperandType::INT32} scalar specifying the axis.
* Negative index is used to specify axis from the end
* (e.g. -1 for the last axis). Must be in the range [-n, n).
* * 2: A k-D tensor {@link OperandType::TENSOR_INT32} of indices.
* The values must be in the bounds of the corresponding dimensions
* of input0.
*
* Outputs:
* * 0: An (n + k - 1)-D tensor with the same {@link OperandType} as input0.
* For a {@link OperandType::TENSOR_QUANT8_ASYMM} tensor,
* the scale and zeroPoint must be the same as input0.
*/
GATHER = 51,
/**
* Generate aixs-aligned bounding box proposals.
*
* Bounding box proposals are generated by applying transformation on a set
* of predefined anchors with the bounding box deltas from bounding box
* regression. A final step of hard NMS is applied to limit the number of
* returned boxes.
*
* Axis-aligned bounding boxes are represented by its upper-left corner
* coordinate (x1,y1) and lower-right corner coordinate (x2,y2). A valid
* bounding box should satisfy x1 <= x2 and y1 <= y2.
*
* Supported tensor {@link OperandType}:
* * {@link OperandType::TENSOR_FLOAT16}
* * {@link OperandType::TENSOR_FLOAT32}
* * {@link OperandType::TENSOR_QUANT8_ASYMM}
*
* Inputs:
* * 0: A 4-D Tensor specifying the score of each anchor at each
* location. With "NHWC" data layout, the tensor shape is
* [batches, height, width, num_anchors]. With "NCHW" data layout,
* the tensor shape is [batches, num_anchors, height, width].
* * 1: A 4-D Tensor specifying the bounding box deltas. With "NHWC" data
* layout, the tensor shape is [batches, height, width, num_anchors * 4].
* With "NCHW" data layout, the tensor shape is
* [batches, num_anchors * 4, height, width]. The box deltas are encoded
* in the order of [dx, dy, dw, dh], where dx and dy is the linear-scale
* relative correction factor for the center position of the bounding box
* with respect to the width and height, dw and dh is the log-scale
* relative correction factor for the width and height. The last
* dimensions is the channel dimension.
* * 2: A 2-D Tensor of shape [num_anchors, 4], specifying the shape of each
* predefined anchor, with format [x1, y1, x2, y2]. For input0 of type
* {@link OperandType::TENSOR_QUANT8_ASYMM}, this tensor should be of
* {@link OperandType::TENSOR_QUANT16_SYMM}, with scale of 0.125.
* * 3: A 2-D Tensor of shape [batches, 2], specifying the size of
* each image in the batch, with format [image_height, image_width].
* For input0 of type {@link OperandType::TENSOR_QUANT8_ASYMM}, this
* tensor should be of {@link OperandType::TENSOR_QUANT16_SYMM}, with
* scale of 0.125.
* * 4: An {@link OperandType::FLOAT32} scalar, specifying the ratio
* from the height of original image to the height of feature map.
* * 5: An {@link OperandType::FLOAT32} scalar, specifying the ratio
* from the width of original image to the width of feature map.
* * 6: An {@link OperandType::INT32} scalar, specifying the maximum
* number of boxes before going into the hard NMS algorithm. Boxes
* with the lowest scores are discarded to meet the limit. Set to
* a non-positive value for unlimited number.
* * 7: An {@link OperandType::INT32} scalar, specifying the maximum
* number of boxes returning from the hard NMS algorithm. Boxes
* with the lowest scores are discarded to meet the limit. Set to
* a non-positive value for unlimited number.
* * 8: An {@link OperandType::FLOAT32} scalar, specifying the IoU
* threshold for hard NMS.
* * 9: An {@link OperandType::FLOAT32} scalar, min_size. Boxes with
* height or width lower than the absolute threshold are filtered out.
* * 10: An {@link OperandType::BOOL} scalar, set to true to specify
* NCHW data layout for input0 and input1. Set to false for NHWC.
*
* Outputs:
* * 0: A tensor of the same {@link OperandType} as input0, of shape
* [num_output_rois], specifying the score of each output box.
* The boxes are grouped by batches, but the sequential order in
* each batch is not guaranteed. For type of
* {@link OperandType::TENSOR_QUANT8_ASYMM}, the scale and zero
* point must be the same as input0.
* * 1: A tensor of the same {@link OperandType} as input3, of shape
* [num_output_rois, 4], specifying the coordinates of each output
* bounding box for each class, with format [x1, y1, x2, y2].
* The sequential order of the boxes corresponds with output0.
* For type of {@link OperandType::TENSOR_QUANT16_ASYMM}, the
* scale must be 0.125 and the zero point must be 0.
* * 2: A 1-D {@link OperandType::TENSOR_INT32} tensor, of shape
* [num_output_rois], specifying the batch index of each box. Boxes
* with the same batch index are grouped together.
*/
GENERATE_PROPOSALS = 52,
/**
* For input tensors x and y, computes x > y elementwise.
*
* Supported tensor {@link OperandType}:
* * {@link OperandType::TENSOR_BOOL8}
* * {@link OperandType::TENSOR_FLOAT16}
* * {@link OperandType::TENSOR_FLOAT32}
* * {@link OperandType::TENSOR_INT32}
* * {@link OperandType::TENSOR_QUANT8_ASYMM}
*
* Supported tensor rank: from 1
*
* This operation supports broadcasting.
*
* Inputs:
* * 0: A tensor.
* * 1: A tensor of the same {@link OperandType} and dimensions compatible
* with input0.
*
* Outputs:
* * 0: A tensor of {@link OperandType::TENSOR_BOOL8}.
*/
GREATER = 53,
/**
* For input tensors x and y, computes x >= y elementwise.
*
* Supported tensor {@link OperandType}:
* * {@link OperandType::TENSOR_BOOL8}
* * {@link OperandType::TENSOR_FLOAT16}
* * {@link OperandType::TENSOR_FLOAT32}
* * {@link OperandType::TENSOR_INT32}
* * {@link OperandType::TENSOR_QUANT8_ASYMM}
*
* Supported tensor rank: from 1
*
* This operation supports broadcasting.
*
* Inputs:
* * 0: A tensor.
* * 1: A tensor of the same {@link OperandType} and dimensions compatible
* with input0.
*
* Outputs:
* * 0: A tensor of {@link OperandType::TENSOR_BOOL8}.
*/
GREATER_EQUAL = 54,
/**
* Performs a grouped 2-D convolution operation.
*
* Given an input tensor of shape [batches, height, width, depth_in] and a
* filter tensor of shape [depth_out, filter_height, filter_width, depth_group]
* containing depth_out convolutional filters of depth depth_group, GROUPED_CONV
* applies a group of different filters to each input channel group, then
* concatenates the results together.
*
* Specifically, the input channels are divided into num_groups groups, each with
* depth depth_group, i.e. depth_in = num_groups * depth_group. The convolutional
* filters are also divided into num_groups groups, i.e. depth_out is divisible
* by num_groups. GROUPED_CONV applies each group of filters to the corresponding
* input channel group, and the result are concatenated together.
*
* The output dimensions are functions of the filter dimensions, stride, and
* padding.
*
* The values in the output tensor are computed as:
*
* output[b, i, j, g * channel_multiplier + q] =
* sum_{di, dj, dk} (
* input[b, strides[1] * i + di, strides[2] * j + dj,
* g * depth_group + dk] *
* filter[g * channel_multiplier + q, di, dj, dk]
* ) + bias[channel]
*
* where channel_multiplier = depth_out / num_groups
*
* Supported tensor {@link OperandType} configurations:
* * 16 bit floating point:
* * * {@link OperandType::TENSOR_FLOAT16} for input, filter, output, and bias.
*
* * 32 bit floating point:
* * * {@link OperandType::TENSOR_FLOAT32} for input, filter, output, and bias.
*
* * Quantized:
* * * {@link OperandType::TENSOR_QUANT8_ASYMM} for input, filter, and output.
* * * {@link OperandType::TENSOR_INT32} for bias (with scale set to
* * * input.scale * filter.scale).
*
* * Quantized with symmetric per channel quantization for the filter:
* * * {@link OperandType::TENSOR_QUANT8_ASYMM} for input, and output.
* * * {@link OperandType::TENSOR_QUANT8_SYMM_PER_CHANNEL} for filter.
* * * {@link OperandType::TENSOR_INT32} for bias (scale set to 0.0,
* * * each value scaling is separate and equal to input.scale * filter.scales[channel]).
*
* Supported tensor rank: 4, with "NHWC" or "NCHW" data layout.
* With the default data layout NHWC, the data is stored in the order of:
* [batch, height, width, channels]. Alternatively, the data layout could
* be NCHW, the data storage order of: [batch, channels, height, width].
*
* Both explicit padding and implicit padding are supported.
*
* Inputs (explicit padding):
* * 0: A 4-D tensor, of shape [batches, height, width, depth_in],
* specifying the input, where depth_in = num_groups * depth_group.
* * 1: A 4-D tensor, of shape
* [depth_out, filter_height, filter_width, depth_group], specifying
* the filter, where depth_out must be divisible by num_groups. For
* tensor of type {@link OperandType::TENSOR_QUANT8_SYMM_PER_CHANNEL}
* the channel dimension (channelDim at
* {@link SymmPerChannelQuantParams}) must be set to 0.
* * 2: A 1-D tensor, of shape [depth_out], specifying the bias. For input
* tensor of type {@link OperandType::TENSOR_FLOAT32} or
* {@link OperandType::TENSOR_FLOAT16}, the bias must be of the same type.
* For filter tensor of {@link OperandType::TENSOR_QUANT8_ASYMM},
* the bias should be of {@link OperandType::TENSOR_INT32}, with zeroPoint
* of 0 and bias_scale == input_scale * filter_scale. For filter tensor
* of {@link OperandType::TENSOR_QUANT8_SYMM_PER_CHANNEL}, the bias
* should be of {@link OperandType::TENSOR_INT32}, with zeroPoint of
* 0 and bias_scale of 0. The actual scale of each value 'i' is equal to
* bias_scale[i] = input_scale * filter_scale[i].
* * 3: An {@link OperandType::INT32} scalar, specifying the padding on
* the left, in the ‘width’ dimension.
* * 4: An {@link OperandType::INT32} scalar, specifying the padding on
* the right, in the ‘width’ dimension.
* * 5: An {@link OperandType::INT32} scalar, specifying the padding on
* the top, in the ‘height’ dimension.
* * 6: An {@link OperandType::INT32} scalar, specifying the padding on
* the bottom, in the ‘height’ dimension.
* * 7: An {@link OperandType::INT32} scalar, specifying the stride when
* walking through input in the ‘width’ dimension.
* * 8: An {@link OperandType::INT32} scalar, specifying the stride when
* walking through input in the ‘height’ dimension.
* * 9: An {@link OperandType::INT32} scalar, specifying the number of
* groups.
* * 10: An {@link OperandType::INT32} scalar, and has to be one of the
* {@link FusedActivationFunc} values. Specifies the activation to
* invoke on the result.
* * 11: An {@link OperandType::BOOL} scalar, set to true to specify
* NCHW data layout for input0 and output0. Set to false for NHWC.
*
* Inputs (implicit padding):
* * 0: A 4-D tensor, of shape [batches, height, width, depth_in],
* specifying the input, where depth_in = num_groups * depth_group.
* * 1: A 4-D tensor, of shape
* [depth_out, filter_height, filter_width, depth_group], specifying
* the filter, where depth_out must be divisible by num_groups. For
* tensor of type {@link OperandType::TENSOR_QUANT8_SYMM_PER_CHANNEL}
* the channel dimension (SymmPerChannelQuantParams::channelDim)
* must be set to 0.
* * 2: A 1-D tensor, of shape [depth_out], specifying the bias. For input
* tensor of type {@link OperandType::TENSOR_FLOAT32} or
* {@link OperandType::TENSOR_FLOAT16}, the bias must be of the same
* {@link OperandType::TENSOR_FLOAT16}, the bias must be of the same type.
* For filter tensor of {@link OperandType::TENSOR_QUANT8_ASYMM},
* the bias should be of {@link OperandType::TENSOR_INT32}, with zeroPoint
* of 0 and bias_scale == input_scale * filter_scale. For filter tensor
* of {@link OperandType::TENSOR_QUANT8_SYMM_PER_CHANNEL}, the bias
* should be of {@link OperandType::TENSOR_INT32}, with zeroPoint of
* 0 and bias_scale of 0. The actual scale of each value 'i' is equal to
* bias_scale[i] = input_scale * filter_scale[i].
* * 3: An {@link OperandType::INT32} scalar, specifying the implicit
* padding scheme, has to be one of the
* following values: {0 (NONE), 1 (SAME), 2 (VALID)}.
* * 4: An {@link OperandType::INT32} scalar, specifying the stride when
* walking through input in the ‘width’ dimension.
* * 5: An {@link OperandType::INT32} scalar, specifying the stride when
* walking through input in the ‘height’ dimension.
* * 6: An {@link OperandType::INT32} scalar, specifying the number of
* groups.
* * 7: An {@link OperandType::INT32} scalar, and has to be one of the
* {@link FusedActivationFunc} values. Specifies the activation to
* invoke on the result.
* * 8: An {@link OperandType::BOOL} scalar, set to true to specify
* NCHW data layout for input0 and output0. Set to false for NHWC.
*
* Outputs:
* * 0: The output 4-D tensor, of shape
* [batches, out_height, out_width, depth_out].
* For a {@link OperandType::TENSOR_QUANT8_ASYMM} tensor,
* the scale and zeroPoint can be different from inputs' scale and zeroPoint.
*/
GROUPED_CONV_2D = 55,
/**
* Localize the maximum keypoints from heatmaps.
*
* This operation approximates the accurate maximum keypoint scores and
* indices after bicubic upscaling by using Taylor expansion up to the
* quadratic term.
*
* The bounding box is represented by its upper-left corner coordinate
* (x1,y1) and lower-right corner coordinate (x2,y2) in the original image.
* A valid bounding box should satisfy x1 <= x2 and y1 <= y2.
*
* Supported tensor {@link OperandType}:
* * {@link OperandType::TENSOR_FLOAT16}
* * {@link OperandType::TENSOR_FLOAT32}
* * {@link OperandType::TENSOR_QUANT8_ASYMM}
*
* Supported tensor rank: 4, with "NHWC" or "NCHW" data layout.
* With the default data layout NHWC, the data is stored in the order of:
* [batch, height, width, channels]. Alternatively, the data layout could
* be NCHW, the data storage order of: [batch, channels, height, width].
*
* Inputs:
* * 0: A 4-D Tensor of shape
* [num_boxes, heatmap_size, heatmap_size, num_keypoints],
* specifying the heatmaps, the height and width of heatmaps should
* be the same, and must be greater than or equal to 2.
* * 1: A 2-D Tensor of shape [num_boxes, 4], specifying the bounding boxes,
* each with format [x1, y1, x2, y2]. For input0 of type
* {@link OperandType::TENSOR_QUANT8_ASYMM}, this tensor should
* be of {@link OperandType::TENSOR_QUANT16_ASYMM}, with zeroPoint
* of 0 and scale of 0.125.
* * 2: An {@link OperandType::BOOL} scalar, set to true to specify
* NCHW data layout for input0. Set to false for NHWC.
*
* Outputs:
* * 0: A tensor of the same {@link OperandType} as input0, with shape
* [num_boxes, num_keypoints], specifying score of the keypoints.
* For a {@link OperandType::TENSOR_QUANT8_ASYMM} tensor,
* the scale and zeroPoint can be different from input0 scale and zeroPoint.
* * 1: A tensor of the same {@link OperandType} as input1, with shape
* [num_boxes, num_keypoints, 2], specifying the location of
* the keypoints, the second dimension is organized as
* [keypoint_x, keypoint_y].
* For type of {@link OperandType::TENSOR_QUANT16_ASYMM}, the
* scale must be 0.125 and the zero point must be 0.
*/
HEATMAP_MAX_KEYPOINT = 56,
/**
* Applies instance normalization to the input tensor.
*
* The values in the output tensor are computed as:
*
* output[b, h, w, c] =
* (input[b, h, w, c] - mean[b, c]) * gamma /
* sqrt(var[b, c] + epsilon) + beta
*
* Where the mean and variance are computed across the spatial dimensions:
*
* mean[b, c] =
* sum_{h, w}(input[b, h, w, c]) / sum(1)
*
* var[b, c] =
* sum_{h, w}(pow(input[b, h, w, c] - mean[b, c], 2)) / sum(1)
*
* Supported tensor {@link OperandType}:
* * {@link OperandType::TENSOR_FLOAT16}
* * {@link OperandType::TENSOR_FLOAT32}
*
* Supported tensor rank: 4, with "NHWC" or "NCHW" data layout.
* With the default data layout NHWC, the data is stored in the order of:
* [batch, height, width, channels]. Alternatively, the data layout could
* be NCHW, the data storage order of: [batch, channels, height, width].
*
* Inputs:
* * 0: An n-D tensor, specifying the tensor to be normalized.
* * 1: A scalar, specifying gamma, the scale applied to the normalized
* tensor. The scalar must be of {@link OperandType::FLOAT16} if
* input0 is of {@link OperandType::TENSOR_FLOAT16} and of
* {@link OperandType::FLOAT32} if input0 is of
* {@link OperandType::TENSOR_FLOAT32}.
* * 2: A scalar, specifying beta, the offset applied to the normalized
* tensor. The scalar must be of {@link OperandType::FLOAT16} if
* input0 is of {@link OperandType::TENSOR_FLOAT16} and of
* {@link OperandType::FLOAT32} if input0 is of
* {@link OperandType::TENSOR_FLOAT32}.
* * 3: A scalar, specifying epsilon, the small value added to variance to
* avoid dividing by zero. The scalar must be of {@link OperandType::FLOAT16} if
* input0 is of {@link OperandType::TENSOR_FLOAT16} and of
* {@link OperandType::FLOAT32} if input0 is of
* {@link OperandType::TENSOR_FLOAT32}.
* * 4: An {@link OperandType::BOOL} scalar, set to true to specify
* NCHW data layout for input0 and output0. Set to false for NHWC.
*
* Outputs:
* * 0: A tensor of the same {@link OperandType} and same shape as input0.
*/
INSTANCE_NORMALIZATION = 57,
/**
* For input tensors x and y, computes x < y elementwise.
*
* Supported tensor {@link OperandType}:
* * {@link OperandType::TENSOR_BOOL8}
* * {@link OperandType::TENSOR_FLOAT16}
* * {@link OperandType::TENSOR_FLOAT32}
* * {@link OperandType::TENSOR_INT32}
* * {@link OperandType::TENSOR_QUANT8_ASYMM}
*
* Supported tensor rank: from 1
*
* This operation supports broadcasting.
*
* Inputs:
* * 0: A tensor.
* * 1: A tensor of the same {@link OperandType} and dimensions compatible
* with input0.
*
* Outputs:
* * 0: A tensor of {@link OperandType::TENSOR_BOOL8}.
*/
LESS = 58,
/**
* For input tensors x and y, computes x <= y elementwise.
*
* Supported tensor {@link OperandType}:
* * {@link OperandType::TENSOR_BOOL8}
* * {@link OperandType::TENSOR_FLOAT16}
* * {@link OperandType::TENSOR_FLOAT32}
* * {@link OperandType::TENSOR_INT32}
* * {@link OperandType::TENSOR_QUANT8_ASYMM}
*
* Supported tensor rank: from 1
*
* This operation supports broadcasting.
*
* Inputs:
* * 0: A tensor.
* * 1: A tensor of the same {@link OperandType} and dimensions compatible
* with input0.
*
* Outputs:
* * 0: A tensor of {@link OperandType::TENSOR_BOOL8}.
*/
LESS_EQUAL = 59,
/**
* Computes natural logarithm of x element-wise.
*
* Supported tensor {@link OperandType}:
* * {@link OperandType::TENSOR_FLOAT16}
* * {@link OperandType::TENSOR_FLOAT32}
*
* Supported tensor rank: from 1.
*
* Inputs:
* * 0: A tensor.
*
* Outputs:
* * 0: The output tensor of same shape as input0.
*/
LOG = 60,
/**
* Returns the truth value of x AND y element-wise.
*
* Supported tensor {@link OperandType}:
* * {@link OperandType::TENSOR_BOOL8}
*
* Supported tensor rank: from 1
*
* This operation supports broadcasting.
*
* Inputs:
* * 0: A tensor of {@link OperandType::TENSOR_BOOL8}.
* * 1: A tensor of {@link OperandType::TENSOR_BOOL8} and dimensions
* compatible with input0.
*
* Outputs:
* * 0: A tensor of {@link OperandType::TENSOR_BOOL8}.
*/
LOGICAL_AND = 61,
/**
* Computes the truth value of NOT x element-wise.
*
* Supported tensor {@link OperandType}:
* * {@link OperandType::TENSOR_BOOL8}
*
* Supported tensor rank: from 1.
*
* Inputs:
* * 0: A tensor.
*
* Outputs:
* * 0: The output tensor of same shape as input0.
*/
LOGICAL_NOT = 62,
/**
* Returns the truth value of x OR y element-wise.
*
* Supported tensor {@link OperandType}:
* * {@link OperandType::TENSOR_BOOL8}
*
* Supported tensor rank: from 1
*
* This operation supports broadcasting.
*
* Inputs:
* * 0: A tensor of {@link OperandType::TENSOR_BOOL8}.
* * 1: A tensor of {@link OperandType::TENSOR_BOOL8} and dimensions
* compatible with input0.
*
* Outputs:
* * 0: A tensor of {@link OperandType::TENSOR_BOOL8}.
*/
LOGICAL_OR = 63,
/**
* Computes the log softmax activations given logits.
*
* The output is calculated using this formula:
*
* output = logits * beta - log(reduce_sum(exp(logits * beta), axis))
*
* Supported tensor {@link OperandType}:
* * {@link OperandType::TENSOR_FLOAT16}
* * {@link OperandType::TENSOR_FLOAT32}
*
* Supported tensor rank: from 1.
*
* Inputs:
* * 0: A tensor specifying the input logits.
* * 1: A scalar, specifying the positive scaling factor for the exponent,
* beta.
* For input tensor of {@link OperandType::TENSOR_FLOAT16}, the beta
* value must be of {@link OperandType::FLOAT16}.
* For input tensor of {@link OperandType::TENSOR_FLOAT32}, the beta
* value must be of {@link OperandType::FLOAT32}.
* * 2: An {@link OperandType::INT32} scalar specifying the axis to
* reduce across. Negative index is used to specify axis from the
* end (e.g. -1 for the last axis). Must be in the range [-n, n).
*
* Outputs:
* * 0: The output tensor of the same {@link OperandType} and shape as
* input0.
*/
LOG_SOFTMAX = 64,
/**
* Returns the element-wise maximum of two tensors.
*
* Supported tensor {@link OperandType}:
* * {@link OperandType::TENSOR_FLOAT16}
* * {@link OperandType::TENSOR_FLOAT32}
* * {@link OperandType::TENSOR_INT32}
* * {@link OperandType::TENSOR_QUANT8_ASYMM}
*
* Supported tensor rank: from 1.
*
* Inputs:
* * 0: A tensor.
* * 1: A tensor of the same {@link OperandType} and compatible dimensions
* with input0.
* For a {@link OperandType::TENSOR_QUANT8_ASYMM} tensor,
* the scales and zeroPoint can be different from input0 scale and zeroPoint.
*
* Outputs:
* * 0: A tensor of the same {@link OperandType} as input0.
* For a {@link OperandType::TENSOR_QUANT8_ASYMM} tensor,
* the scale and zeroPoint can be different from inputs' scale and zeroPoint.
*/
MAXIMUM = 65,
/**
* Returns the element-wise minimum of two tensors.
*
* Supported tensor {@link OperandType}:
* * {@link OperandType::TENSOR_FLOAT16}
* * {@link OperandType::TENSOR_FLOAT32}
* * {@link OperandType::TENSOR_INT32}
* * {@link OperandType::TENSOR_QUANT8_ASYMM}
*
* Supported tensor rank: from 1.
*
* Inputs:
* * 0: A tensor.
* * 1: A tensor of the same {@link OperandType} and compatible dimensions
* with input0.
* For a {@link OperandType::TENSOR_QUANT8_ASYMM} tensor,
* the scales and zeroPoint can be different from input0 scale and zeroPoint.
*
* Outputs:
* * 0: A tensor of the same {@link OperandType} as input0.
* For a {@link OperandType::TENSOR_QUANT8_ASYMM} tensor,
* the scale and zeroPoint can be different from inputs' scale and zeroPoint.
*/
MINIMUM = 66,
/**
* Computes numerical negative value element-wise.
*
* Supported tensor {@link OperandType}:
* * {@link OperandType::TENSOR_FLOAT16}
* * {@link OperandType::TENSOR_FLOAT32}
* * {@link OperandType::TENSOR_INT32}
*
* Supported tensor rank: from 1.
*
* Inputs:
* * 0: A tensor.
*
* Outputs:
* * 0: The output tensor of same shape as input0.
*/
NEG = 67,
/**
* For input tensors x and y, computes x != y elementwise.
*
* Supported tensor {@link OperandType}:
* * {@link OperandType::TENSOR_BOOL8}
* * {@link OperandType::TENSOR_FLOAT16}
* * {@link OperandType::TENSOR_FLOAT32}
* * {@link OperandType::TENSOR_INT32}
* * {@link OperandType::TENSOR_QUANT8_ASYMM}
*
* Supported tensor rank: from 1
*
* This operation supports broadcasting.
*
* Inputs:
* * 0: A tensor.
* * 1: A tensor of the same {@link OperandType} and dimensions compatible
* with input0.
*
* Outputs:
* * 0: A tensor of {@link OperandType::TENSOR_BOOL8}.
*/
NOT_EQUAL = 68,
/**
* Pads a tensor with the given constant value according to the specified
* paddings.
*
* Supported tensor {@link OperandType}:
* * {@link OperandType::TENSOR_FLOAT16}
* * {@link OperandType::TENSOR_FLOAT32}
* * {@link OperandType::TENSOR_QUANT8_ASYMM}
*
* Supported tensor rank: up to 4
*
* Inputs:
* * 0: An n-D tensor, specifying the tensor to be padded.
* * 1: A 2-D Tensor of {@link OperandType::TENSOR_INT32}, the paddings
* for each spatial dimension of the input tensor. The shape of the
* tensor must be {rank(input0), 2}.
* padding[i, 0] specifies the number of elements to be padded in the
* front of dimension i.
* padding[i, 1] specifies the number of elements to be padded after
* the end of dimension i.
* * 2: An scalar specifying the value to use for padding input0.
* For input tensor of {@link OperandType::TENSOR_FLOAT16}, the
* pad value must be of {@link OperandType::FLOAT16}.
* For input tensor of {@link OperandType::TENSOR_FLOAT32}, the
* pad value must be of {@link OperandType::FLOAT32}.
* For input tensor of {@link OperandType::TENSOR_QUANT8_ASYMM},
* the pad value must be of {@link OperandType::INT32}. The
* scale and zeroPoint are assumed to be the same as in input0.
*
* Outputs:
* * 0: A tensor of the same {@link OperandType} as input0. The
* output tensor has the same rank as input0, and each
* dimension of the output tensor has the same size as the
* corresponding dimension of the input tensor plus the size
* of the padding:
* output0.dimension[i] =
* padding[i, 0] + input0.dimension[i] + padding[i, 1]
* For a {@link OperandType::TENSOR_QUANT8_ASYMM} tensor,
* the scale and zeroPoint must be the same as input0.
*/
PAD_V2 = 69,
/**
* Computes the power of one value to another.
*
* Given a tensor base and a tensor exponent, this operation computes
* base^exponent elementwise.
*
* This operations supports broadcasting. The size of the output is the
* maximum size along each dimension of the input operands. It starts with
* the trailing dimensions, and works its way forward.
*
* For example:
* base.dimension = {4, 1, 2}
* exponent.dimension = {5, 4, 3, 1}
* output.dimension = {5, 4, 3, 2}
*
* Supported tensor {@link OperandType}:
* * {@link OperandType::TENSOR_FLOAT16}
* * {@link OperandType::TENSOR_FLOAT32}
*
* Supported tensor rank: from 1
*
* Inputs:
* * 0: A tensor specifying the base.
* * 1: A tensor specifying the exponent.
*
* Outputs:
* * 0: An output tensor.
*/
POW = 70,
/**
* Parametric Rectified Linear Unit.
*
* It follows: f(x) = alpha * x for x < 0, f(x) = x for x >= 0, where alpha
* is a learned array with the same {@link OperandType} and compatible
* dimensions as input x.
*
* Two dimensions are compatible when:
* 1. they are equal, or
* 2. one of them is 1
*
* The size of the output is the maximum size along each dimension of the
* input operands. It starts with the trailing dimensions, and works its way
* forward.
*
* Example:
* input.dimension = {4, 1, 2}
* alpha.dimension = {5, 4, 3, 1}
* output.dimension = {5, 4, 3, 2}
*
* Supported tensor {@link OperandType}:
* * {@link OperandType::TENSOR_FLOAT16}
* * {@link OperandType::TENSOR_FLOAT32}
* * {@link OperandType::TENSOR_QUANT8_ASYMM}
*
* Supported tensor rank: from 1
*
* Inputs:
* * 0: A tensor, specifying the input.
* * 1: A tensor of the same {@link OperandType}, and compatible dimensions
* as input0, specifying the alpha.
*
* Outputs:
* * 0: A tensor of the same {@link OperandType} as input0.
* For a {@link OperandType::TENSOR_QUANT8_ASYMM} tensor,
* the scales and zeroPoint can be different from input0 scale and zeroPoint.
*/
PRELU = 71,
/**
* Quantizes the input tensor.
*
* The formula for {@link OperandType::TENSOR_QUANT8_ASYMM} output tensor is:
*
* output = max(0, min(255, round(input / scale) + zeroPoint)
*
* Supported input tensor {@link OperandType}:
* * {@link OperandType::TENSOR_FLOAT16}
* * {@link OperandType::TENSOR_FLOAT32}
*
* Supported output tensor {@link OperandType}:
* * {@link OperandType::TENSOR_QUANT8_ASYMM}
*
* Supported tensor rank: from 1
*
* Inputs:
* * 0: A tensor, may be zero-sized.
*
* Outputs:
* * 0: The output tensor of same shape as input0, but with
* {@link OperandType::TENSOR_QUANT8_ASYMM}.
*/
QUANTIZE = 72,
/**
* A version of quantized LSTM, using 16 bit quantization for internal
* state.
*
* There is no projection layer, so cell state size is equal to the output
* size.
*
* Inputs:
* * 0: A 2-D tensor of type {@link OperandType::TENSOR_QUANT8_ASYMM}
* and shape [numBatches, inputSize] specifying the input to the LSTM
* cell. Tensor is quantized with a fixed quantization range of
* [-1, 127/128] (scale = 1/128, zeroPoint = 128).
* * 1: The input-to-input weights.
* A 2-D tensor of type {@link OperandType::TENSOR_QUANT8_ASYMM}
* and shape [outputSize, inputSize] specifying input-to-input part of
* weights for fully-connected layer inside the LSTM cell.
* Quantization zero point and scale must be the same across all the
* weights.
* * 2: The input-to-forget weights.
* A 2-D tensor of type {@link OperandType::TENSOR_QUANT8_ASYMM}
* and shape [outputSize, inputSize] specifying input-to-forget part of
* weights for fully-connected layer inside the LSTM cell.
* Quantization zero point and scale must be the same across all the
* weights.
* * 3: The input-to-cell weights.
* A 2-D tensor of type {@link OperandType::TENSOR_QUANT8_ASYMM}
* and shape [outputSize, inputSize] specifying input-to-cell part of
* weights for fully-connected layer inside the LSTM cell.
* Quantization zero point and scale must be the same across all the
* weights.
* * 4: The input-to-output weights.
* A 2-D tensor of type {@link OperandType::TENSOR_QUANT8_ASYMM}
* and shape [outputSize, inputSize] specifying input-to-output part of
* weights for fully-connected layer inside the LSTM cell.
* Quantization zero point and scale must be the same across all the
* weights.
* * 5: The recurrent-to-input weights.
* A 2-D tensor of type {@link OperandType::TENSOR_QUANT8_ASYMM}
* and shape [outputSize, outputSize] specifying recurrent-to-input part
* of weights for fully-connected layer inside the LSTM cell.
* Quantization zero point and scale must be the same across all the
* weights.
* * 6: The recurrent-to-forget weights.
* A 2-D tensor of type {@link OperandType::TENSOR_QUANT8_ASYMM}
* and shape [outputSize, outputSize] specifying recurrent-to-forget
* part of weights for fully-connected layer inside the LSTM cell.
* Quantization zero point and scale must be the same across all the
* weights.
* * 7: The recurrent-to-cell weights.
* A 2-D tensor of type {@link OperandType::TENSOR_QUANT8_ASYMM}
* and shape [outputSize, outputSize] specifying recurrent-to-cell part
* of weights for fully-connected layer inside the LSTM cell.
* Quantization zero point and scale must be the same across all the
* weights.
* * 8: The recurrent-to-output weights.
* A 2-D tensor of type {@link OperandType::TENSOR_QUANT8_ASYMM}
* and shape [outputSize, outputSize] specifying recurrent-to-output
* part of weights for fully-connected layer inside the LSTM cell.
* Quantization zero point and scale must be the same across all the
* weights.
* * 9: The input gate bias.
* A 1-D tensor of type {@link OperandType::TENSOR_INT32} and shape
* [outputSize] specifying the bias for the fully-connected layer
* inside the LSTM cell. Bias is quantized with scale being a product
* of input and weights scales and zeroPoint equal to 0.
* * 10:The forget gate bias.
* A 1-D tensor of type {@link OperandType::TENSOR_INT32} and shape
* [outputSize] specifying the bias for the fully-connected layer
* inside the LSTM cell. Bias is quantized with scale being a product
* of input and weights scales and zeroPoint equal to 0.
* * 11:The cell bias.
* A 1-D tensor of type {@link OperandType::TENSOR_INT32} and shape
* [outputSize] specifying the bias for the fully-connected layer
* inside the LSTM cell. Bias is quantized with scale being a product
* of input and weights scales and zeroPoint equal to 0.
* * 12:The output gate bias.
* A 1-D tensor of type {@link OperandType::TENSOR_INT32} and shape
* [outputSize] specifying the bias for the fully-connected layer
* inside the LSTM cell. Bias is quantized with scale being a product
* of input and weights scales and zeroPoint equal to 0.
* * 13: A 2-D tensor of type {@link OperandType::TENSOR_QUANT16_SYMM}
* and shape [numBatches, outputSize] specifying the cell state from the
* previous time step of the LSTM cell. It is quantized using a
* quantization range of [-2^4, 2^4 * 32767/32768] (scale = 2^4 /
* 32768, zeroPoint = 0).
* * 14: A 2-D tensor of type {@link OperandType::TENSOR_QUANT8_ASYMM}
* and shape [numBathes, outputSize] specifying the output of the LSTM
* cell from previous time-step. Tensor is quantized with a fixed
* quantization range of [-1, 127/128] (scale = 1/128, zeroPoint =
* 128).
*
*
* Outputs:
* * 0: A 2-D tensor of type {@link OperandType::TENSOR_QUANT16_SYMM}
* and shape [numBatches, outputSize] which contains a cell state from
* the current time step. Tensor is quantized using a quantization
* range of [-2^4, 2^4 * 32767/32768] (scale = 2^4 / 32768, zeroPoint =
* 0).
* * 1: A 2-D tensor of type {@link OperandType::TENSOR_QUANT8_ASYMM}
* and shape [numBathes, outputSize] which contains the output value.
* Tensor is quantized with a fixed quantization range of [-1, 127/128]
* (scale = 1/128, zeroPoint = 128).
*/
QUANTIZED_16BIT_LSTM = 73,
/**
* Draws samples from a multinomial distribution.
*
* Supported tensor {@link OperandType}:
* * {@link OperandType::TENSOR_FLOAT16}
* * {@link OperandType::TENSOR_FLOAT32}
*
* Inputs:
* * 0: A 2-D tensor with shape [batches, classes], specifying the
* unnormalized log-probabilities for all classes.
* * 1: A scalar {@link OperandType::INT32}, specifying the number of
* independent samples to draw for each row slice.
* * 2: A 1-D {@link OperandType::TENSOR_INT32} tensor with shape [2],
* specifying seeds used to initialize the random distribution. If both
* provided seeds are 0, both will be randomly generated.
* Outputs:
* * 0: A 2-D {@link OperandType::TENSOR_INT32} tensor with shape
* [batches, samples], containing the drawn samples.
*/
RANDOM_MULTINOMIAL = 74,
/**
* Reduces a tensor by computing the "logical and" of elements along given
* dimensions.
*
* If keep_dims is true, the reduced dimensions are
* retained with length 1. Otherwise, the rank of the tensor is reduced by
* 1 for each entry in dimensions.
*
* Supported tensor {@link OperandType}:
* * {@link OperandType::TENSOR_BOOL8}
*
* Supported tensor rank: up to 4
*
* Inputs:
* * 0: An n-D tensor.
* * 1: A 1-D tensor of {@link OperandType::TENSOR_INT32}. The dimensions
* to reduce. Dimension values must be in the range [-n, n).
* * 2: An {@link OperandType::BOOL} scalar, keep_dims. If true,
* retains reduced dimensions with length 1.
*
* Outputs:
* * 0: A tensor of the same {@link OperandType} as input0.
*/
REDUCE_ALL = 75,
/**
* Reduces a tensor by computing the "logical or" of elements along given
* dimensions.
*
* If keep_dims is true, the reduced dimensions are
* retained with length 1. Otherwise, the rank of the tensor is reduced by
* 1 for each entry in dimensions.
*
* Supported tensor {@link OperandType}:
* * {@link OperandType::TENSOR_BOOL8}
*
* Supported tensor rank: up to 4
*
* Inputs:
* * 0: An n-D tensor.
* * 1: A 1-D tensor of {@link OperandType::TENSOR_INT32}. The dimensions
* to reduce. Dimension values must be in the range [-n, n).
* * 2: An {@link OperandType::BOOL} scalar, keep_dims. If true,
* retains reduced dimensions with length 1.
*
* Outputs:
* * 0: A tensor of the same {@link OperandType} as input0.
*/
REDUCE_ANY = 76,
/**
* Reduces a tensor by computing the maximum of elements along given
* dimensions.
*
* If keep_dims is true, the reduced dimensions are
* retained with length 1. Otherwise, the rank of the tensor is reduced by
* 1 for each entry in dimensions.
*
* Supported tensor {@link OperandType}:
* * {@link OperandType::TENSOR_FLOAT16}
* * {@link OperandType::TENSOR_FLOAT32}
* * {@link OperandType::TENSOR_QUANT8_ASYMM}
*
* Supported tensor rank: up to 4
*
* Inputs:
* * 0: An n-D tensor.
* * 1: A 1-D tensor of {@link OperandType::TENSOR_INT32}. The dimensions
* to reduce. Dimension values must be in the range [-n, n).
* * 2: An {@link OperandType::BOOL} scalar, keep_dims. If true,
* retains reduced dimensions with length 1.
*
* Outputs:
* * 0: A tensor of the same {@link OperandType} as input0.
* For a {@link OperandType::TENSOR_QUANT8_ASYMM} tensor,
* the scale and zeroPoint must be the same as input0.
*/
REDUCE_MAX = 77,
/**
* Reduces a tensor by computing the minimum of elements along given
* dimensions.
*
* If keep_dims is true, the reduced dimensions are
* retained with length 1. Otherwise, the rank of the tensor is reduced by
* 1 for each entry in dimensions.
*
* Supported tensor {@link OperandType}:
* * {@link OperandType::TENSOR_FLOAT16}
* * {@link OperandType::TENSOR_FLOAT32}
* * {@link OperandType::TENSOR_QUANT8_ASYMM}
*
* Supported tensor rank: up to 4
*
* Inputs:
* * 0: An n-D tensor.
* * 1: A 1-D tensor of {@link OperandType::TENSOR_INT32}. The dimensions
* to reduce. Dimension values must be in the range [-n, n).
* * 2: An {@link OperandType::BOOL} scalar, keep_dims. If true,
* retains reduced dimensions with length 1.
*
* Outputs:
* * 0: A tensor of the same {@link OperandType} as input0.
* For a {@link OperandType::TENSOR_QUANT8_ASYMM} tensor,
* the scale and zeroPoint must be the same as input0.
*/
REDUCE_MIN = 78,
/**
* Reduces a tensor by multiplying elements along given dimensions.
*
* If keep_dims is true, the reduced dimensions are
* retained with length 1. Otherwise, the rank of the tensor is reduced by
* 1 for each entry in dimensions.
*
* Supported tensor {@link OperandType}:
* * {@link OperandType::TENSOR_FLOAT16}
* * {@link OperandType::TENSOR_FLOAT32}
*
* Supported tensor rank: up to 4
*
* Inputs:
* * 0: An n-D tensor.
* * 1: A 1-D tensor of {@link OperandType::TENSOR_INT32}. The dimensions
* to reduce. Dimension values must be in the range [-n, n).
* * 2: An {@link OperandType::BOOL} scalar, keep_dims. If true,
* retains reduced dimensions with length 1.
*
* Outputs:
* * 0: A tensor of the same {@link OperandType} as input0.
*/
REDUCE_PROD = 79,
/**
* Reduces a tensor by summing elements along given dimensions.
*
* If keep_dims is true, the reduced dimensions are
* retained with length 1. Otherwise, the rank of the tensor is reduced by
* 1 for each entry in dimensions.
*
* Supported tensor {@link OperandType}:
* * {@link OperandType::TENSOR_FLOAT16}
* * {@link OperandType::TENSOR_FLOAT32}
*
* Supported tensor rank: up to 4
*
* Inputs:
* * 0: An n-D tensor.
* * 1: A 1-D tensor of {@link OperandType::TENSOR_INT32}. The dimensions
* to reduce. Dimension values must be in the range [-n, n).
* * 2: An {@link OperandType::BOOL} scalar, keep_dims. If true,
* retains reduced dimensions with length 1.
*
* Outputs:
* * 0: A tensor of the same {@link OperandType} as input0.
*/
REDUCE_SUM = 80,
/**
* Select and scale the feature map of each region of interest to a unified
* output size by average pooling sampling points from bilinear interpolation.
*
* The region of interest is represented by its upper-left corner coordinate
* (x1,y1) and lower-right corner coordinate (x2,y2) in the original image.
* A spatial scaling factor is applied to map into feature map coordinate.
* A valid region of interest should satisfy x1 <= x2 and y1 <= y2.
*
* No rounding is applied in this operation. The sampling points are unified
* distributed in the pooling bin and their values are calculated by bilinear
* interpolation.
*
* Supported tensor {@link OperandType}:
* * {@link OperandType::TENSOR_FLOAT16}
* * {@link OperandType::TENSOR_FLOAT32}
* * {@link OperandType::TENSOR_QUANT8_ASYMM}
*
* Supported tensor rank: 4, with "NHWC" or "NCHW" data layout.
* With the default data layout NHWC, the data is stored in the order of:
* [batch, height, width, channels]. Alternatively, the data layout could
* be NCHW, the data storage order of: [batch, channels, height, width].
*
* Inputs:
* * 0: A 4-D tensor, specifying the feature map.
* * 1: A 2-D Tensor of shape [num_rois, 4], specifying the locations of
* the regions of interest, each line with format [x1, y1, x2, y2].
* For input0 of type {@link OperandType::TENSOR_QUANT8_ASYMM},
* this tensor should be of {@link OperandType::TENSOR_QUANT16_ASYMM},
* with zeroPoint of 0 and scale of 0.125. Zero num_rois is
* supported for this tensor.
* * 2: An 1-D {@link OperandType::TENSOR_INT32} tensor, of shape
* [num_rois], specifying the batch index of each box. Boxes with
* the same batch index are grouped together. Zero num_rois is
* supported for this tensor.
* * 3: An {@link OperandType::INT32} scalar, specifying the output
* height of the output tensor.
* * 4: An {@link OperandType::INT32} scalar, specifying the output
* width of the output tensor.
* * 5: An {@link OperandType::FLOAT32} scalar, specifying the ratio
* from the height of original image to the height of feature map.
* * 6: An {@link OperandType::FLOAT32} scalar, specifying the ratio
* from the width of original image to the width of feature map.
* * 7: An {@link OperandType::INT32} scalar, specifying the number of
* sampling points in height dimension used to compute the output.
* Set to 0 for adaptive value of ceil(roi_height/out_height).
* * 8: An {@link OperandType::INT32} scalar, specifying the number of
* sampling points in width dimension used to compute the output.
* Set to 0 for adaptive value of ceil(roi_width/out_width).
* * 9: An {@link OperandType::BOOL} scalar, set to true to specify
* NCHW data layout for input0 and output0. Set to false for NHWC.
*
* Outputs:
* * 0: A tensor of the same {@link OperandType} as input0. The output
* shape is [num_rois, out_height, out_width, depth].
* For a {@link OperandType::TENSOR_QUANT8_ASYMM} tensor,
* the scale and zeroPoint can be different from the input0 scale and zeroPoint.
*/
ROI_ALIGN = 81,
/**
* Select and scale the feature map of each region of interest to a unified
* output size by max-pooling.
*
* The region of interest is represented by its upper-left corner coordinate
* (x1,y1) and lower-right corner coordinate (x2,y2) in the original image.
* A spatial scaling factor is applied to map into feature map coordinate.
* A valid region of interest should satisfy x1 <= x2 and y1 <= y2.
*
* Rounding is applied in this operation to ensure integer boundary for
* regions of interest and pooling bins.
*
* Supported tensor {@link OperandType}:
* * {@link OperandType::TENSOR_FLOAT16}
* * {@link OperandType::TENSOR_FLOAT32}
* * {@link OperandType::TENSOR_QUANT8_ASYMM}
*
* Supported tensor rank: 4, with "NHWC" or "NCHW" data layout.
* With the default data layout NHWC, the data is stored in the order of:
* [batch, height, width, channels]. Alternatively, the data layout could
* be NCHW, the data storage order of: [batch, channels, height, width].
*
* Inputs:
* * 0: A 4-D tensor, specifying the feature map.
* * 1: A 2-D Tensor of shape [num_rois, 4], specifying the locations of
* the regions of interest, each line with format [x1, y1, x2, y2].
* For input0 of type {@link OperandType::TENSOR_QUANT8_ASYMM},
* this tensor should be of {@link OperandType::TENSOR_QUANT16_ASYMM},
* with zeroPoint of 0 and scale of 0.125.
* * 2: An 1-D {@link OperandType::TENSOR_INT32} tensor, of shape
* [num_rois], specifying the batch index of each box. Boxes with
* the same batch index are grouped together.
* * 3: An {@link OperandType::INT32} scalar, specifying the output
* height of the output tensor.
* * 4: An {@link OperandType::INT32} scalar, specifying the output
* width of the output tensor.
* * 5: An {@link OperandType::FLOAT32} scalar, specifying the ratio
* from the height of original image to the height of feature map.
* * 6: An {@link OperandType::FLOAT32} scalar, specifying the ratio
* from the width of original image to the width of feature map.
* * 7: An {@link OperandType::BOOL} scalar, set to true to specify
* NCHW data layout for input0 and output0. Set to false for NHWC.
*
* Outputs:
* * 0: A tensor of the same {@link OperandType} as input0. The output
* shape is [num_rois, out_height, out_width, depth].
* For a {@link OperandType::TENSOR_QUANT8_ASYMM} tensor,
* the scale and zeroPoint must be the same as input0.
*/
ROI_POOLING = 82,
/**
* Computes reciprocal of square root of x element-wise.
*
* Supported tensor {@link OperandType}:
* * {@link OperandType::TENSOR_FLOAT16}
* * {@link OperandType::TENSOR_FLOAT32}
*
* Supported tensor rank: from 1.
*
* Inputs:
* * 0: A tensor.
*
* Outputs:
* * 0: The output tensor of same shape as input0.
*/
RSQRT = 83,
/**
* Using a tensor of booleans c and input tensors x and y select values
* elementwise from both input tensors:
*
* O[i] = C[i] ? x[i] : y[i].
*
* Supported tensor {@link OperandType}:
* * {@link OperandType::TENSOR_FLOAT16}
* * {@link OperandType::TENSOR_FLOAT32}
* * {@link OperandType::TENSOR_INT32}
* * {@link OperandType::TENSOR_QUANT8_ASYMM}
*
* Supported tensor rank: from 1
*
* Inputs:
* * 0: A tensor of type {@link OperandType::TENSOR_BOOL8} acting as a
* mask that chooses, based on the value at each element, whether the
* corresponding element in the output should be taken from input1 (if
* true) or input2 (if false).
* * 1: An input tensor of the same shape as input0.
* * 2: An input tensor of the same shape and type as input1.
* For a {@link OperandType::TENSOR_QUANT8_ASYMM} tensor,
* the scales and zeroPoint can be different from input1 scale and zeroPoint.
*
* Outputs:
* * 0: A tensor of the same type and shape as input1 and input2.
* For a {@link OperandType::TENSOR_QUANT8_ASYMM} tensor,
* the scale and zeroPoint can be different from inputs' scale and zeroPoint.
*/
SELECT = 84,
/**
* Computes sin of x element-wise.
*
* Supported tensor {@link OperandType}:
* * {@link OperandType::TENSOR_FLOAT16}
* * {@link OperandType::TENSOR_FLOAT32}
*
* Supported tensor rank: from 1.
*
* Inputs:
* * 0: A tensor.
*
* Outputs:
* * 0: The output tensor of same shape as input0.
*/
SIN = 85,
/**
* Extracts a slice of specified size from the input tensor starting at a
* specified location.
*
* The starting location is specified as a 1-D tensor containing offsets
* for each dimension. The size is specified as a 1-D tensor containing
* either size of a slice along corresponding dimension or -1. In the latter
* case, all the remaining elements in dimension are included in the slice.
*
* A sum of begin offset and a size of a slice must not exceed size of a
* corresponding dimension.
*
* Supported tensor {@link OperandType}:
* * {@link OperandType::TENSOR_FLOAT16}
* * {@link OperandType::TENSOR_FLOAT32}
* * {@link OperandType::TENSOR_INT32}
* * {@link OperandType::TENSOR_QUANT8_ASYMM}
*
* Supported tensor rank: from 1
*
* Inputs:
* * 0: An n-D tensor to take slice from, may be zero-sized.
* * 1: A 1-D tensor of type {@link OperandType::TENSOR_INT32} specifying
* the beginning indices of the slice in each dimension.
* * 2: A 1-D tensor of type {@link OperandType::TENSOR_INT32} specifying
* the size of the slice in each dimension.
*
* Outputs:
* * 0: An n-D tensor of the same type as the input containing the slice.
* For a {@link OperandType::TENSOR_QUANT8_ASYMM} tensor,
* its scale and zeroPoint has to be same as the input0 scale and zeroPoint.
*/
SLICE = 86,
/**
* Splits a tensor along a given axis into num_splits subtensors.
*
* Supported tensor {@link OperandType}:
* * {@link OperandType::TENSOR_FLOAT16}
* * {@link OperandType::TENSOR_FLOAT32}
* * {@link OperandType::TENSOR_INT32}
* * {@link OperandType::TENSOR_QUANT8_ASYMM}
*
* Supported tensor rank: from 1
*
* Inputs:
* * 0: An n-D tensor to split.
* * 1: An {@link OperandType::INT32} scalar specifying the axis along
* which to split.
* * 2: An {@link OperandType::INT32} scalar indicating the number of
* splits along given axis. Must evenly divide axis size.
*
* Outputs:
* * 0 ~ (num_splits - 1): Resulting subtensors.
* For a {@link OperandType::TENSOR_QUANT8_ASYMM} tensor,
* the scale and zeroPoint must be the same as input0.
*/
SPLIT = 87,
/**
* Computes square root of x element-wise.
*
* Supported tensor {@link OperandType}:
* * {@link OperandType::TENSOR_FLOAT16}
* * {@link OperandType::TENSOR_FLOAT32}
*
* Supported tensor rank: from 1.
*
* Inputs:
* * 0: A tensor.
*
* Outputs:
* * 0: The output tensor of same shape as input0.
*/
SQRT = 88,
/**
* Constructs a tensor by tiling a given tensor.
*
* This operation creates a new tensor by replicating `input` `multiples`
* times. The output tensor's i-th dimension has `input.dims(i) * multiples[i]`
* elements, and the values of `input` are replicated `multiples[i]` times
* along the i-th dimension.
* For example, tiling `[a b c d]` by `[2]` produces `[a b c d a b c d]`.
*
* Supported tensor {@link OperandType}:
* * {@link OperandType::TENSOR_FLOAT16}
* * {@link OperandType::TENSOR_FLOAT32}
* * {@link OperandType::TENSOR_INT32}
* * {@link OperandType::TENSOR_QUANT8_ASYMM}
*
* Supported tensor rank: from 1
*
* Inputs:
* * 0: input, an n-D tensor specifying the input.
* * 1: multiples, a 1-D tensor of {@link OperandType::TENSOR_INT32}.
* The length of multiples must be n.
*
* Outputs:
* * 0: A tiled tensor of the same {@link OperandType} and rank as `input`.
* For a {@link OperandType::TENSOR_QUANT8_ASYMM} tensor,
* the scale and zeroPoint must be the same as input0.
*/
TILE = 89,
/**
* Finds values and indices of the k largest entries for the last dimension.
*
* Resulting values in each dimensions are sorted in descending order. If
* two values are equal, the one with larger index appears first.
*
* Supported tensor {@link OperandType}:
* * {@link OperandType::TENSOR_FLOAT16}
* * {@link OperandType::TENSOR_FLOAT32}
* * {@link OperandType::TENSOR_INT32}
* * {@link OperandType::TENSOR_QUANT8_ASYMM}
*
* Supported tensor rank: from 1
*
* Inputs:
* * 0: input, an n-D tensor specifying the input.
* * 1: k, an {@link OperandType::INT32} scalar, specifying the number of
* top elements to look for along the last dimension.
*
* Outputs:
* * 0: An n-D tensor of the same type as the input, containing the k
* largest elements along each last dimensional slice.
* For a {@link OperandType::TENSOR_QUANT8_ASYMM} tensor,
* the scale and zeroPoint must be the same as input0.
* * 1: An n-D tensor of type {@link OperandType::TENSOR_INT32}
* containing the indices of values within the last dimension of input.
*/
TOPK_V2 = 90,
/**
* Performs the transpose of 2-D convolution operation.
*
* This operation is sometimes called "deconvolution" after Deconvolutional
* Networks, but is actually the transpose (gradient) of
* {@link OperandType::CONV_2D} rather than an actual deconvolution.
*
* The output dimensions are functions of the filter dimensions, stride, and
* padding.
*
* Supported tensor {@link OperandType} configurations:
* * 16 bit floating point:
* * * {@link OperandType::TENSOR_FLOAT16} for input, filter, output, and bias.
*
* * 32 bit floating point:
* * * {@link OperandType::TENSOR_FLOAT32} for input, filter, output, and bias.
*
* * Quantized:
* * * {@link OperandType::TENSOR_QUANT8_ASYMM} for input, filter, and output.
* * * {@link OperandType::TENSOR_INT32} for bias (with scale set to
* * * input.scale * filter.scale).
*
* * Quantized with symmetric per channel quantization for the filter:
* * * {@link OperandType::TENSOR_QUANT8_ASYMM} for input, and output.
* * * {@link OperandType::TENSOR_QUANT8_SYMM_PER_CHANNEL} for filter.
* * * {@link OperandType::TENSOR_INT32} for bias (scale set to 0.0,
* * * each value scaling is separate and equal to input.scale * filter.scales[channel]).
*
* Supported tensor rank: 4, with "NHWC" or "NCHW" data layout.
* With the default data layout NHWC, the data is stored in the order of:
* [batch, height, width, channels]. Alternatively, the data layout could
* be NCHW, the data storage order of: [batch, channels, height, width].
*
* Both explicit padding and implicit padding are supported.
*
* Inputs (explicit padding):
* * 0: A 4-D tensor, of shape [batches, height, width, depth_in],
* specifying the input.
* * 1: A 4-D tensor, of shape
* [depth_out, filter_height, filter_width, depth_in], specifying the
* filter. For tensor of type
* {@link OperandType::TENSOR_QUANT8_SYMM_PER_CHANNEL} the channel
* dimension (SymmPerChannelQuantParams::channelDim) must be set to 0.
* * 2: A 1-D tensor, of shape [depth_out], specifying the bias. For input
* tensor of type {@link OperandType::TENSOR_FLOAT32} or
* {@link OperandType::TENSOR_FLOAT16}, the bias must be of the
* same type.
* For filter tensor of {@link OperandType::TENSOR_QUANT8_ASYMM},
* the bias should be of {@link OperandType::TENSOR_INT32},
* with zeroPoint of 0 and bias_scale == input_scale * filter_scale.
* For filter tensor of {@link OperandType::TENSOR_QUANT8_SYMM_PER_CHANNEL},
* the bias must be of {@link OperandType::TENSOR_INT32}, with zeroPoint of 0
* and bias_scale of 0. The actual scale of each value 'i' is equal to
* bias_scale[i] = input_scale * filter_scale[i].
* * 3: An {@link OperandType::INT32} scalar, specifying the padding on
* the left, in the ‘width’ dimension.
* * 4: An {@link OperandType::INT32} scalar, specifying the padding on
* the right, in the ‘width’ dimension.
* * 5: An {@link OperandType::INT32} scalar, specifying the padding on
* the top, in the ‘height’ dimension.
* * 6: An {@link OperandType::INT32} scalar, specifying the padding on
* the bottom, in the ‘height’ dimension.
* * 7: An {@link OperandType::INT32} scalar, specifying the stride when
* walking through input in the ‘width’ dimension.
* * 8: An {@link OperandType::INT32} scalar, specifying the stride when
* walking through input in the ‘height’ dimension.
* * 9: An {@link OperandType::INT32} scalar, and has to be one of the
* {@link FusedActivationFunc} values. Specifies the activation to
* invoke on the result.
* * 10: An {@link OperandType::BOOL} scalar, set to true to specify
* NCHW data layout for input0 and output0. Set to false for NHWC.
*
* Inputs (implicit padding):
* * 0: A 4-D tensor, of shape [batches, height, width, depth_in],
* specifying the input.
* * 1: A 4-D tensor, of shape
* [depth_out, filter_height, filter_width, depth_in], specifying the
* filter. For tensor of type
* {@link OperandType::TENSOR_QUANT8_SYMM_PER_CHANNEL} the channel
* dimension (SymmPerChannelQuantParams::channelDim) must be set to 0.
* * 2: A 1-D tensor, of shape [depth_out], specifying the bias. For input
* tensor of type {@link OperandType::TENSOR_FLOAT32} or
* {@link OperandType::TENSOR_FLOAT16}, the bias should be of the
* same type.
* For filter tensor of {@link OperandType::TENSOR_QUANT8_ASYMM},
* the bias should be of {@link OperandType::TENSOR_INT32},
* with zeroPoint of 0 and bias_scale == input_scale * filter_scale.
* For filter tensor of {@link OperandType::TENSOR_QUANT8_SYMM_PER_CHANNEL},
* the bias must be of {@link OperandType::TENSOR_INT32}, with zeroPoint of 0
* and bias_scale of 0. The actual scale of each value 'i' is equal to
* bias_scale[i] = input_scale * filter_scale[i].
* * 3: An {@link OperandType::TENSOR_INT32} tensor, specifying the output
* tensor shape.
* * 4: An {@link OperandType::INT32} scalar, specifying the implicit
* padding scheme, has to be one of the
* following values: {0 (NONE), 1 (SAME), 2 (VALID)}.
* * 5: An {@link OperandType::INT32} scalar, specifying the stride when
* walking through input in the ‘width’ dimension.
* * 6: An {@link OperandType::INT32} scalar, specifying the stride when
* walking through input in the ‘height’ dimension.
* * 7: An {@link OperandType::INT32} scalar, and has to be one of the
* {@link FusedActivationFunc} values. Specifies the activation to
* invoke on the result.
* * 8: An {@link OperandType::BOOL} scalar, set to true to specify
* NCHW data layout for input0 and output0. Set to false for NHWC.
*
* Outputs:
* * 0: The output 4-D tensor, of shape
* [batches, out_height, out_width, depth_out].
* For a {@link OperandType::TENSOR_QUANT8_ASYMM} tensor,
* the scale and zeroPoint can be different from inputs' scale and zeroPoint.
*/
TRANSPOSE_CONV_2D = 91,
/**
* A recurrent neural network specified by an LSTM cell.
*
* Performs (fully) dynamic unrolling of input.
*
* This Op unrolls the input along the time dimension, and implements the
* following operation for each element in the sequence
* s = 1...sequence_length:
* outputs[s] = projection(state = activation(LSTMOp(inputs[s])))
*
* Where LSTMOp is the LSTM op as in {@link OperandType::LSTM},
* the "projection" is an optional projection layer from state and output
* and the “activation” is the function passed as the
* “fused_activation_function” argument (if not “NONE”).
*
* Supported tensor {@link OperandType}:
* * {@link OperandType::TENSOR_FLOAT16}
* * {@link OperandType::TENSOR_FLOAT32}
*
* Supported tensor rank: 3, either time-major or batch-major.
*
* All input and output tensors must be of the same type.
*
* Inputs:
* * 0: The input (\f$x_t\f$).
* A 3-D tensor of shape:
* If time-major: [max_time, batch_size, input_size]
* If batch-major: [batch_size, max_time, input_size]
* where “max_time” is the number of timesteps (sequence length),
* “batch_size” corresponds to the batching dimension, and
* “input_size” is the size of the input.
* * 1: The input-to-input weights (\f$W_{xi}\f$). Optional.
* A 2-D tensor of shape [num_units, input_size], where “num_units”
* corresponds to the number of cell units.
* * 2: The input-to-forget weights (\f$W_{xf}\f$).
* A 2-D tensor of shape [num_units, input_size].
* * 3: The input-to-cell weights (\f$W_{xc}\f$).
* A 2-D tensor of shape [num_units, input_size].
* * 4: The input-to-output weights (\f$W_{xo}\f$).
* A 2-D tensor of shape [num_units, input_size].
* * 5: The recurrent-to-input weights (\f$W_{hi}\f$). Optional.
* A 2-D tensor of shape [num_units, output_size], where “output_size”
* corresponds to either the number of cell units (i.e., “num_units”),
* or the second dimension of the “projection_weights”, if defined.
* * 6: The recurrent-to-forget weights (\f$W_{hf}\f$).
* A 2-D tensor of shape [num_units, output_size].
* * 7: The recurrent-to-cell weights (\f$W_{hc}\f$).
* A 2-D tensor of shape [num_units, output_size].
* * 8: The recurrent-to-output weights (\f$W_{ho}\f$).
* A 2-D tensor of shape [num_units, output_size].
* * 9: The cell-to-input weights (\f$W_{ci}\f$). Optional.
* A 1-D tensor of shape [num_units].
* * 10:The cell-to-forget weights (\f$W_{cf}\f$). Optional.
* A 1-D tensor of shape [num_units].
* * 11:The cell-to-output weights (\f$W_{co}\f$). Optional.
* A 1-D tensor of shape [num_units].
* * 12:The input gate bias (\f$b_i\f$). Optional.
* A 1-D tensor of shape [num_units].
* * 13:The forget gate bias (\f$b_f\f$).
* A 1-D tensor of shape [num_units].
* * 14:The cell bias (\f$b_c\f$).
* A 1-D tensor of shape [num_units].
* * 15:The output gate bias (\f$b_o\f$).
* A 1-D tensor of shape [num_units].
* * 16:The projection weights (\f$W_{proj}\f$). Optional.
* A 2-D tensor of shape [output_size, num_units].
* * 17:The projection bias (\f$b_{proj}\f$). Optional.
* A 1-D tensor of shape [output_size].
* * 18:The output state (in) (\f$h_{t-1}\f$).
* A 2-D tensor of shape [batch_size, output_size].
* * 19:The cell state (in) (\f$C_{t-1}\f$).
* A 2-D tensor of shape [batch_size, num_units].
* * 20:The activation function (\f$g\f$).
* A value indicating the activation function:
* <ul>
* <li>0: None;
* <li>1: Relu;
* <li>3: Relu6;
* <li>4: Tanh;
* <li>6: Sigmoid.
* </ul>
* * 21:The clipping threshold (\f$t_{cell}\f$) for the cell state, such
* that values are bound within [-cell_clip, cell_clip]. If set to 0.0
* then clipping is disabled.
* * 22:The clipping threshold (\f$t_{proj}\f$) for the output from the
* projection layer, such that values are bound within
* [-proj_clip, proj_clip]. If set to 0.0 then clipping is disabled.
* * 23:Time-major if true, batch-major if false.
* * 24:The input layer normalization weights. Optional.
* A 1-D tensor of shape [num_units]. Used to rescale normalized inputs
* to activation at input gate.
* * 25:The forget layer normalization weights. Optional.
* A 1-D tensor of shape [num_units]. Used to rescale normalized inputs
* to activation at forget gate.
* * 26:The cell layer normalization weights. Optional.
* A 1-D tensor of shape [num_units]. Used to rescale normalized inputs
* to activation at cell gate.
* * 27:The output layer normalization weights. Optional.
* A 1-D tensor of shape [num_units]. Used to rescale normalized inputs
* to activation at output gate.
*
* Outputs:
* * 0: The output (\f$o_t\f$).
* A 3-D tensor of shape:
* If time-major: [max_time, batch_size, output_size]
* If batch-major: [batch_size, max_time, output_size]
*/
UNIDIRECTIONAL_SEQUENCE_LSTM = 92,
/**
* A recurrent neural network layer that applies a basic RNN cell to a
* sequence of inputs.
*
* This layer unrolls the input along the sequence dimension, and implements
* the following operation
* for each element in the sequence s = 1...sequence_length:
* outputs[s] = state = activation(inputs[s] * input_weights’ + state *
* recurrent_weights’ + bias)
*
* Where:
* * “input_weights” is a weight matrix that multiplies the inputs;
* * “recurrent_weights” is a weight matrix that multiplies the current
* “state” which itself is the output from the previous time step
* computation;
* * “bias” is a bias vector (added to each output vector in the batch);
* * “activation” is the function passed as the “fused_activation_function”
* argument (if not “NONE”).
*
* Supported tensor {@link OperandType}:
* * {@link OperandType::TENSOR_FLOAT16}
* * {@link OperandType::TENSOR_FLOAT32}
*
* The input tensors must all be the same type.
*
* Inputs:
* * 0: input.
* A 3-D tensor. The shape is defined by the input 6 (timeMajor). If
* it is set to 1, then the input has a shape [maxTime, batchSize,
* inputSize], otherwise the input has a shape [batchSize, maxTime,
* inputSize].
* * 1: weights.
* A 2-D tensor of shape [numUnits, inputSize].
* * 2: recurrent_weights.
* A 2-D tensor of shape [numUnits, numUnits].
* * 3: bias.
* A 1-D tensor of shape [numUnits].
* * 4: hidden state
* A 2-D tensor of shape [batchSize, numUnits]. Specifies a hidden
* state input for the first time step of the computation.
* * 5: fusedActivationFunction.
* A {@link FusedActivationFunc} value indicating the activation function. If
* “NONE” is specified then it results in a linear activation.
* * 6: timeMajor
* An {@link OperandType::INT32} scalar specifying the shape format
* of input and output tensors. Must be set to either 0 or 1.
* Outputs:
* * 0: output.
* A 3-D tensor. The shape is defined by the input 6 (timeMajor). If
* it is set to 1, then the output has a shape [maxTime, batchSize,
* numUnits], otherwise the output has a shape [batchSize, maxTime,
* numUnits].
*/
UNIDIRECTIONAL_SEQUENCE_RNN = 93,
/**
* Resizes images to given size using the nearest neighbor interpretation.
*
* Resized images must be distorted if their output aspect ratio is not the
* same as input aspect ratio. The corner pixels of output may not be the
* same as corner pixels of input.
*
* Supported tensor {@link OperandType}:
* * {@link OperandType::TENSOR_FLOAT16}
* * {@link OperandType::TENSOR_FLOAT32}
* * {@link OperandType::TENSOR_QUANT8_ASYMM}
*
* Supported tensor rank: 4, with "NHWC" or "NCHW" data layout.
* With the default data layout NHWC, the data is stored in the order of:
* [batch, height, width, channels]. Alternatively, the data layout could
* be NCHW, the data storage order of: [batch, channels, height, width].
*
* Both resizing by shape and resizing by scale are supported.
*
* Inputs (resizing by shape):
* * 0: A 4-D tensor, of shape [batches, height, width, depth], specifying
* the input. Zero batches is supported for this tensor.
* * 1: An {@link OperandType::INT32} scalar, specifying the output
* width of the output tensor.
* * 2: An {@link OperandType::INT32} scalar, specifying the output
* height of the output tensor.
* * 3: An {@link OperandType::BOOL} scalar, default to false.
* Set to true to specify NCHW data layout for input0 and output0.
*
* Inputs (resizing by scale):
* * 0: A 4-D tensor, of shape [batches, height, width, depth], specifying
* the input. Zero batches is supported for this tensor.
* * 1: A scalar, specifying width_scale, the scaling factor of the width
* dimension from the input tensor to the output tensor. The output
* width is calculated as new_width = floor(width * width_scale).
* The scalar must be of {@link OperandType::FLOAT16} if input0 is
* of {@link OperandType::TENSOR_FLOAT16} and of
* {@link OperandType::FLOAT32} otherwise.
* * 2: A scalar, specifying height_scale, the scaling factor of the height
* dimension from the input tensor to the output tensor. The output
* height is calculated as new_height = floor(height * height_scale).
* The scalar must be of {@link OperandType::FLOAT16} if input0 is
* of {@link OperandType::TENSOR_FLOAT16} and of
* {@link OperandType::FLOAT32} otherwise.
* * 3: An {@link OperandType::BOOL} scalar, default to false.
* Set to true to specify NCHW data layout for input0 and output0.
*
* Outputs:
* * 0: The output 4-D tensor, of shape
* [batches, new_height, new_width, depth].
* For a {@link OperandType::TENSOR_QUANT8_ASYMM} tensor,
* the scale and zeroPoint must be the same as input0.
*/
RESIZE_NEAREST_NEIGHBOR = 94,
/**
* DEPRECATED. Since NNAPI 1.2, extensions are the preferred alternative to
* OEM operation and data types.
*
* This operation is OEM specific. It should only be used for OEM
* applications.
*/
OEM_OPERATION = 10000 /* @1.1::OperationType:OEM_OPERATION */,
};
/**
* The range of values in the OperationType enum.
*/
enum class OperationTypeRange : uint32_t {
BASE_MIN = 0u,
FUNDAMENTAL_MIN = 0u,
FUNDAMENTAL_MAX = 94u,
OEM_MIN = 10000u,
OEM_MAX = 10000u,
BASE_MAX = 65535u /* 0xFFFF */,
};
/**
* Device types.
*
* The type of NNAPI device.
*/
enum class DeviceType : int32_t {
/**
* The device does not fall into any category below.
*/
OTHER = 1,
/**
* The device runs NNAPI models on single or multi-core CPU.
*/
CPU = 2,
/**
* The device can run NNAPI models and also accelerate graphics APIs such
* as OpenGL ES and Vulkan.
*/
GPU = 3,
/**
* Dedicated accelerator for Machine Learning workloads.
*/
ACCELERATOR = 4,
};
/**
* The capabilities of a driver.
*
* Performance of an operation comes from the type of its first operand.
* This represents performance for non extension operand types.
*/
struct Capabilities final {
// Forward declaration for forward reference support:
struct OperandPerformance;
/**
* Driver performance when operating on a particular data type.
* In the case of float32 data, this is used when the calculations
* are not relaxed.
*/
struct OperandPerformance final {
::android::hardware::neuralnetworks::V1_2::OperandType type __attribute__ ((aligned(4)));
::android::hardware::neuralnetworks::V1_0::PerformanceInfo info __attribute__ ((aligned(4)));
};
static_assert(offsetof(::android::hardware::neuralnetworks::V1_2::Capabilities::OperandPerformance, type) == 0, "wrong offset");
static_assert(offsetof(::android::hardware::neuralnetworks::V1_2::Capabilities::OperandPerformance, info) == 4, "wrong offset");
static_assert(sizeof(::android::hardware::neuralnetworks::V1_2::Capabilities::OperandPerformance) == 12, "wrong size");
static_assert(__alignof(::android::hardware::neuralnetworks::V1_2::Capabilities::OperandPerformance) == 4, "wrong alignment");
/**
* Driver performance when operating on float32 data but performing
* calculations with range and/or precision as low as that of the IEEE
* 754 16-bit floating-point format.
*/
::android::hardware::neuralnetworks::V1_0::PerformanceInfo relaxedFloat32toFloat16PerformanceScalar __attribute__ ((aligned(4)));
::android::hardware::neuralnetworks::V1_0::PerformanceInfo relaxedFloat32toFloat16PerformanceTensor __attribute__ ((aligned(4)));
/**
* Performance by operand type. Must be sorted by OperandType.
* If a particular OperandType is not present in operandPerformance,
* its performance is treated as { .execTime = FLT_MAX, .powerUsage = FLT_MAX }.
*/
::android::hardware::hidl_vec<::android::hardware::neuralnetworks::V1_2::Capabilities::OperandPerformance> operandPerformance __attribute__ ((aligned(8)));
};
static_assert(offsetof(::android::hardware::neuralnetworks::V1_2::Capabilities, relaxedFloat32toFloat16PerformanceScalar) == 0, "wrong offset");
static_assert(offsetof(::android::hardware::neuralnetworks::V1_2::Capabilities, relaxedFloat32toFloat16PerformanceTensor) == 8, "wrong offset");
static_assert(offsetof(::android::hardware::neuralnetworks::V1_2::Capabilities, operandPerformance) == 16, "wrong offset");
static_assert(sizeof(::android::hardware::neuralnetworks::V1_2::Capabilities) == 32, "wrong size");
static_assert(__alignof(::android::hardware::neuralnetworks::V1_2::Capabilities) == 8, "wrong alignment");
/**
* Describes one operation of the model's graph.
*/
struct Operation final {
/**
* The operation type.
*
* Besides the values listed in {@link OperationType}, any value above
* {@link OperationTypeRange::BASE_MAX} is possible and should be interpreted
* as an extension type according to {@link Model::extensionNameToPrefix}.
*/
::android::hardware::neuralnetworks::V1_2::OperationType type __attribute__ ((aligned(4)));
/**
* Describes the table that contains the indexes of the inputs of the
* operation. The offset is the index in the operandIndexes table.
*/
::android::hardware::hidl_vec<uint32_t> inputs __attribute__ ((aligned(8)));
/**
* Describes the table that contains the indexes of the outputs of the
* operation. The offset is the index in the operandIndexes table.
*/
::android::hardware::hidl_vec<uint32_t> outputs __attribute__ ((aligned(8)));
};
static_assert(offsetof(::android::hardware::neuralnetworks::V1_2::Operation, type) == 0, "wrong offset");
static_assert(offsetof(::android::hardware::neuralnetworks::V1_2::Operation, inputs) == 8, "wrong offset");
static_assert(offsetof(::android::hardware::neuralnetworks::V1_2::Operation, outputs) == 24, "wrong offset");
static_assert(sizeof(::android::hardware::neuralnetworks::V1_2::Operation) == 40, "wrong size");
static_assert(__alignof(::android::hardware::neuralnetworks::V1_2::Operation) == 8, "wrong alignment");
/**
* Parameters for TENSOR_QUANT8_SYMM_PER_CHANNEL operand.
*/
struct SymmPerChannelQuantParams final {
/**
* Array of scaling values for each channel. Each value must be greater than zero.
*/
::android::hardware::hidl_vec<float> scales __attribute__ ((aligned(8)));
/**
* Index of the channel dimension
*/
uint32_t channelDim __attribute__ ((aligned(4)));
};
static_assert(offsetof(::android::hardware::neuralnetworks::V1_2::SymmPerChannelQuantParams, scales) == 0, "wrong offset");
static_assert(offsetof(::android::hardware::neuralnetworks::V1_2::SymmPerChannelQuantParams, channelDim) == 16, "wrong offset");
static_assert(sizeof(::android::hardware::neuralnetworks::V1_2::SymmPerChannelQuantParams) == 24, "wrong size");
static_assert(__alignof(::android::hardware::neuralnetworks::V1_2::SymmPerChannelQuantParams) == 8, "wrong alignment");
/**
* Describes one operand of the model's graph.
*/
struct Operand final {
// Forward declaration for forward reference support:
struct ExtraParams;
struct ExtraParams final {
enum class hidl_discriminator : uint8_t {
/**
* No additional parameters.
*/
none = 0, // ::android::hidl::safe_union::V1_0::Monostate
/**
* Symmetric per-channel quantization parameters.
*
* Only applicable to operands of type TENSOR_QUANT8_SYMM_PER_CHANNEL.
*/
channelQuant = 1, // ::android::hardware::neuralnetworks::V1_2::SymmPerChannelQuantParams
/**
* Extension operand parameters.
*
* The framework treats this as an opaque data blob.
* The format is up to individual extensions.
*/
extension = 2, // ::android::hardware::hidl_vec<uint8_t>
};
ExtraParams();
~ExtraParams();
ExtraParams(ExtraParams&&);
ExtraParams(const ExtraParams&);
ExtraParams& operator=(ExtraParams&&);
ExtraParams& operator=(const ExtraParams&);
void none(const ::android::hidl::safe_union::V1_0::Monostate&);
void none(::android::hidl::safe_union::V1_0::Monostate&&);
::android::hidl::safe_union::V1_0::Monostate& none();
const ::android::hidl::safe_union::V1_0::Monostate& none() const;
void channelQuant(const ::android::hardware::neuralnetworks::V1_2::SymmPerChannelQuantParams&);
void channelQuant(::android::hardware::neuralnetworks::V1_2::SymmPerChannelQuantParams&&);
::android::hardware::neuralnetworks::V1_2::SymmPerChannelQuantParams& channelQuant();
const ::android::hardware::neuralnetworks::V1_2::SymmPerChannelQuantParams& channelQuant() const;
void extension(const ::android::hardware::hidl_vec<uint8_t>&);
void extension(::android::hardware::hidl_vec<uint8_t>&&);
::android::hardware::hidl_vec<uint8_t>& extension();
const ::android::hardware::hidl_vec<uint8_t>& extension() const;
// Utility methods
hidl_discriminator getDiscriminator() const;
constexpr size_t hidl_getUnionOffset() const {
return offsetof(::android::hardware::neuralnetworks::V1_2::Operand::ExtraParams, hidl_u);
}
private:
void hidl_destructUnion();
hidl_discriminator hidl_d __attribute__ ((aligned(1))) ;
union hidl_union final {
::android::hidl::safe_union::V1_0::Monostate none __attribute__ ((aligned(1)));
::android::hardware::neuralnetworks::V1_2::SymmPerChannelQuantParams channelQuant __attribute__ ((aligned(8)));
::android::hardware::hidl_vec<uint8_t> extension __attribute__ ((aligned(8)));
hidl_union();
~hidl_union();
} hidl_u;
static_assert(sizeof(::android::hardware::neuralnetworks::V1_2::Operand::ExtraParams::hidl_union) == 24, "wrong size");
static_assert(__alignof(::android::hardware::neuralnetworks::V1_2::Operand::ExtraParams::hidl_union) == 8, "wrong alignment");
static_assert(sizeof(::android::hardware::neuralnetworks::V1_2::Operand::ExtraParams::hidl_discriminator) == 1, "wrong size");
static_assert(__alignof(::android::hardware::neuralnetworks::V1_2::Operand::ExtraParams::hidl_discriminator) == 1, "wrong alignment");
};
static_assert(sizeof(::android::hardware::neuralnetworks::V1_2::Operand::ExtraParams) == 32, "wrong size");
static_assert(__alignof(::android::hardware::neuralnetworks::V1_2::Operand::ExtraParams) == 8, "wrong alignment");
/**
* The data type.
*
* Besides the values listed in {@link OperandType}, any value above
* {@link OperandTypeRange::BASE_MAX} is possible and should be interpreted
* as an extension type according to {@link Model::extensionNameToPrefix}.
*/
::android::hardware::neuralnetworks::V1_2::OperandType type __attribute__ ((aligned(4)));
/**
* Dimensions of the operand.
*
* For a scalar operand, dimensions.size() must be 0.
*
* A tensor operand with all dimensions specified has "fully
* specified" dimensions. Whenever possible (i.e., whenever the
* dimensions are known at model construction time), a tensor
* operand should have (but is not required to have) fully
* specified dimensions, in order to enable the best possible
* performance.
*
* If a tensor operand's dimensions are not fully specified, the
* dimensions of the operand are deduced from the operand
* dimensions and values of the operation for which that operand
* is an output.
*
* In the following situations, a tensor operand's dimensions must
* be fully specified:
*
* . The operand has lifetime CONSTANT_COPY or
* CONSTANT_REFERENCE.
*
* . The operand has lifetime MODEL_INPUT. Fully
* specified dimensions must either be present in the
* Operand or they must be provided in the corresponding
* RequestArgument.
* EXCEPTION: If the input is optional and omitted
* (by setting the hasNoValue field of the corresponding
* RequestArgument to true) then it need not have fully
* specified dimensions.
*
* A tensor operand with some number of unspecified dimensions is
* represented by setting each unspecified dimension to 0.
*
* A tensor operand with unspecified rank is represented by providing
* an empty dimensions vector.
*/
::android::hardware::hidl_vec<uint32_t> dimensions __attribute__ ((aligned(8)));
/**
* The number of times this operand appears as an operation input.
*
* (For example, if this operand appears once in one operation's
* input list, and three times in another operation's input list,
* then numberOfConsumers = 4.)
*/
uint32_t numberOfConsumers __attribute__ ((aligned(4)));
/**
* Quantized scale of the operand.
*
* Only applicable if the operand is of type TENSOR_QUANT8_ASYMM or
* TENSOR_INT32.
*/
float scale __attribute__ ((aligned(4)));
/**
* Quantized zero-point offset of the operand.
*
* Only applicable if the operand is of type TENSOR_QUANT8_ASYMM.
*/
int32_t zeroPoint __attribute__ ((aligned(4)));
/**
* How the operand is used.
*/
::android::hardware::neuralnetworks::V1_0::OperandLifeTime lifetime __attribute__ ((aligned(4)));
/**
* Where to find the data for this operand.
* If the lifetime is TEMPORARY_VARIABLE, MODEL_INPUT, MODEL_OUTPUT, or
* NO_VALUE:
* - All the fields must be 0.
* If the lifetime is CONSTANT_COPY:
* - location.poolIndex is 0.
* - location.offset is the offset in bytes into Model.operandValues.
* - location.length is set.
* If the lifetime is CONSTANT_REFERENCE:
* - location.poolIndex is set.
* - location.offset is the offset in bytes into the specified pool.
* - location.length is set.
*/
::android::hardware::neuralnetworks::V1_0::DataLocation location __attribute__ ((aligned(4)));
/**
* Additional parameters specific to a particular operand type.
*/
::android::hardware::neuralnetworks::V1_2::Operand::ExtraParams extraParams __attribute__ ((aligned(8)));
};
static_assert(offsetof(::android::hardware::neuralnetworks::V1_2::Operand, type) == 0, "wrong offset");
static_assert(offsetof(::android::hardware::neuralnetworks::V1_2::Operand, dimensions) == 8, "wrong offset");
static_assert(offsetof(::android::hardware::neuralnetworks::V1_2::Operand, numberOfConsumers) == 24, "wrong offset");
static_assert(offsetof(::android::hardware::neuralnetworks::V1_2::Operand, scale) == 28, "wrong offset");
static_assert(offsetof(::android::hardware::neuralnetworks::V1_2::Operand, zeroPoint) == 32, "wrong offset");
static_assert(offsetof(::android::hardware::neuralnetworks::V1_2::Operand, lifetime) == 36, "wrong offset");
static_assert(offsetof(::android::hardware::neuralnetworks::V1_2::Operand, location) == 40, "wrong offset");
static_assert(offsetof(::android::hardware::neuralnetworks::V1_2::Operand, extraParams) == 56, "wrong offset");
static_assert(sizeof(::android::hardware::neuralnetworks::V1_2::Operand) == 88, "wrong size");
static_assert(__alignof(::android::hardware::neuralnetworks::V1_2::Operand) == 8, "wrong alignment");
/**
* A Neural Network Model.
*
* This includes not only the execution graph, but also constant data such as
* weights or scalars added at construction time. The only information that
* may not be known is the shape of the input tensors.
*/
struct Model final {
// Forward declaration for forward reference support:
struct ExtensionNameAndPrefix;
enum class ExtensionTypeEncoding : uint8_t;
/**
* A correspondence between an extension name and a prefix of operand and
* operation type values.
*/
struct ExtensionNameAndPrefix final {
/**
* The extension name.
*
* See {@link Extension::name} for the format specification.
*/
::android::hardware::hidl_string name __attribute__ ((aligned(8)));
/**
* The unique extension identifier within the model.
*
* See {@link Model::extensionNameToPrefix}.
*/
uint16_t prefix __attribute__ ((aligned(2)));
};
static_assert(offsetof(::android::hardware::neuralnetworks::V1_2::Model::ExtensionNameAndPrefix, name) == 0, "wrong offset");
static_assert(offsetof(::android::hardware::neuralnetworks::V1_2::Model::ExtensionNameAndPrefix, prefix) == 16, "wrong offset");
static_assert(sizeof(::android::hardware::neuralnetworks::V1_2::Model::ExtensionNameAndPrefix) == 24, "wrong size");
static_assert(__alignof(::android::hardware::neuralnetworks::V1_2::Model::ExtensionNameAndPrefix) == 8, "wrong alignment");
/**
* Numeric values of extension operand and operation types have the
* following structure:
* - 16 high bits represent the "prefix", which corresponds uniquely to the
* extension name.
* - 16 low bits represent the type ID within the extension.
*/
enum class ExtensionTypeEncoding : uint8_t {
HIGH_BITS_PREFIX = 16,
LOW_BITS_TYPE = 16,
};
/**
* All operands included in the model.
*/
::android::hardware::hidl_vec<::android::hardware::neuralnetworks::V1_2::Operand> operands __attribute__ ((aligned(8)));
/**
* All operations included in the model.
*
* The operations are sorted into execution order. Every operand
* with lifetime MODEL_OUTPUT or TEMPORARY_VARIABLE must be
* written before it is read.
*/
::android::hardware::hidl_vec<::android::hardware::neuralnetworks::V1_2::Operation> operations __attribute__ ((aligned(8)));
/**
* Input indexes of the model. There must be at least one.
*
* Each value corresponds to the index of the operand in "operands".
*/
::android::hardware::hidl_vec<uint32_t> inputIndexes __attribute__ ((aligned(8)));
/**
* Output indexes of the model. There must be at least one.
*
* Each value corresponds to the index of the operand in "operands".
*/
::android::hardware::hidl_vec<uint32_t> outputIndexes __attribute__ ((aligned(8)));
/**
* A byte buffer containing operand data that were copied into the model.
*
* An operand's value must be located here if and only if Operand::lifetime
* equals OperandLifeTime::CONSTANT_COPY.
*/
::android::hardware::hidl_vec<uint8_t> operandValues __attribute__ ((aligned(8)));
/**
* A collection of shared memory pools containing operand values.
*
* An operand's value must be located here if and only if Operand::lifetime
* equals OperandLifeTime::CONSTANT_REFERENCE.
*/
::android::hardware::hidl_vec<::android::hardware::hidl_memory> pools __attribute__ ((aligned(8)));
/**
* 'true' indicates TENSOR_FLOAT32 may be calculated with range and/or
* precision as low as that of the IEEE 754 16-bit floating-point format.
* 'false' indicates TENSOR_FLOAT32 must be calculated using at least the
* range and precision of the IEEE 754 32-bit floating-point format.
*/
bool relaxComputationFloat32toFloat16 __attribute__ ((aligned(1)));
/**
* The mapping between extension names and prefixes of operand and
* operation type values.
*
* An operand or operation whose numeric type value is above
* {@link OperandTypeRange::BASE_MAX} or
* {@link OperationTypeRange::BASE_MAX} respectively should be interpreted
* as an extension operand. The low
* {@link Model::ExtensionTypeEncoding::LOW_BITS_TYPE} bits of the value
* correspond to the type ID within the extension and the high
* {@link Model::ExtensionTypeEncoding::HIGH_BITS_PREFIX} bits encode
* the "prefix", which maps uniquely to the extension name.
*
* For example, if a model contains an operation whose value is
* 0xAAAABBBB and extensionNameToPrefix contains an entry with
* prefix=0xAAAA and name="vendor.test.test_extension", then
* the operation should be interpreted as the operation 0xBBBB
* of the extension named vendor.test.test_extension.
*
* This is a one-to-one correspondence. That is, there must be at most one
* prefix corresponding to each extension name and at most one extension
* name corresponding to each prefix.
*/
::android::hardware::hidl_vec<::android::hardware::neuralnetworks::V1_2::Model::ExtensionNameAndPrefix> extensionNameToPrefix __attribute__ ((aligned(8)));
};
static_assert(offsetof(::android::hardware::neuralnetworks::V1_2::Model, operands) == 0, "wrong offset");
static_assert(offsetof(::android::hardware::neuralnetworks::V1_2::Model, operations) == 16, "wrong offset");
static_assert(offsetof(::android::hardware::neuralnetworks::V1_2::Model, inputIndexes) == 32, "wrong offset");
static_assert(offsetof(::android::hardware::neuralnetworks::V1_2::Model, outputIndexes) == 48, "wrong offset");
static_assert(offsetof(::android::hardware::neuralnetworks::V1_2::Model, operandValues) == 64, "wrong offset");
static_assert(offsetof(::android::hardware::neuralnetworks::V1_2::Model, pools) == 80, "wrong offset");
static_assert(offsetof(::android::hardware::neuralnetworks::V1_2::Model, relaxComputationFloat32toFloat16) == 96, "wrong offset");
static_assert(offsetof(::android::hardware::neuralnetworks::V1_2::Model, extensionNameToPrefix) == 104, "wrong offset");
static_assert(sizeof(::android::hardware::neuralnetworks::V1_2::Model) == 120, "wrong size");
static_assert(__alignof(::android::hardware::neuralnetworks::V1_2::Model) == 8, "wrong alignment");
/**
* Describes the shape information of an output operand after execution.
*/
struct OutputShape final {
/**
* Dimensions of the operand.
*/
::android::hardware::hidl_vec<uint32_t> dimensions __attribute__ ((aligned(8)));
/**
* Whether the provided buffer size is sufficient for the output.
*/
bool isSufficient __attribute__ ((aligned(1)));
};
static_assert(offsetof(::android::hardware::neuralnetworks::V1_2::OutputShape, dimensions) == 0, "wrong offset");
static_assert(offsetof(::android::hardware::neuralnetworks::V1_2::OutputShape, isSufficient) == 16, "wrong offset");
static_assert(sizeof(::android::hardware::neuralnetworks::V1_2::OutputShape) == 24, "wrong size");
static_assert(__alignof(::android::hardware::neuralnetworks::V1_2::OutputShape) == 8, "wrong alignment");
/**
* Specifies whether or not to measure timing information during execution.
*/
enum class MeasureTiming : int32_t {
NO = 0,
YES = 1,
};
/**
* Timing information measured during execution. Each time is a duration from
* the beginning of some task to the end of that task, including time when that
* task is not active (for example, preempted by some other task, or
* waiting for some resource to become available).
*
* Times are measured in microseconds.
* When a time is not available, it must be reported as UINT64_MAX.
*/
struct Timing final {
/**
* Execution time on device (not driver, which runs on host processor).
*/
uint64_t timeOnDevice __attribute__ ((aligned(8)));
/**
* Execution time in driver (including time on device).
*/
uint64_t timeInDriver __attribute__ ((aligned(8)));
};
static_assert(offsetof(::android::hardware::neuralnetworks::V1_2::Timing, timeOnDevice) == 0, "wrong offset");
static_assert(offsetof(::android::hardware::neuralnetworks::V1_2::Timing, timeInDriver) == 8, "wrong offset");
static_assert(sizeof(::android::hardware::neuralnetworks::V1_2::Timing) == 16, "wrong size");
static_assert(__alignof(::android::hardware::neuralnetworks::V1_2::Timing) == 8, "wrong alignment");
/**
* FmqRequestDatum is a single element of a serialized representation of an
* execution request (a {@link @1.0::Request} object and a {@link MeasureTiming}
* value) which is sent across FastMessageQueue.
*
* The serialized representation for a particular execution is referred to later
* in these descriptions as a 'packet'.
*
* FastMessageQueue can only pass HIDL-defined types that do not involve nested
* buffers, handles, or interfaces.
*
* The request is serialized as follows:
* 1) 'packetInformation'
* 2) For each input operand:
* 2.1) 'inputOperandInformation'
* 2.2) For each dimension element of the operand:
* 2.2.1) 'inputOperandDimensionValue'
* 3) For each output operand:
* 3.1) 'outputOperandInformation'
* 3.2) For each dimension element of the operand:
* 3.2.1) 'outputOperandDimensionValue'
* 4) For each pool:
* 4.1) 'poolIdentifier'
* 5) 'measureTiming'
*/
struct FmqRequestDatum final {
// Forward declaration for forward reference support:
struct PacketInformation;
struct OperandInformation;
/**
* Type to describe the high-level layout of the packet.
*/
struct PacketInformation final {
/**
* How many elements the packet contains, including the
* "packetInformation" datum.
*/
uint32_t packetSize __attribute__ ((aligned(4)));
/**
* Number of input operands.
*/
uint32_t numberOfInputOperands __attribute__ ((aligned(4)));
/**
* Number of output operands.
*/
uint32_t numberOfOutputOperands __attribute__ ((aligned(4)));
/**
* Number of pool identifiers.
*/
uint32_t numberOfPools __attribute__ ((aligned(4)));
};
static_assert(offsetof(::android::hardware::neuralnetworks::V1_2::FmqRequestDatum::PacketInformation, packetSize) == 0, "wrong offset");
static_assert(offsetof(::android::hardware::neuralnetworks::V1_2::FmqRequestDatum::PacketInformation, numberOfInputOperands) == 4, "wrong offset");
static_assert(offsetof(::android::hardware::neuralnetworks::V1_2::FmqRequestDatum::PacketInformation, numberOfOutputOperands) == 8, "wrong offset");
static_assert(offsetof(::android::hardware::neuralnetworks::V1_2::FmqRequestDatum::PacketInformation, numberOfPools) == 12, "wrong offset");
static_assert(sizeof(::android::hardware::neuralnetworks::V1_2::FmqRequestDatum::PacketInformation) == 16, "wrong size");
static_assert(__alignof(::android::hardware::neuralnetworks::V1_2::FmqRequestDatum::PacketInformation) == 4, "wrong alignment");
/**
* Type representing the information for each operand.
*/
struct OperandInformation final {
/**
* If true, the argument does not have a value. This can be used for
* operations that take optional arguments. If true, the fields of
* 'location' are set to 0, 'numberOfDimensions' is set to 0, and the
* dimensions information is omitted from the serialization.
*/
bool hasNoValue __attribute__ ((aligned(1)));
/**
* The location within one of the memory pools passed in the Request.
*/
::android::hardware::neuralnetworks::V1_0::DataLocation location __attribute__ ((aligned(4)));
/**
* Number of subsequent elements that belong to the dimensions vector.
*/
uint32_t numberOfDimensions __attribute__ ((aligned(4)));
};
static_assert(offsetof(::android::hardware::neuralnetworks::V1_2::FmqRequestDatum::OperandInformation, hasNoValue) == 0, "wrong offset");
static_assert(offsetof(::android::hardware::neuralnetworks::V1_2::FmqRequestDatum::OperandInformation, location) == 4, "wrong offset");
static_assert(offsetof(::android::hardware::neuralnetworks::V1_2::FmqRequestDatum::OperandInformation, numberOfDimensions) == 16, "wrong offset");
static_assert(sizeof(::android::hardware::neuralnetworks::V1_2::FmqRequestDatum::OperandInformation) == 20, "wrong size");
static_assert(__alignof(::android::hardware::neuralnetworks::V1_2::FmqRequestDatum::OperandInformation) == 4, "wrong alignment");
enum class hidl_discriminator : uint8_t {
/**
* packetInformation is the first element of the packet and describes the
* remainder of the packet.
*/
packetInformation = 0, // ::android::hardware::neuralnetworks::V1_2::FmqRequestDatum::PacketInformation
/**
* Information for each input operand.
*/
inputOperandInformation = 1, // ::android::hardware::neuralnetworks::V1_2::FmqRequestDatum::OperandInformation
/**
* Element of the dimensions vector.
*/
inputOperandDimensionValue = 2, // uint32_t
/**
* Information for each output operand.
*/
outputOperandInformation = 3, // ::android::hardware::neuralnetworks::V1_2::FmqRequestDatum::OperandInformation
/**
* Element of the dimensions vector.
*/
outputOperandDimensionValue = 4, // uint32_t
/**
* Unique identifier for a pool.
*
* A {@link @1.0::Request} passes across one or more pools of shared memory
* for the inputs and outputs of an execution. However, these memory pools
* are not able to be sent across FastMessageQueue directly. Instead, the
* producing side of the FMQ represents each different pool with a unique
* identifier, and sends this identifier across the FMQ. Whenever the
* consuming side of the FMQ needs the memory corresponding to this unique
* identifier, it can pass the identifier to
* {@link IBurstCallback::getMemories} to retreive the memory. Although this
* HIDL Binder call is expensive compared to communication across FMQ, it is
* only needed in the cases when the consumer does not recognize the unique
* identifier.
*/
poolIdentifier = 5, // int32_t
/**
* Specifies whether or not to measure duration of the execution. The
* duration runs from the time the driver dequeues the request from a
* FastMessageQueue to the time the driver enqueues results to a
* FastMessageQueue.
*/
measureTiming = 6, // ::android::hardware::neuralnetworks::V1_2::MeasureTiming
};
FmqRequestDatum();
~FmqRequestDatum();
FmqRequestDatum(FmqRequestDatum&&);
FmqRequestDatum(const FmqRequestDatum&);
FmqRequestDatum& operator=(FmqRequestDatum&&);
FmqRequestDatum& operator=(const FmqRequestDatum&);
void packetInformation(const ::android::hardware::neuralnetworks::V1_2::FmqRequestDatum::PacketInformation&);
void packetInformation(::android::hardware::neuralnetworks::V1_2::FmqRequestDatum::PacketInformation&&);
::android::hardware::neuralnetworks::V1_2::FmqRequestDatum::PacketInformation& packetInformation();
const ::android::hardware::neuralnetworks::V1_2::FmqRequestDatum::PacketInformation& packetInformation() const;
void inputOperandInformation(const ::android::hardware::neuralnetworks::V1_2::FmqRequestDatum::OperandInformation&);
void inputOperandInformation(::android::hardware::neuralnetworks::V1_2::FmqRequestDatum::OperandInformation&&);
::android::hardware::neuralnetworks::V1_2::FmqRequestDatum::OperandInformation& inputOperandInformation();
const ::android::hardware::neuralnetworks::V1_2::FmqRequestDatum::OperandInformation& inputOperandInformation() const;
void inputOperandDimensionValue(uint32_t);
uint32_t& inputOperandDimensionValue();
uint32_t inputOperandDimensionValue() const;
void outputOperandInformation(const ::android::hardware::neuralnetworks::V1_2::FmqRequestDatum::OperandInformation&);
void outputOperandInformation(::android::hardware::neuralnetworks::V1_2::FmqRequestDatum::OperandInformation&&);
::android::hardware::neuralnetworks::V1_2::FmqRequestDatum::OperandInformation& outputOperandInformation();
const ::android::hardware::neuralnetworks::V1_2::FmqRequestDatum::OperandInformation& outputOperandInformation() const;
void outputOperandDimensionValue(uint32_t);
uint32_t& outputOperandDimensionValue();
uint32_t outputOperandDimensionValue() const;
void poolIdentifier(int32_t);
int32_t& poolIdentifier();
int32_t poolIdentifier() const;
void measureTiming(::android::hardware::neuralnetworks::V1_2::MeasureTiming);
::android::hardware::neuralnetworks::V1_2::MeasureTiming& measureTiming();
::android::hardware::neuralnetworks::V1_2::MeasureTiming measureTiming() const;
// Utility methods
hidl_discriminator getDiscriminator() const;
constexpr size_t hidl_getUnionOffset() const {
return offsetof(::android::hardware::neuralnetworks::V1_2::FmqRequestDatum, hidl_u);
}
private:
void hidl_destructUnion();
hidl_discriminator hidl_d __attribute__ ((aligned(1))) ;
union hidl_union final {
::android::hardware::neuralnetworks::V1_2::FmqRequestDatum::PacketInformation packetInformation __attribute__ ((aligned(4)));
::android::hardware::neuralnetworks::V1_2::FmqRequestDatum::OperandInformation inputOperandInformation __attribute__ ((aligned(4)));
uint32_t inputOperandDimensionValue __attribute__ ((aligned(4)));
::android::hardware::neuralnetworks::V1_2::FmqRequestDatum::OperandInformation outputOperandInformation __attribute__ ((aligned(4)));
uint32_t outputOperandDimensionValue __attribute__ ((aligned(4)));
int32_t poolIdentifier __attribute__ ((aligned(4)));
::android::hardware::neuralnetworks::V1_2::MeasureTiming measureTiming __attribute__ ((aligned(4)));
hidl_union();
~hidl_union();
} hidl_u;
static_assert(sizeof(::android::hardware::neuralnetworks::V1_2::FmqRequestDatum::hidl_union) == 20, "wrong size");
static_assert(__alignof(::android::hardware::neuralnetworks::V1_2::FmqRequestDatum::hidl_union) == 4, "wrong alignment");
static_assert(sizeof(::android::hardware::neuralnetworks::V1_2::FmqRequestDatum::hidl_discriminator) == 1, "wrong size");
static_assert(__alignof(::android::hardware::neuralnetworks::V1_2::FmqRequestDatum::hidl_discriminator) == 1, "wrong alignment");
};
static_assert(sizeof(::android::hardware::neuralnetworks::V1_2::FmqRequestDatum) == 24, "wrong size");
static_assert(__alignof(::android::hardware::neuralnetworks::V1_2::FmqRequestDatum) == 4, "wrong alignment");
/**
* FmqResultDatum is a single element of a serialized representation of the
* values returned from an execution ({@link @1.0::ErrorStatus},
* vec<{@link OutputShape}>, and {@link Timing}) which is returned via
* FastMessageQueue.
*
* The serialized representation for a particular execution is referred to later
* in these descriptions as a 'packet'.
*
* FastMessageQueue can only pass HIDL-defined types that do not involve nested
* buffers, handles, or interfaces.
*
* The execution return values ({@link @1.0::ErrorStatus} and
* vec<{@link OutputShape}>) are serialized as follows:
* 1) 'packetInformation'
* 2) For each returned operand:
* 2.1) 'operandInformation'
* 2.2) For each dimension element of the operand:
* 2.2.1) 'operandDimensionValue'
* 3) 'executionTiming'
*/
struct FmqResultDatum final {
// Forward declaration for forward reference support:
struct PacketInformation;
struct OperandInformation;
/**
* Type to describe the high-level layout of the packet.
*/
struct PacketInformation final {
/**
* How many elements the packet contains, including the
* "packetInformation" datum.
*/
uint32_t packetSize __attribute__ ((aligned(4)));
/**
* Status of the execution.
*/
::android::hardware::neuralnetworks::V1_0::ErrorStatus errorStatus __attribute__ ((aligned(4)));
/**
* Number of returned operands.
*/
uint32_t numberOfOperands __attribute__ ((aligned(4)));
};
static_assert(offsetof(::android::hardware::neuralnetworks::V1_2::FmqResultDatum::PacketInformation, packetSize) == 0, "wrong offset");
static_assert(offsetof(::android::hardware::neuralnetworks::V1_2::FmqResultDatum::PacketInformation, errorStatus) == 4, "wrong offset");
static_assert(offsetof(::android::hardware::neuralnetworks::V1_2::FmqResultDatum::PacketInformation, numberOfOperands) == 8, "wrong offset");
static_assert(sizeof(::android::hardware::neuralnetworks::V1_2::FmqResultDatum::PacketInformation) == 12, "wrong size");
static_assert(__alignof(::android::hardware::neuralnetworks::V1_2::FmqResultDatum::PacketInformation) == 4, "wrong alignment");
/**
* Type representing the information for each operand.
*/
struct OperandInformation final {
/**
* Indicates whether the operand's output buffer is large enough to
* store the operand's result data.
*/
bool isSufficient __attribute__ ((aligned(1)));
/**
* Number of subsequent elements that belong to the dimensions vector.
*/
uint32_t numberOfDimensions __attribute__ ((aligned(4)));
};
static_assert(offsetof(::android::hardware::neuralnetworks::V1_2::FmqResultDatum::OperandInformation, isSufficient) == 0, "wrong offset");
static_assert(offsetof(::android::hardware::neuralnetworks::V1_2::FmqResultDatum::OperandInformation, numberOfDimensions) == 4, "wrong offset");
static_assert(sizeof(::android::hardware::neuralnetworks::V1_2::FmqResultDatum::OperandInformation) == 8, "wrong size");
static_assert(__alignof(::android::hardware::neuralnetworks::V1_2::FmqResultDatum::OperandInformation) == 4, "wrong alignment");
enum class hidl_discriminator : uint8_t {
/**
* packetInformation is the first element of the packet and describes the
* remainder of the packet. It additionally includes the status of the
* execution.
*/
packetInformation = 0, // ::android::hardware::neuralnetworks::V1_2::FmqResultDatum::PacketInformation
/**
* Information for each returned operand.
*/
operandInformation = 1, // ::android::hardware::neuralnetworks::V1_2::FmqResultDatum::OperandInformation
/**
* Element of the dimensions vector.
*/
operandDimensionValue = 2, // uint32_t
/**
* Duration of execution. Unless measurement was requested and execution
* succeeds, all times must be reported as UINT64_MAX. A driver may choose
* to report any time as UINT64_MAX, indicating that measurement is not
* available.
*/
executionTiming = 3, // ::android::hardware::neuralnetworks::V1_2::Timing
};
FmqResultDatum();
~FmqResultDatum();
FmqResultDatum(FmqResultDatum&&);
FmqResultDatum(const FmqResultDatum&);
FmqResultDatum& operator=(FmqResultDatum&&);
FmqResultDatum& operator=(const FmqResultDatum&);
void packetInformation(const ::android::hardware::neuralnetworks::V1_2::FmqResultDatum::PacketInformation&);
void packetInformation(::android::hardware::neuralnetworks::V1_2::FmqResultDatum::PacketInformation&&);
::android::hardware::neuralnetworks::V1_2::FmqResultDatum::PacketInformation& packetInformation();
const ::android::hardware::neuralnetworks::V1_2::FmqResultDatum::PacketInformation& packetInformation() const;
void operandInformation(const ::android::hardware::neuralnetworks::V1_2::FmqResultDatum::OperandInformation&);
void operandInformation(::android::hardware::neuralnetworks::V1_2::FmqResultDatum::OperandInformation&&);
::android::hardware::neuralnetworks::V1_2::FmqResultDatum::OperandInformation& operandInformation();
const ::android::hardware::neuralnetworks::V1_2::FmqResultDatum::OperandInformation& operandInformation() const;
void operandDimensionValue(uint32_t);
uint32_t& operandDimensionValue();
uint32_t operandDimensionValue() const;
void executionTiming(const ::android::hardware::neuralnetworks::V1_2::Timing&);
void executionTiming(::android::hardware::neuralnetworks::V1_2::Timing&&);
::android::hardware::neuralnetworks::V1_2::Timing& executionTiming();
const ::android::hardware::neuralnetworks::V1_2::Timing& executionTiming() const;
// Utility methods
hidl_discriminator getDiscriminator() const;
constexpr size_t hidl_getUnionOffset() const {
return offsetof(::android::hardware::neuralnetworks::V1_2::FmqResultDatum, hidl_u);
}
private:
void hidl_destructUnion();
hidl_discriminator hidl_d __attribute__ ((aligned(1))) ;
union hidl_union final {
::android::hardware::neuralnetworks::V1_2::FmqResultDatum::PacketInformation packetInformation __attribute__ ((aligned(4)));
::android::hardware::neuralnetworks::V1_2::FmqResultDatum::OperandInformation operandInformation __attribute__ ((aligned(4)));
uint32_t operandDimensionValue __attribute__ ((aligned(4)));
::android::hardware::neuralnetworks::V1_2::Timing executionTiming __attribute__ ((aligned(8)));
hidl_union();
~hidl_union();
} hidl_u;
static_assert(sizeof(::android::hardware::neuralnetworks::V1_2::FmqResultDatum::hidl_union) == 16, "wrong size");
static_assert(__alignof(::android::hardware::neuralnetworks::V1_2::FmqResultDatum::hidl_union) == 8, "wrong alignment");
static_assert(sizeof(::android::hardware::neuralnetworks::V1_2::FmqResultDatum::hidl_discriminator) == 1, "wrong size");
static_assert(__alignof(::android::hardware::neuralnetworks::V1_2::FmqResultDatum::hidl_discriminator) == 1, "wrong alignment");
};
static_assert(sizeof(::android::hardware::neuralnetworks::V1_2::FmqResultDatum) == 24, "wrong size");
static_assert(__alignof(::android::hardware::neuralnetworks::V1_2::FmqResultDatum) == 8, "wrong alignment");
/**
* Information about an extension.
*/
struct Extension final {
// Forward declaration for forward reference support:
struct OperandTypeInformation;
/**
* Information about an extension operand type.
*/
struct OperandTypeInformation final {
/**
* The extension operand type.
*/
uint16_t type __attribute__ ((aligned(2)));
/**
* Indicates whether the extension operand type represents a tensor or
* a scalar.
*/
bool isTensor __attribute__ ((aligned(1)));
/**
* The byte size of the operand (if scalar) or of a single element (if
* tensor).
*/
uint32_t byteSize __attribute__ ((aligned(4)));
};
static_assert(offsetof(::android::hardware::neuralnetworks::V1_2::Extension::OperandTypeInformation, type) == 0, "wrong offset");
static_assert(offsetof(::android::hardware::neuralnetworks::V1_2::Extension::OperandTypeInformation, isTensor) == 2, "wrong offset");
static_assert(offsetof(::android::hardware::neuralnetworks::V1_2::Extension::OperandTypeInformation, byteSize) == 4, "wrong offset");
static_assert(sizeof(::android::hardware::neuralnetworks::V1_2::Extension::OperandTypeInformation) == 8, "wrong size");
static_assert(__alignof(::android::hardware::neuralnetworks::V1_2::Extension::OperandTypeInformation) == 4, "wrong alignment");
/**
* The extension name.
*
* The name must consist of lowercase latin letters, numbers, periods, and
* underscore signs. The name must contain at least one period.
*
* The name must start with the reverse domain name of the vendor.
*
* Example: com.google.test_extension
*/
::android::hardware::hidl_string name __attribute__ ((aligned(8)));
/**
* Information about operand types defined by the extension.
*/
::android::hardware::hidl_vec<::android::hardware::neuralnetworks::V1_2::Extension::OperandTypeInformation> operandTypes __attribute__ ((aligned(8)));
};
static_assert(offsetof(::android::hardware::neuralnetworks::V1_2::Extension, name) == 0, "wrong offset");
static_assert(offsetof(::android::hardware::neuralnetworks::V1_2::Extension, operandTypes) == 16, "wrong offset");
static_assert(sizeof(::android::hardware::neuralnetworks::V1_2::Extension) == 32, "wrong size");
static_assert(__alignof(::android::hardware::neuralnetworks::V1_2::Extension) == 8, "wrong alignment");
//
// type declarations for package
//
template<typename>
static inline std::string toString(uint32_t o);
static inline std::string toString(::android::hardware::neuralnetworks::V1_2::Constant o);
static inline void PrintTo(::android::hardware::neuralnetworks::V1_2::Constant o, ::std::ostream* os);
constexpr uint32_t operator|(const ::android::hardware::neuralnetworks::V1_2::Constant lhs, const ::android::hardware::neuralnetworks::V1_2::Constant rhs) {
return static_cast<uint32_t>(static_cast<uint32_t>(lhs) | static_cast<uint32_t>(rhs));
}
constexpr uint32_t operator|(const uint32_t lhs, const ::android::hardware::neuralnetworks::V1_2::Constant rhs) {
return static_cast<uint32_t>(lhs | static_cast<uint32_t>(rhs));
}
constexpr uint32_t operator|(const ::android::hardware::neuralnetworks::V1_2::Constant lhs, const uint32_t rhs) {
return static_cast<uint32_t>(static_cast<uint32_t>(lhs) | rhs);
}
constexpr uint32_t operator&(const ::android::hardware::neuralnetworks::V1_2::Constant lhs, const ::android::hardware::neuralnetworks::V1_2::Constant rhs) {
return static_cast<uint32_t>(static_cast<uint32_t>(lhs) & static_cast<uint32_t>(rhs));
}
constexpr uint32_t operator&(const uint32_t lhs, const ::android::hardware::neuralnetworks::V1_2::Constant rhs) {
return static_cast<uint32_t>(lhs & static_cast<uint32_t>(rhs));
}
constexpr uint32_t operator&(const ::android::hardware::neuralnetworks::V1_2::Constant lhs, const uint32_t rhs) {
return static_cast<uint32_t>(static_cast<uint32_t>(lhs) & rhs);
}
constexpr uint32_t &operator|=(uint32_t& v, const ::android::hardware::neuralnetworks::V1_2::Constant e) {
v |= static_cast<uint32_t>(e);
return v;
}
constexpr uint32_t &operator&=(uint32_t& v, const ::android::hardware::neuralnetworks::V1_2::Constant e) {
v &= static_cast<uint32_t>(e);
return v;
}
template<typename>
static inline std::string toString(int32_t o);
static inline std::string toString(::android::hardware::neuralnetworks::V1_2::OperandType o);
static inline void PrintTo(::android::hardware::neuralnetworks::V1_2::OperandType o, ::std::ostream* os);
constexpr int32_t operator|(const ::android::hardware::neuralnetworks::V1_2::OperandType lhs, const ::android::hardware::neuralnetworks::V1_2::OperandType rhs) {
return static_cast<int32_t>(static_cast<int32_t>(lhs) | static_cast<int32_t>(rhs));
}
constexpr int32_t operator|(const int32_t lhs, const ::android::hardware::neuralnetworks::V1_2::OperandType rhs) {
return static_cast<int32_t>(lhs | static_cast<int32_t>(rhs));
}
constexpr int32_t operator|(const ::android::hardware::neuralnetworks::V1_2::OperandType lhs, const int32_t rhs) {
return static_cast<int32_t>(static_cast<int32_t>(lhs) | rhs);
}
constexpr int32_t operator&(const ::android::hardware::neuralnetworks::V1_2::OperandType lhs, const ::android::hardware::neuralnetworks::V1_2::OperandType rhs) {
return static_cast<int32_t>(static_cast<int32_t>(lhs) & static_cast<int32_t>(rhs));
}
constexpr int32_t operator&(const int32_t lhs, const ::android::hardware::neuralnetworks::V1_2::OperandType rhs) {
return static_cast<int32_t>(lhs & static_cast<int32_t>(rhs));
}
constexpr int32_t operator&(const ::android::hardware::neuralnetworks::V1_2::OperandType lhs, const int32_t rhs) {
return static_cast<int32_t>(static_cast<int32_t>(lhs) & rhs);
}
constexpr int32_t &operator|=(int32_t& v, const ::android::hardware::neuralnetworks::V1_2::OperandType e) {
v |= static_cast<int32_t>(e);
return v;
}
constexpr int32_t &operator&=(int32_t& v, const ::android::hardware::neuralnetworks::V1_2::OperandType e) {
v &= static_cast<int32_t>(e);
return v;
}
template<typename>
static inline std::string toString(uint32_t o);
static inline std::string toString(::android::hardware::neuralnetworks::V1_2::OperandTypeRange o);
static inline void PrintTo(::android::hardware::neuralnetworks::V1_2::OperandTypeRange o, ::std::ostream* os);
constexpr uint32_t operator|(const ::android::hardware::neuralnetworks::V1_2::OperandTypeRange lhs, const ::android::hardware::neuralnetworks::V1_2::OperandTypeRange rhs) {
return static_cast<uint32_t>(static_cast<uint32_t>(lhs) | static_cast<uint32_t>(rhs));
}
constexpr uint32_t operator|(const uint32_t lhs, const ::android::hardware::neuralnetworks::V1_2::OperandTypeRange rhs) {
return static_cast<uint32_t>(lhs | static_cast<uint32_t>(rhs));
}
constexpr uint32_t operator|(const ::android::hardware::neuralnetworks::V1_2::OperandTypeRange lhs, const uint32_t rhs) {
return static_cast<uint32_t>(static_cast<uint32_t>(lhs) | rhs);
}
constexpr uint32_t operator&(const ::android::hardware::neuralnetworks::V1_2::OperandTypeRange lhs, const ::android::hardware::neuralnetworks::V1_2::OperandTypeRange rhs) {
return static_cast<uint32_t>(static_cast<uint32_t>(lhs) & static_cast<uint32_t>(rhs));
}
constexpr uint32_t operator&(const uint32_t lhs, const ::android::hardware::neuralnetworks::V1_2::OperandTypeRange rhs) {
return static_cast<uint32_t>(lhs & static_cast<uint32_t>(rhs));
}
constexpr uint32_t operator&(const ::android::hardware::neuralnetworks::V1_2::OperandTypeRange lhs, const uint32_t rhs) {
return static_cast<uint32_t>(static_cast<uint32_t>(lhs) & rhs);
}
constexpr uint32_t &operator|=(uint32_t& v, const ::android::hardware::neuralnetworks::V1_2::OperandTypeRange e) {
v |= static_cast<uint32_t>(e);
return v;
}
constexpr uint32_t &operator&=(uint32_t& v, const ::android::hardware::neuralnetworks::V1_2::OperandTypeRange e) {
v &= static_cast<uint32_t>(e);
return v;
}
template<typename>
static inline std::string toString(int32_t o);
static inline std::string toString(::android::hardware::neuralnetworks::V1_2::OperationType o);
static inline void PrintTo(::android::hardware::neuralnetworks::V1_2::OperationType o, ::std::ostream* os);
constexpr int32_t operator|(const ::android::hardware::neuralnetworks::V1_2::OperationType lhs, const ::android::hardware::neuralnetworks::V1_2::OperationType rhs) {
return static_cast<int32_t>(static_cast<int32_t>(lhs) | static_cast<int32_t>(rhs));
}
constexpr int32_t operator|(const int32_t lhs, const ::android::hardware::neuralnetworks::V1_2::OperationType rhs) {
return static_cast<int32_t>(lhs | static_cast<int32_t>(rhs));
}
constexpr int32_t operator|(const ::android::hardware::neuralnetworks::V1_2::OperationType lhs, const int32_t rhs) {
return static_cast<int32_t>(static_cast<int32_t>(lhs) | rhs);
}
constexpr int32_t operator&(const ::android::hardware::neuralnetworks::V1_2::OperationType lhs, const ::android::hardware::neuralnetworks::V1_2::OperationType rhs) {
return static_cast<int32_t>(static_cast<int32_t>(lhs) & static_cast<int32_t>(rhs));
}
constexpr int32_t operator&(const int32_t lhs, const ::android::hardware::neuralnetworks::V1_2::OperationType rhs) {
return static_cast<int32_t>(lhs & static_cast<int32_t>(rhs));
}
constexpr int32_t operator&(const ::android::hardware::neuralnetworks::V1_2::OperationType lhs, const int32_t rhs) {
return static_cast<int32_t>(static_cast<int32_t>(lhs) & rhs);
}
constexpr int32_t &operator|=(int32_t& v, const ::android::hardware::neuralnetworks::V1_2::OperationType e) {
v |= static_cast<int32_t>(e);
return v;
}
constexpr int32_t &operator&=(int32_t& v, const ::android::hardware::neuralnetworks::V1_2::OperationType e) {
v &= static_cast<int32_t>(e);
return v;
}
template<typename>
static inline std::string toString(uint32_t o);
static inline std::string toString(::android::hardware::neuralnetworks::V1_2::OperationTypeRange o);
static inline void PrintTo(::android::hardware::neuralnetworks::V1_2::OperationTypeRange o, ::std::ostream* os);
constexpr uint32_t operator|(const ::android::hardware::neuralnetworks::V1_2::OperationTypeRange lhs, const ::android::hardware::neuralnetworks::V1_2::OperationTypeRange rhs) {
return static_cast<uint32_t>(static_cast<uint32_t>(lhs) | static_cast<uint32_t>(rhs));
}
constexpr uint32_t operator|(const uint32_t lhs, const ::android::hardware::neuralnetworks::V1_2::OperationTypeRange rhs) {
return static_cast<uint32_t>(lhs | static_cast<uint32_t>(rhs));
}
constexpr uint32_t operator|(const ::android::hardware::neuralnetworks::V1_2::OperationTypeRange lhs, const uint32_t rhs) {
return static_cast<uint32_t>(static_cast<uint32_t>(lhs) | rhs);
}
constexpr uint32_t operator&(const ::android::hardware::neuralnetworks::V1_2::OperationTypeRange lhs, const ::android::hardware::neuralnetworks::V1_2::OperationTypeRange rhs) {
return static_cast<uint32_t>(static_cast<uint32_t>(lhs) & static_cast<uint32_t>(rhs));
}
constexpr uint32_t operator&(const uint32_t lhs, const ::android::hardware::neuralnetworks::V1_2::OperationTypeRange rhs) {
return static_cast<uint32_t>(lhs & static_cast<uint32_t>(rhs));
}
constexpr uint32_t operator&(const ::android::hardware::neuralnetworks::V1_2::OperationTypeRange lhs, const uint32_t rhs) {
return static_cast<uint32_t>(static_cast<uint32_t>(lhs) & rhs);
}
constexpr uint32_t &operator|=(uint32_t& v, const ::android::hardware::neuralnetworks::V1_2::OperationTypeRange e) {
v |= static_cast<uint32_t>(e);
return v;
}
constexpr uint32_t &operator&=(uint32_t& v, const ::android::hardware::neuralnetworks::V1_2::OperationTypeRange e) {
v &= static_cast<uint32_t>(e);
return v;
}
template<typename>
static inline std::string toString(int32_t o);
static inline std::string toString(::android::hardware::neuralnetworks::V1_2::DeviceType o);
static inline void PrintTo(::android::hardware::neuralnetworks::V1_2::DeviceType o, ::std::ostream* os);
constexpr int32_t operator|(const ::android::hardware::neuralnetworks::V1_2::DeviceType lhs, const ::android::hardware::neuralnetworks::V1_2::DeviceType rhs) {
return static_cast<int32_t>(static_cast<int32_t>(lhs) | static_cast<int32_t>(rhs));
}
constexpr int32_t operator|(const int32_t lhs, const ::android::hardware::neuralnetworks::V1_2::DeviceType rhs) {
return static_cast<int32_t>(lhs | static_cast<int32_t>(rhs));
}
constexpr int32_t operator|(const ::android::hardware::neuralnetworks::V1_2::DeviceType lhs, const int32_t rhs) {
return static_cast<int32_t>(static_cast<int32_t>(lhs) | rhs);
}
constexpr int32_t operator&(const ::android::hardware::neuralnetworks::V1_2::DeviceType lhs, const ::android::hardware::neuralnetworks::V1_2::DeviceType rhs) {
return static_cast<int32_t>(static_cast<int32_t>(lhs) & static_cast<int32_t>(rhs));
}
constexpr int32_t operator&(const int32_t lhs, const ::android::hardware::neuralnetworks::V1_2::DeviceType rhs) {
return static_cast<int32_t>(lhs & static_cast<int32_t>(rhs));
}
constexpr int32_t operator&(const ::android::hardware::neuralnetworks::V1_2::DeviceType lhs, const int32_t rhs) {
return static_cast<int32_t>(static_cast<int32_t>(lhs) & rhs);
}
constexpr int32_t &operator|=(int32_t& v, const ::android::hardware::neuralnetworks::V1_2::DeviceType e) {
v |= static_cast<int32_t>(e);
return v;
}
constexpr int32_t &operator&=(int32_t& v, const ::android::hardware::neuralnetworks::V1_2::DeviceType e) {
v &= static_cast<int32_t>(e);
return v;
}
static inline std::string toString(const ::android::hardware::neuralnetworks::V1_2::Capabilities::OperandPerformance& o);
static inline void PrintTo(const ::android::hardware::neuralnetworks::V1_2::Capabilities::OperandPerformance& o, ::std::ostream*);
static inline bool operator==(const ::android::hardware::neuralnetworks::V1_2::Capabilities::OperandPerformance& lhs, const ::android::hardware::neuralnetworks::V1_2::Capabilities::OperandPerformance& rhs);
static inline bool operator!=(const ::android::hardware::neuralnetworks::V1_2::Capabilities::OperandPerformance& lhs, const ::android::hardware::neuralnetworks::V1_2::Capabilities::OperandPerformance& rhs);
static inline std::string toString(const ::android::hardware::neuralnetworks::V1_2::Capabilities& o);
static inline void PrintTo(const ::android::hardware::neuralnetworks::V1_2::Capabilities& o, ::std::ostream*);
static inline bool operator==(const ::android::hardware::neuralnetworks::V1_2::Capabilities& lhs, const ::android::hardware::neuralnetworks::V1_2::Capabilities& rhs);
static inline bool operator!=(const ::android::hardware::neuralnetworks::V1_2::Capabilities& lhs, const ::android::hardware::neuralnetworks::V1_2::Capabilities& rhs);
static inline std::string toString(const ::android::hardware::neuralnetworks::V1_2::Operation& o);
static inline void PrintTo(const ::android::hardware::neuralnetworks::V1_2::Operation& o, ::std::ostream*);
static inline bool operator==(const ::android::hardware::neuralnetworks::V1_2::Operation& lhs, const ::android::hardware::neuralnetworks::V1_2::Operation& rhs);
static inline bool operator!=(const ::android::hardware::neuralnetworks::V1_2::Operation& lhs, const ::android::hardware::neuralnetworks::V1_2::Operation& rhs);
static inline std::string toString(const ::android::hardware::neuralnetworks::V1_2::SymmPerChannelQuantParams& o);
static inline void PrintTo(const ::android::hardware::neuralnetworks::V1_2::SymmPerChannelQuantParams& o, ::std::ostream*);
static inline bool operator==(const ::android::hardware::neuralnetworks::V1_2::SymmPerChannelQuantParams& lhs, const ::android::hardware::neuralnetworks::V1_2::SymmPerChannelQuantParams& rhs);
static inline bool operator!=(const ::android::hardware::neuralnetworks::V1_2::SymmPerChannelQuantParams& lhs, const ::android::hardware::neuralnetworks::V1_2::SymmPerChannelQuantParams& rhs);
static inline std::string toString(const ::android::hardware::neuralnetworks::V1_2::Operand::ExtraParams& o);
static inline void PrintTo(const ::android::hardware::neuralnetworks::V1_2::Operand::ExtraParams& o, ::std::ostream*);
static inline bool operator==(const ::android::hardware::neuralnetworks::V1_2::Operand::ExtraParams& lhs, const ::android::hardware::neuralnetworks::V1_2::Operand::ExtraParams& rhs);
static inline bool operator!=(const ::android::hardware::neuralnetworks::V1_2::Operand::ExtraParams& lhs, const ::android::hardware::neuralnetworks::V1_2::Operand::ExtraParams& rhs);
static inline std::string toString(const ::android::hardware::neuralnetworks::V1_2::Operand& o);
static inline void PrintTo(const ::android::hardware::neuralnetworks::V1_2::Operand& o, ::std::ostream*);
static inline bool operator==(const ::android::hardware::neuralnetworks::V1_2::Operand& lhs, const ::android::hardware::neuralnetworks::V1_2::Operand& rhs);
static inline bool operator!=(const ::android::hardware::neuralnetworks::V1_2::Operand& lhs, const ::android::hardware::neuralnetworks::V1_2::Operand& rhs);
static inline std::string toString(const ::android::hardware::neuralnetworks::V1_2::Model::ExtensionNameAndPrefix& o);
static inline void PrintTo(const ::android::hardware::neuralnetworks::V1_2::Model::ExtensionNameAndPrefix& o, ::std::ostream*);
static inline bool operator==(const ::android::hardware::neuralnetworks::V1_2::Model::ExtensionNameAndPrefix& lhs, const ::android::hardware::neuralnetworks::V1_2::Model::ExtensionNameAndPrefix& rhs);
static inline bool operator!=(const ::android::hardware::neuralnetworks::V1_2::Model::ExtensionNameAndPrefix& lhs, const ::android::hardware::neuralnetworks::V1_2::Model::ExtensionNameAndPrefix& rhs);
template<typename>
static inline std::string toString(uint8_t o);
static inline std::string toString(::android::hardware::neuralnetworks::V1_2::Model::ExtensionTypeEncoding o);
static inline void PrintTo(::android::hardware::neuralnetworks::V1_2::Model::ExtensionTypeEncoding o, ::std::ostream* os);
constexpr uint8_t operator|(const ::android::hardware::neuralnetworks::V1_2::Model::ExtensionTypeEncoding lhs, const ::android::hardware::neuralnetworks::V1_2::Model::ExtensionTypeEncoding rhs) {
return static_cast<uint8_t>(static_cast<uint8_t>(lhs) | static_cast<uint8_t>(rhs));
}
constexpr uint8_t operator|(const uint8_t lhs, const ::android::hardware::neuralnetworks::V1_2::Model::ExtensionTypeEncoding rhs) {
return static_cast<uint8_t>(lhs | static_cast<uint8_t>(rhs));
}
constexpr uint8_t operator|(const ::android::hardware::neuralnetworks::V1_2::Model::ExtensionTypeEncoding lhs, const uint8_t rhs) {
return static_cast<uint8_t>(static_cast<uint8_t>(lhs) | rhs);
}
constexpr uint8_t operator&(const ::android::hardware::neuralnetworks::V1_2::Model::ExtensionTypeEncoding lhs, const ::android::hardware::neuralnetworks::V1_2::Model::ExtensionTypeEncoding rhs) {
return static_cast<uint8_t>(static_cast<uint8_t>(lhs) & static_cast<uint8_t>(rhs));
}
constexpr uint8_t operator&(const uint8_t lhs, const ::android::hardware::neuralnetworks::V1_2::Model::ExtensionTypeEncoding rhs) {
return static_cast<uint8_t>(lhs & static_cast<uint8_t>(rhs));
}
constexpr uint8_t operator&(const ::android::hardware::neuralnetworks::V1_2::Model::ExtensionTypeEncoding lhs, const uint8_t rhs) {
return static_cast<uint8_t>(static_cast<uint8_t>(lhs) & rhs);
}
constexpr uint8_t &operator|=(uint8_t& v, const ::android::hardware::neuralnetworks::V1_2::Model::ExtensionTypeEncoding e) {
v |= static_cast<uint8_t>(e);
return v;
}
constexpr uint8_t &operator&=(uint8_t& v, const ::android::hardware::neuralnetworks::V1_2::Model::ExtensionTypeEncoding e) {
v &= static_cast<uint8_t>(e);
return v;
}
static inline std::string toString(const ::android::hardware::neuralnetworks::V1_2::Model& o);
static inline void PrintTo(const ::android::hardware::neuralnetworks::V1_2::Model& o, ::std::ostream*);
// operator== and operator!= are not generated for Model
static inline std::string toString(const ::android::hardware::neuralnetworks::V1_2::OutputShape& o);
static inline void PrintTo(const ::android::hardware::neuralnetworks::V1_2::OutputShape& o, ::std::ostream*);
static inline bool operator==(const ::android::hardware::neuralnetworks::V1_2::OutputShape& lhs, const ::android::hardware::neuralnetworks::V1_2::OutputShape& rhs);
static inline bool operator!=(const ::android::hardware::neuralnetworks::V1_2::OutputShape& lhs, const ::android::hardware::neuralnetworks::V1_2::OutputShape& rhs);
template<typename>
static inline std::string toString(int32_t o);
static inline std::string toString(::android::hardware::neuralnetworks::V1_2::MeasureTiming o);
static inline void PrintTo(::android::hardware::neuralnetworks::V1_2::MeasureTiming o, ::std::ostream* os);
constexpr int32_t operator|(const ::android::hardware::neuralnetworks::V1_2::MeasureTiming lhs, const ::android::hardware::neuralnetworks::V1_2::MeasureTiming rhs) {
return static_cast<int32_t>(static_cast<int32_t>(lhs) | static_cast<int32_t>(rhs));
}
constexpr int32_t operator|(const int32_t lhs, const ::android::hardware::neuralnetworks::V1_2::MeasureTiming rhs) {
return static_cast<int32_t>(lhs | static_cast<int32_t>(rhs));
}
constexpr int32_t operator|(const ::android::hardware::neuralnetworks::V1_2::MeasureTiming lhs, const int32_t rhs) {
return static_cast<int32_t>(static_cast<int32_t>(lhs) | rhs);
}
constexpr int32_t operator&(const ::android::hardware::neuralnetworks::V1_2::MeasureTiming lhs, const ::android::hardware::neuralnetworks::V1_2::MeasureTiming rhs) {
return static_cast<int32_t>(static_cast<int32_t>(lhs) & static_cast<int32_t>(rhs));
}
constexpr int32_t operator&(const int32_t lhs, const ::android::hardware::neuralnetworks::V1_2::MeasureTiming rhs) {
return static_cast<int32_t>(lhs & static_cast<int32_t>(rhs));
}
constexpr int32_t operator&(const ::android::hardware::neuralnetworks::V1_2::MeasureTiming lhs, const int32_t rhs) {
return static_cast<int32_t>(static_cast<int32_t>(lhs) & rhs);
}
constexpr int32_t &operator|=(int32_t& v, const ::android::hardware::neuralnetworks::V1_2::MeasureTiming e) {
v |= static_cast<int32_t>(e);
return v;
}
constexpr int32_t &operator&=(int32_t& v, const ::android::hardware::neuralnetworks::V1_2::MeasureTiming e) {
v &= static_cast<int32_t>(e);
return v;
}
static inline std::string toString(const ::android::hardware::neuralnetworks::V1_2::Timing& o);
static inline void PrintTo(const ::android::hardware::neuralnetworks::V1_2::Timing& o, ::std::ostream*);
static inline bool operator==(const ::android::hardware::neuralnetworks::V1_2::Timing& lhs, const ::android::hardware::neuralnetworks::V1_2::Timing& rhs);
static inline bool operator!=(const ::android::hardware::neuralnetworks::V1_2::Timing& lhs, const ::android::hardware::neuralnetworks::V1_2::Timing& rhs);
static inline std::string toString(const ::android::hardware::neuralnetworks::V1_2::FmqRequestDatum::PacketInformation& o);
static inline void PrintTo(const ::android::hardware::neuralnetworks::V1_2::FmqRequestDatum::PacketInformation& o, ::std::ostream*);
static inline bool operator==(const ::android::hardware::neuralnetworks::V1_2::FmqRequestDatum::PacketInformation& lhs, const ::android::hardware::neuralnetworks::V1_2::FmqRequestDatum::PacketInformation& rhs);
static inline bool operator!=(const ::android::hardware::neuralnetworks::V1_2::FmqRequestDatum::PacketInformation& lhs, const ::android::hardware::neuralnetworks::V1_2::FmqRequestDatum::PacketInformation& rhs);
static inline std::string toString(const ::android::hardware::neuralnetworks::V1_2::FmqRequestDatum::OperandInformation& o);
static inline void PrintTo(const ::android::hardware::neuralnetworks::V1_2::FmqRequestDatum::OperandInformation& o, ::std::ostream*);
static inline bool operator==(const ::android::hardware::neuralnetworks::V1_2::FmqRequestDatum::OperandInformation& lhs, const ::android::hardware::neuralnetworks::V1_2::FmqRequestDatum::OperandInformation& rhs);
static inline bool operator!=(const ::android::hardware::neuralnetworks::V1_2::FmqRequestDatum::OperandInformation& lhs, const ::android::hardware::neuralnetworks::V1_2::FmqRequestDatum::OperandInformation& rhs);
static inline std::string toString(const ::android::hardware::neuralnetworks::V1_2::FmqRequestDatum& o);
static inline void PrintTo(const ::android::hardware::neuralnetworks::V1_2::FmqRequestDatum& o, ::std::ostream*);
static inline bool operator==(const ::android::hardware::neuralnetworks::V1_2::FmqRequestDatum& lhs, const ::android::hardware::neuralnetworks::V1_2::FmqRequestDatum& rhs);
static inline bool operator!=(const ::android::hardware::neuralnetworks::V1_2::FmqRequestDatum& lhs, const ::android::hardware::neuralnetworks::V1_2::FmqRequestDatum& rhs);
static inline std::string toString(const ::android::hardware::neuralnetworks::V1_2::FmqResultDatum::PacketInformation& o);
static inline void PrintTo(const ::android::hardware::neuralnetworks::V1_2::FmqResultDatum::PacketInformation& o, ::std::ostream*);
static inline bool operator==(const ::android::hardware::neuralnetworks::V1_2::FmqResultDatum::PacketInformation& lhs, const ::android::hardware::neuralnetworks::V1_2::FmqResultDatum::PacketInformation& rhs);
static inline bool operator!=(const ::android::hardware::neuralnetworks::V1_2::FmqResultDatum::PacketInformation& lhs, const ::android::hardware::neuralnetworks::V1_2::FmqResultDatum::PacketInformation& rhs);
static inline std::string toString(const ::android::hardware::neuralnetworks::V1_2::FmqResultDatum::OperandInformation& o);
static inline void PrintTo(const ::android::hardware::neuralnetworks::V1_2::FmqResultDatum::OperandInformation& o, ::std::ostream*);
static inline bool operator==(const ::android::hardware::neuralnetworks::V1_2::FmqResultDatum::OperandInformation& lhs, const ::android::hardware::neuralnetworks::V1_2::FmqResultDatum::OperandInformation& rhs);
static inline bool operator!=(const ::android::hardware::neuralnetworks::V1_2::FmqResultDatum::OperandInformation& lhs, const ::android::hardware::neuralnetworks::V1_2::FmqResultDatum::OperandInformation& rhs);
static inline std::string toString(const ::android::hardware::neuralnetworks::V1_2::FmqResultDatum& o);
static inline void PrintTo(const ::android::hardware::neuralnetworks::V1_2::FmqResultDatum& o, ::std::ostream*);
static inline bool operator==(const ::android::hardware::neuralnetworks::V1_2::FmqResultDatum& lhs, const ::android::hardware::neuralnetworks::V1_2::FmqResultDatum& rhs);
static inline bool operator!=(const ::android::hardware::neuralnetworks::V1_2::FmqResultDatum& lhs, const ::android::hardware::neuralnetworks::V1_2::FmqResultDatum& rhs);
static inline std::string toString(const ::android::hardware::neuralnetworks::V1_2::Extension::OperandTypeInformation& o);
static inline void PrintTo(const ::android::hardware::neuralnetworks::V1_2::Extension::OperandTypeInformation& o, ::std::ostream*);
static inline bool operator==(const ::android::hardware::neuralnetworks::V1_2::Extension::OperandTypeInformation& lhs, const ::android::hardware::neuralnetworks::V1_2::Extension::OperandTypeInformation& rhs);
static inline bool operator!=(const ::android::hardware::neuralnetworks::V1_2::Extension::OperandTypeInformation& lhs, const ::android::hardware::neuralnetworks::V1_2::Extension::OperandTypeInformation& rhs);
static inline std::string toString(const ::android::hardware::neuralnetworks::V1_2::Extension& o);
static inline void PrintTo(const ::android::hardware::neuralnetworks::V1_2::Extension& o, ::std::ostream*);
static inline bool operator==(const ::android::hardware::neuralnetworks::V1_2::Extension& lhs, const ::android::hardware::neuralnetworks::V1_2::Extension& rhs);
static inline bool operator!=(const ::android::hardware::neuralnetworks::V1_2::Extension& lhs, const ::android::hardware::neuralnetworks::V1_2::Extension& rhs);
//
// type header definitions for package
//
template<>
inline std::string toString<::android::hardware::neuralnetworks::V1_2::Constant>(uint32_t o) {
using ::android::hardware::details::toHexString;
std::string os;
::android::hardware::hidl_bitfield<::android::hardware::neuralnetworks::V1_2::Constant> flipped = 0;
bool first = true;
if ((o & ::android::hardware::neuralnetworks::V1_2::Constant::BYTE_SIZE_OF_CACHE_TOKEN) == static_cast<uint32_t>(::android::hardware::neuralnetworks::V1_2::Constant::BYTE_SIZE_OF_CACHE_TOKEN)) {
os += (first ? "" : " | ");
os += "BYTE_SIZE_OF_CACHE_TOKEN";
first = false;
flipped |= ::android::hardware::neuralnetworks::V1_2::Constant::BYTE_SIZE_OF_CACHE_TOKEN;
}
if ((o & ::android::hardware::neuralnetworks::V1_2::Constant::MAX_NUMBER_OF_CACHE_FILES) == static_cast<uint32_t>(::android::hardware::neuralnetworks::V1_2::Constant::MAX_NUMBER_OF_CACHE_FILES)) {
os += (first ? "" : " | ");
os += "MAX_NUMBER_OF_CACHE_FILES";
first = false;
flipped |= ::android::hardware::neuralnetworks::V1_2::Constant::MAX_NUMBER_OF_CACHE_FILES;
}
if (o != flipped) {
os += (first ? "" : " | ");
os += toHexString(o & (~flipped));
}os += " (";
os += toHexString(o);
os += ")";
return os;
}
static inline std::string toString(::android::hardware::neuralnetworks::V1_2::Constant o) {
using ::android::hardware::details::toHexString;
if (o == ::android::hardware::neuralnetworks::V1_2::Constant::BYTE_SIZE_OF_CACHE_TOKEN) {
return "BYTE_SIZE_OF_CACHE_TOKEN";
}
if (o == ::android::hardware::neuralnetworks::V1_2::Constant::MAX_NUMBER_OF_CACHE_FILES) {
return "MAX_NUMBER_OF_CACHE_FILES";
}
std::string os;
os += toHexString(static_cast<uint32_t>(o));
return os;
}
static inline void PrintTo(::android::hardware::neuralnetworks::V1_2::Constant o, ::std::ostream* os) {
*os << toString(o);
}
template<>
inline std::string toString<::android::hardware::neuralnetworks::V1_2::OperandType>(int32_t o) {
using ::android::hardware::details::toHexString;
std::string os;
::android::hardware::hidl_bitfield<::android::hardware::neuralnetworks::V1_2::OperandType> flipped = 0;
bool first = true;
if ((o & ::android::hardware::neuralnetworks::V1_2::OperandType::FLOAT32) == static_cast<int32_t>(::android::hardware::neuralnetworks::V1_2::OperandType::FLOAT32)) {
os += (first ? "" : " | ");
os += "FLOAT32";
first = false;
flipped |= ::android::hardware::neuralnetworks::V1_2::OperandType::FLOAT32;
}
if ((o & ::android::hardware::neuralnetworks::V1_2::OperandType::INT32) == static_cast<int32_t>(::android::hardware::neuralnetworks::V1_2::OperandType::INT32)) {
os += (first ? "" : " | ");
os += "INT32";
first = false;
flipped |= ::android::hardware::neuralnetworks::V1_2::OperandType::INT32;
}
if ((o & ::android::hardware::neuralnetworks::V1_2::OperandType::UINT32) == static_cast<int32_t>(::android::hardware::neuralnetworks::V1_2::OperandType::UINT32)) {
os += (first ? "" : " | ");
os += "UINT32";
first = false;
flipped |= ::android::hardware::neuralnetworks::V1_2::OperandType::UINT32;
}
if ((o & ::android::hardware::neuralnetworks::V1_2::OperandType::TENSOR_FLOAT32) == static_cast<int32_t>(::android::hardware::neuralnetworks::V1_2::OperandType::TENSOR_FLOAT32)) {
os += (first ? "" : " | ");
os += "TENSOR_FLOAT32";
first = false;
flipped |= ::android::hardware::neuralnetworks::V1_2::OperandType::TENSOR_FLOAT32;
}
if ((o & ::android::hardware::neuralnetworks::V1_2::OperandType::TENSOR_INT32) == static_cast<int32_t>(::android::hardware::neuralnetworks::V1_2::OperandType::TENSOR_INT32)) {
os += (first ? "" : " | ");
os += "TENSOR_INT32";
first = false;
flipped |= ::android::hardware::neuralnetworks::V1_2::OperandType::TENSOR_INT32;
}
if ((o & ::android::hardware::neuralnetworks::V1_2::OperandType::TENSOR_QUANT8_ASYMM) == static_cast<int32_t>(::android::hardware::neuralnetworks::V1_2::OperandType::TENSOR_QUANT8_ASYMM)) {
os += (first ? "" : " | ");
os += "TENSOR_QUANT8_ASYMM";
first = false;
flipped |= ::android::hardware::neuralnetworks::V1_2::OperandType::TENSOR_QUANT8_ASYMM;
}
if ((o & ::android::hardware::neuralnetworks::V1_2::OperandType::OEM) == static_cast<int32_t>(::android::hardware::neuralnetworks::V1_2::OperandType::OEM)) {
os += (first ? "" : " | ");
os += "OEM";
first = false;
flipped |= ::android::hardware::neuralnetworks::V1_2::OperandType::OEM;
}
if ((o & ::android::hardware::neuralnetworks::V1_2::OperandType::TENSOR_OEM_BYTE) == static_cast<int32_t>(::android::hardware::neuralnetworks::V1_2::OperandType::TENSOR_OEM_BYTE)) {
os += (first ? "" : " | ");
os += "TENSOR_OEM_BYTE";
first = false;
flipped |= ::android::hardware::neuralnetworks::V1_2::OperandType::TENSOR_OEM_BYTE;
}
if ((o & ::android::hardware::neuralnetworks::V1_2::OperandType::BOOL) == static_cast<int32_t>(::android::hardware::neuralnetworks::V1_2::OperandType::BOOL)) {
os += (first ? "" : " | ");
os += "BOOL";
first = false;
flipped |= ::android::hardware::neuralnetworks::V1_2::OperandType::BOOL;
}
if ((o & ::android::hardware::neuralnetworks::V1_2::OperandType::TENSOR_QUANT16_SYMM) == static_cast<int32_t>(::android::hardware::neuralnetworks::V1_2::OperandType::TENSOR_QUANT16_SYMM)) {
os += (first ? "" : " | ");
os += "TENSOR_QUANT16_SYMM";
first = false;
flipped |= ::android::hardware::neuralnetworks::V1_2::OperandType::TENSOR_QUANT16_SYMM;
}
if ((o & ::android::hardware::neuralnetworks::V1_2::OperandType::TENSOR_FLOAT16) == static_cast<int32_t>(::android::hardware::neuralnetworks::V1_2::OperandType::TENSOR_FLOAT16)) {
os += (first ? "" : " | ");
os += "TENSOR_FLOAT16";
first = false;
flipped |= ::android::hardware::neuralnetworks::V1_2::OperandType::TENSOR_FLOAT16;
}
if ((o & ::android::hardware::neuralnetworks::V1_2::OperandType::TENSOR_BOOL8) == static_cast<int32_t>(::android::hardware::neuralnetworks::V1_2::OperandType::TENSOR_BOOL8)) {
os += (first ? "" : " | ");
os += "TENSOR_BOOL8";
first = false;
flipped |= ::android::hardware::neuralnetworks::V1_2::OperandType::TENSOR_BOOL8;
}
if ((o & ::android::hardware::neuralnetworks::V1_2::OperandType::FLOAT16) == static_cast<int32_t>(::android::hardware::neuralnetworks::V1_2::OperandType::FLOAT16)) {
os += (first ? "" : " | ");
os += "FLOAT16";
first = false;
flipped |= ::android::hardware::neuralnetworks::V1_2::OperandType::FLOAT16;
}
if ((o & ::android::hardware::neuralnetworks::V1_2::OperandType::TENSOR_QUANT8_SYMM_PER_CHANNEL) == static_cast<int32_t>(::android::hardware::neuralnetworks::V1_2::OperandType::TENSOR_QUANT8_SYMM_PER_CHANNEL)) {
os += (first ? "" : " | ");
os += "TENSOR_QUANT8_SYMM_PER_CHANNEL";
first = false;
flipped |= ::android::hardware::neuralnetworks::V1_2::OperandType::TENSOR_QUANT8_SYMM_PER_CHANNEL;
}
if ((o & ::android::hardware::neuralnetworks::V1_2::OperandType::TENSOR_QUANT16_ASYMM) == static_cast<int32_t>(::android::hardware::neuralnetworks::V1_2::OperandType::TENSOR_QUANT16_ASYMM)) {
os += (first ? "" : " | ");
os += "TENSOR_QUANT16_ASYMM";
first = false;
flipped |= ::android::hardware::neuralnetworks::V1_2::OperandType::TENSOR_QUANT16_ASYMM;
}
if ((o & ::android::hardware::neuralnetworks::V1_2::OperandType::TENSOR_QUANT8_SYMM) == static_cast<int32_t>(::android::hardware::neuralnetworks::V1_2::OperandType::TENSOR_QUANT8_SYMM)) {
os += (first ? "" : " | ");
os += "TENSOR_QUANT8_SYMM";
first = false;
flipped |= ::android::hardware::neuralnetworks::V1_2::OperandType::TENSOR_QUANT8_SYMM;
}
if (o != flipped) {
os += (first ? "" : " | ");
os += toHexString(o & (~flipped));
}os += " (";
os += toHexString(o);
os += ")";
return os;
}
static inline std::string toString(::android::hardware::neuralnetworks::V1_2::OperandType o) {
using ::android::hardware::details::toHexString;
if (o == ::android::hardware::neuralnetworks::V1_2::OperandType::FLOAT32) {
return "FLOAT32";
}
if (o == ::android::hardware::neuralnetworks::V1_2::OperandType::INT32) {
return "INT32";
}
if (o == ::android::hardware::neuralnetworks::V1_2::OperandType::UINT32) {
return "UINT32";
}
if (o == ::android::hardware::neuralnetworks::V1_2::OperandType::TENSOR_FLOAT32) {
return "TENSOR_FLOAT32";
}
if (o == ::android::hardware::neuralnetworks::V1_2::OperandType::TENSOR_INT32) {
return "TENSOR_INT32";
}
if (o == ::android::hardware::neuralnetworks::V1_2::OperandType::TENSOR_QUANT8_ASYMM) {
return "TENSOR_QUANT8_ASYMM";
}
if (o == ::android::hardware::neuralnetworks::V1_2::OperandType::OEM) {
return "OEM";
}
if (o == ::android::hardware::neuralnetworks::V1_2::OperandType::TENSOR_OEM_BYTE) {
return "TENSOR_OEM_BYTE";
}
if (o == ::android::hardware::neuralnetworks::V1_2::OperandType::BOOL) {
return "BOOL";
}
if (o == ::android::hardware::neuralnetworks::V1_2::OperandType::TENSOR_QUANT16_SYMM) {
return "TENSOR_QUANT16_SYMM";
}
if (o == ::android::hardware::neuralnetworks::V1_2::OperandType::TENSOR_FLOAT16) {
return "TENSOR_FLOAT16";
}
if (o == ::android::hardware::neuralnetworks::V1_2::OperandType::TENSOR_BOOL8) {
return "TENSOR_BOOL8";
}
if (o == ::android::hardware::neuralnetworks::V1_2::OperandType::FLOAT16) {
return "FLOAT16";
}
if (o == ::android::hardware::neuralnetworks::V1_2::OperandType::TENSOR_QUANT8_SYMM_PER_CHANNEL) {
return "TENSOR_QUANT8_SYMM_PER_CHANNEL";
}
if (o == ::android::hardware::neuralnetworks::V1_2::OperandType::TENSOR_QUANT16_ASYMM) {
return "TENSOR_QUANT16_ASYMM";
}
if (o == ::android::hardware::neuralnetworks::V1_2::OperandType::TENSOR_QUANT8_SYMM) {
return "TENSOR_QUANT8_SYMM";
}
std::string os;
os += toHexString(static_cast<int32_t>(o));
return os;
}
static inline void PrintTo(::android::hardware::neuralnetworks::V1_2::OperandType o, ::std::ostream* os) {
*os << toString(o);
}
template<>
inline std::string toString<::android::hardware::neuralnetworks::V1_2::OperandTypeRange>(uint32_t o) {
using ::android::hardware::details::toHexString;
std::string os;
::android::hardware::hidl_bitfield<::android::hardware::neuralnetworks::V1_2::OperandTypeRange> flipped = 0;
bool first = true;
if ((o & ::android::hardware::neuralnetworks::V1_2::OperandTypeRange::BASE_MIN) == static_cast<uint32_t>(::android::hardware::neuralnetworks::V1_2::OperandTypeRange::BASE_MIN)) {
os += (first ? "" : " | ");
os += "BASE_MIN";
first = false;
flipped |= ::android::hardware::neuralnetworks::V1_2::OperandTypeRange::BASE_MIN;
}
if ((o & ::android::hardware::neuralnetworks::V1_2::OperandTypeRange::FUNDAMENTAL_MIN) == static_cast<uint32_t>(::android::hardware::neuralnetworks::V1_2::OperandTypeRange::FUNDAMENTAL_MIN)) {
os += (first ? "" : " | ");
os += "FUNDAMENTAL_MIN";
first = false;
flipped |= ::android::hardware::neuralnetworks::V1_2::OperandTypeRange::FUNDAMENTAL_MIN;
}
if ((o & ::android::hardware::neuralnetworks::V1_2::OperandTypeRange::FUNDAMENTAL_MAX) == static_cast<uint32_t>(::android::hardware::neuralnetworks::V1_2::OperandTypeRange::FUNDAMENTAL_MAX)) {
os += (first ? "" : " | ");
os += "FUNDAMENTAL_MAX";
first = false;
flipped |= ::android::hardware::neuralnetworks::V1_2::OperandTypeRange::FUNDAMENTAL_MAX;
}
if ((o & ::android::hardware::neuralnetworks::V1_2::OperandTypeRange::OEM_MIN) == static_cast<uint32_t>(::android::hardware::neuralnetworks::V1_2::OperandTypeRange::OEM_MIN)) {
os += (first ? "" : " | ");
os += "OEM_MIN";
first = false;
flipped |= ::android::hardware::neuralnetworks::V1_2::OperandTypeRange::OEM_MIN;
}
if ((o & ::android::hardware::neuralnetworks::V1_2::OperandTypeRange::OEM_MAX) == static_cast<uint32_t>(::android::hardware::neuralnetworks::V1_2::OperandTypeRange::OEM_MAX)) {
os += (first ? "" : " | ");
os += "OEM_MAX";
first = false;
flipped |= ::android::hardware::neuralnetworks::V1_2::OperandTypeRange::OEM_MAX;
}
if ((o & ::android::hardware::neuralnetworks::V1_2::OperandTypeRange::BASE_MAX) == static_cast<uint32_t>(::android::hardware::neuralnetworks::V1_2::OperandTypeRange::BASE_MAX)) {
os += (first ? "" : " | ");
os += "BASE_MAX";
first = false;
flipped |= ::android::hardware::neuralnetworks::V1_2::OperandTypeRange::BASE_MAX;
}
if (o != flipped) {
os += (first ? "" : " | ");
os += toHexString(o & (~flipped));
}os += " (";
os += toHexString(o);
os += ")";
return os;
}
static inline std::string toString(::android::hardware::neuralnetworks::V1_2::OperandTypeRange o) {
using ::android::hardware::details::toHexString;
if (o == ::android::hardware::neuralnetworks::V1_2::OperandTypeRange::BASE_MIN) {
return "BASE_MIN";
}
if (o == ::android::hardware::neuralnetworks::V1_2::OperandTypeRange::FUNDAMENTAL_MIN) {
return "FUNDAMENTAL_MIN";
}
if (o == ::android::hardware::neuralnetworks::V1_2::OperandTypeRange::FUNDAMENTAL_MAX) {
return "FUNDAMENTAL_MAX";
}
if (o == ::android::hardware::neuralnetworks::V1_2::OperandTypeRange::OEM_MIN) {
return "OEM_MIN";
}
if (o == ::android::hardware::neuralnetworks::V1_2::OperandTypeRange::OEM_MAX) {
return "OEM_MAX";
}
if (o == ::android::hardware::neuralnetworks::V1_2::OperandTypeRange::BASE_MAX) {
return "BASE_MAX";
}
std::string os;
os += toHexString(static_cast<uint32_t>(o));
return os;
}
static inline void PrintTo(::android::hardware::neuralnetworks::V1_2::OperandTypeRange o, ::std::ostream* os) {
*os << toString(o);
}
template<>
inline std::string toString<::android::hardware::neuralnetworks::V1_2::OperationType>(int32_t o) {
using ::android::hardware::details::toHexString;
std::string os;
::android::hardware::hidl_bitfield<::android::hardware::neuralnetworks::V1_2::OperationType> flipped = 0;
bool first = true;
if ((o & ::android::hardware::neuralnetworks::V1_2::OperationType::ADD) == static_cast<int32_t>(::android::hardware::neuralnetworks::V1_2::OperationType::ADD)) {
os += (first ? "" : " | ");
os += "ADD";
first = false;
flipped |= ::android::hardware::neuralnetworks::V1_2::OperationType::ADD;
}
if ((o & ::android::hardware::neuralnetworks::V1_2::OperationType::AVERAGE_POOL_2D) == static_cast<int32_t>(::android::hardware::neuralnetworks::V1_2::OperationType::AVERAGE_POOL_2D)) {
os += (first ? "" : " | ");
os += "AVERAGE_POOL_2D";
first = false;
flipped |= ::android::hardware::neuralnetworks::V1_2::OperationType::AVERAGE_POOL_2D;
}
if ((o & ::android::hardware::neuralnetworks::V1_2::OperationType::CONCATENATION) == static_cast<int32_t>(::android::hardware::neuralnetworks::V1_2::OperationType::CONCATENATION)) {
os += (first ? "" : " | ");
os += "CONCATENATION";
first = false;
flipped |= ::android::hardware::neuralnetworks::V1_2::OperationType::CONCATENATION;
}
if ((o & ::android::hardware::neuralnetworks::V1_2::OperationType::CONV_2D) == static_cast<int32_t>(::android::hardware::neuralnetworks::V1_2::OperationType::CONV_2D)) {
os += (first ? "" : " | ");
os += "CONV_2D";
first = false;
flipped |= ::android::hardware::neuralnetworks::V1_2::OperationType::CONV_2D;
}
if ((o & ::android::hardware::neuralnetworks::V1_2::OperationType::DEPTHWISE_CONV_2D) == static_cast<int32_t>(::android::hardware::neuralnetworks::V1_2::OperationType::DEPTHWISE_CONV_2D)) {
os += (first ? "" : " | ");
os += "DEPTHWISE_CONV_2D";
first = false;
flipped |= ::android::hardware::neuralnetworks::V1_2::OperationType::DEPTHWISE_CONV_2D;
}
if ((o & ::android::hardware::neuralnetworks::V1_2::OperationType::DEPTH_TO_SPACE) == static_cast<int32_t>(::android::hardware::neuralnetworks::V1_2::OperationType::DEPTH_TO_SPACE)) {
os += (first ? "" : " | ");
os += "DEPTH_TO_SPACE";
first = false;
flipped |= ::android::hardware::neuralnetworks::V1_2::OperationType::DEPTH_TO_SPACE;
}
if ((o & ::android::hardware::neuralnetworks::V1_2::OperationType::DEQUANTIZE) == static_cast<int32_t>(::android::hardware::neuralnetworks::V1_2::OperationType::DEQUANTIZE)) {
os += (first ? "" : " | ");
os += "DEQUANTIZE";
first = false;
flipped |= ::android::hardware::neuralnetworks::V1_2::OperationType::DEQUANTIZE;
}
if ((o & ::android::hardware::neuralnetworks::V1_2::OperationType::EMBEDDING_LOOKUP) == static_cast<int32_t>(::android::hardware::neuralnetworks::V1_2::OperationType::EMBEDDING_LOOKUP)) {
os += (first ? "" : " | ");
os += "EMBEDDING_LOOKUP";
first = false;
flipped |= ::android::hardware::neuralnetworks::V1_2::OperationType::EMBEDDING_LOOKUP;
}
if ((o & ::android::hardware::neuralnetworks::V1_2::OperationType::FLOOR) == static_cast<int32_t>(::android::hardware::neuralnetworks::V1_2::OperationType::FLOOR)) {
os += (first ? "" : " | ");
os += "FLOOR";
first = false;
flipped |= ::android::hardware::neuralnetworks::V1_2::OperationType::FLOOR;
}
if ((o & ::android::hardware::neuralnetworks::V1_2::OperationType::FULLY_CONNECTED) == static_cast<int32_t>(::android::hardware::neuralnetworks::V1_2::OperationType::FULLY_CONNECTED)) {
os += (first ? "" : " | ");
os += "FULLY_CONNECTED";
first = false;
flipped |= ::android::hardware::neuralnetworks::V1_2::OperationType::FULLY_CONNECTED;
}
if ((o & ::android::hardware::neuralnetworks::V1_2::OperationType::HASHTABLE_LOOKUP) == static_cast<int32_t>(::android::hardware::neuralnetworks::V1_2::OperationType::HASHTABLE_LOOKUP)) {
os += (first ? "" : " | ");
os += "HASHTABLE_LOOKUP";
first = false;
flipped |= ::android::hardware::neuralnetworks::V1_2::OperationType::HASHTABLE_LOOKUP;
}
if ((o & ::android::hardware::neuralnetworks::V1_2::OperationType::L2_NORMALIZATION) == static_cast<int32_t>(::android::hardware::neuralnetworks::V1_2::OperationType::L2_NORMALIZATION)) {
os += (first ? "" : " | ");
os += "L2_NORMALIZATION";
first = false;
flipped |= ::android::hardware::neuralnetworks::V1_2::OperationType::L2_NORMALIZATION;
}
if ((o & ::android::hardware::neuralnetworks::V1_2::OperationType::L2_POOL_2D) == static_cast<int32_t>(::android::hardware::neuralnetworks::V1_2::OperationType::L2_POOL_2D)) {
os += (first ? "" : " | ");
os += "L2_POOL_2D";
first = false;
flipped |= ::android::hardware::neuralnetworks::V1_2::OperationType::L2_POOL_2D;
}
if ((o & ::android::hardware::neuralnetworks::V1_2::OperationType::LOCAL_RESPONSE_NORMALIZATION) == static_cast<int32_t>(::android::hardware::neuralnetworks::V1_2::OperationType::LOCAL_RESPONSE_NORMALIZATION)) {
os += (first ? "" : " | ");
os += "LOCAL_RESPONSE_NORMALIZATION";
first = false;
flipped |= ::android::hardware::neuralnetworks::V1_2::OperationType::LOCAL_RESPONSE_NORMALIZATION;
}
if ((o & ::android::hardware::neuralnetworks::V1_2::OperationType::LOGISTIC) == static_cast<int32_t>(::android::hardware::neuralnetworks::V1_2::OperationType::LOGISTIC)) {
os += (first ? "" : " | ");
os += "LOGISTIC";
first = false;
flipped |= ::android::hardware::neuralnetworks::V1_2::OperationType::LOGISTIC;
}
if ((o & ::android::hardware::neuralnetworks::V1_2::OperationType::LSH_PROJECTION) == static_cast<int32_t>(::android::hardware::neuralnetworks::V1_2::OperationType::LSH_PROJECTION)) {
os += (first ? "" : " | ");
os += "LSH_PROJECTION";
first = false;
flipped |= ::android::hardware::neuralnetworks::V1_2::OperationType::LSH_PROJECTION;
}
if ((o & ::android::hardware::neuralnetworks::V1_2::OperationType::LSTM) == static_cast<int32_t>(::android::hardware::neuralnetworks::V1_2::OperationType::LSTM)) {
os += (first ? "" : " | ");
os += "LSTM";
first = false;
flipped |= ::android::hardware::neuralnetworks::V1_2::OperationType::LSTM;
}
if ((o & ::android::hardware::neuralnetworks::V1_2::OperationType::MAX_POOL_2D) == static_cast<int32_t>(::android::hardware::neuralnetworks::V1_2::OperationType::MAX_POOL_2D)) {
os += (first ? "" : " | ");
os += "MAX_POOL_2D";
first = false;
flipped |= ::android::hardware::neuralnetworks::V1_2::OperationType::MAX_POOL_2D;
}
if ((o & ::android::hardware::neuralnetworks::V1_2::OperationType::MUL) == static_cast<int32_t>(::android::hardware::neuralnetworks::V1_2::OperationType::MUL)) {
os += (first ? "" : " | ");
os += "MUL";
first = false;
flipped |= ::android::hardware::neuralnetworks::V1_2::OperationType::MUL;
}
if ((o & ::android::hardware::neuralnetworks::V1_2::OperationType::RELU) == static_cast<int32_t>(::android::hardware::neuralnetworks::V1_2::OperationType::RELU)) {
os += (first ? "" : " | ");
os += "RELU";
first = false;
flipped |= ::android::hardware::neuralnetworks::V1_2::OperationType::RELU;
}
if ((o & ::android::hardware::neuralnetworks::V1_2::OperationType::RELU1) == static_cast<int32_t>(::android::hardware::neuralnetworks::V1_2::OperationType::RELU1)) {
os += (first ? "" : " | ");
os += "RELU1";
first = false;
flipped |= ::android::hardware::neuralnetworks::V1_2::OperationType::RELU1;
}
if ((o & ::android::hardware::neuralnetworks::V1_2::OperationType::RELU6) == static_cast<int32_t>(::android::hardware::neuralnetworks::V1_2::OperationType::RELU6)) {
os += (first ? "" : " | ");
os += "RELU6";
first = false;
flipped |= ::android::hardware::neuralnetworks::V1_2::OperationType::RELU6;
}
if ((o & ::android::hardware::neuralnetworks::V1_2::OperationType::RESHAPE) == static_cast<int32_t>(::android::hardware::neuralnetworks::V1_2::OperationType::RESHAPE)) {
os += (first ? "" : " | ");
os += "RESHAPE";
first = false;
flipped |= ::android::hardware::neuralnetworks::V1_2::OperationType::RESHAPE;
}
if ((o & ::android::hardware::neuralnetworks::V1_2::OperationType::RESIZE_BILINEAR) == static_cast<int32_t>(::android::hardware::neuralnetworks::V1_2::OperationType::RESIZE_BILINEAR)) {
os += (first ? "" : " | ");
os += "RESIZE_BILINEAR";
first = false;
flipped |= ::android::hardware::neuralnetworks::V1_2::OperationType::RESIZE_BILINEAR;
}
if ((o & ::android::hardware::neuralnetworks::V1_2::OperationType::RNN) == static_cast<int32_t>(::android::hardware::neuralnetworks::V1_2::OperationType::RNN)) {
os += (first ? "" : " | ");
os += "RNN";
first = false;
flipped |= ::android::hardware::neuralnetworks::V1_2::OperationType::RNN;
}
if ((o & ::android::hardware::neuralnetworks::V1_2::OperationType::SOFTMAX) == static_cast<int32_t>(::android::hardware::neuralnetworks::V1_2::OperationType::SOFTMAX)) {
os += (first ? "" : " | ");
os += "SOFTMAX";
first = false;
flipped |= ::android::hardware::neuralnetworks::V1_2::OperationType::SOFTMAX;
}
if ((o & ::android::hardware::neuralnetworks::V1_2::OperationType::SPACE_TO_DEPTH) == static_cast<int32_t>(::android::hardware::neuralnetworks::V1_2::OperationType::SPACE_TO_DEPTH)) {
os += (first ? "" : " | ");
os += "SPACE_TO_DEPTH";
first = false;
flipped |= ::android::hardware::neuralnetworks::V1_2::OperationType::SPACE_TO_DEPTH;
}
if ((o & ::android::hardware::neuralnetworks::V1_2::OperationType::SVDF) == static_cast<int32_t>(::android::hardware::neuralnetworks::V1_2::OperationType::SVDF)) {
os += (first ? "" : " | ");
os += "SVDF";
first = false;
flipped |= ::android::hardware::neuralnetworks::V1_2::OperationType::SVDF;
}
if ((o & ::android::hardware::neuralnetworks::V1_2::OperationType::TANH) == static_cast<int32_t>(::android::hardware::neuralnetworks::V1_2::OperationType::TANH)) {
os += (first ? "" : " | ");
os += "TANH";
first = false;
flipped |= ::android::hardware::neuralnetworks::V1_2::OperationType::TANH;
}
if ((o & ::android::hardware::neuralnetworks::V1_2::OperationType::BATCH_TO_SPACE_ND) == static_cast<int32_t>(::android::hardware::neuralnetworks::V1_2::OperationType::BATCH_TO_SPACE_ND)) {
os += (first ? "" : " | ");
os += "BATCH_TO_SPACE_ND";
first = false;
flipped |= ::android::hardware::neuralnetworks::V1_2::OperationType::BATCH_TO_SPACE_ND;
}
if ((o & ::android::hardware::neuralnetworks::V1_2::OperationType::DIV) == static_cast<int32_t>(::android::hardware::neuralnetworks::V1_2::OperationType::DIV)) {
os += (first ? "" : " | ");
os += "DIV";
first = false;
flipped |= ::android::hardware::neuralnetworks::V1_2::OperationType::DIV;
}
if ((o & ::android::hardware::neuralnetworks::V1_2::OperationType::MEAN) == static_cast<int32_t>(::android::hardware::neuralnetworks::V1_2::OperationType::MEAN)) {
os += (first ? "" : " | ");
os += "MEAN";
first = false;
flipped |= ::android::hardware::neuralnetworks::V1_2::OperationType::MEAN;
}
if ((o & ::android::hardware::neuralnetworks::V1_2::OperationType::PAD) == static_cast<int32_t>(::android::hardware::neuralnetworks::V1_2::OperationType::PAD)) {
os += (first ? "" : " | ");
os += "PAD";
first = false;
flipped |= ::android::hardware::neuralnetworks::V1_2::OperationType::PAD;
}
if ((o & ::android::hardware::neuralnetworks::V1_2::OperationType::SPACE_TO_BATCH_ND) == static_cast<int32_t>(::android::hardware::neuralnetworks::V1_2::OperationType::SPACE_TO_BATCH_ND)) {
os += (first ? "" : " | ");
os += "SPACE_TO_BATCH_ND";
first = false;
flipped |= ::android::hardware::neuralnetworks::V1_2::OperationType::SPACE_TO_BATCH_ND;
}
if ((o & ::android::hardware::neuralnetworks::V1_2::OperationType::SQUEEZE) == static_cast<int32_t>(::android::hardware::neuralnetworks::V1_2::OperationType::SQUEEZE)) {
os += (first ? "" : " | ");
os += "SQUEEZE";
first = false;
flipped |= ::android::hardware::neuralnetworks::V1_2::OperationType::SQUEEZE;
}
if ((o & ::android::hardware::neuralnetworks::V1_2::OperationType::STRIDED_SLICE) == static_cast<int32_t>(::android::hardware::neuralnetworks::V1_2::OperationType::STRIDED_SLICE)) {
os += (first ? "" : " | ");
os += "STRIDED_SLICE";
first = false;
flipped |= ::android::hardware::neuralnetworks::V1_2::OperationType::STRIDED_SLICE;
}
if ((o & ::android::hardware::neuralnetworks::V1_2::OperationType::SUB) == static_cast<int32_t>(::android::hardware::neuralnetworks::V1_2::OperationType::SUB)) {
os += (first ? "" : " | ");
os += "SUB";
first = false;
flipped |= ::android::hardware::neuralnetworks::V1_2::OperationType::SUB;
}
if ((o & ::android::hardware::neuralnetworks::V1_2::OperationType::TRANSPOSE) == static_cast<int32_t>(::android::hardware::neuralnetworks::V1_2::OperationType::TRANSPOSE)) {
os += (first ? "" : " | ");
os += "TRANSPOSE";
first = false;
flipped |= ::android::hardware::neuralnetworks::V1_2::OperationType::TRANSPOSE;
}
if ((o & ::android::hardware::neuralnetworks::V1_2::OperationType::ABS) == static_cast<int32_t>(::android::hardware::neuralnetworks::V1_2::OperationType::ABS)) {
os += (first ? "" : " | ");
os += "ABS";
first = false;
flipped |= ::android::hardware::neuralnetworks::V1_2::OperationType::ABS;
}
if ((o & ::android::hardware::neuralnetworks::V1_2::OperationType::ARGMAX) == static_cast<int32_t>(::android::hardware::neuralnetworks::V1_2::OperationType::ARGMAX)) {
os += (first ? "" : " | ");
os += "ARGMAX";
first = false;
flipped |= ::android::hardware::neuralnetworks::V1_2::OperationType::ARGMAX;
}
if ((o & ::android::hardware::neuralnetworks::V1_2::OperationType::ARGMIN) == static_cast<int32_t>(::android::hardware::neuralnetworks::V1_2::OperationType::ARGMIN)) {
os += (first ? "" : " | ");
os += "ARGMIN";
first = false;
flipped |= ::android::hardware::neuralnetworks::V1_2::OperationType::ARGMIN;
}
if ((o & ::android::hardware::neuralnetworks::V1_2::OperationType::AXIS_ALIGNED_BBOX_TRANSFORM) == static_cast<int32_t>(::android::hardware::neuralnetworks::V1_2::OperationType::AXIS_ALIGNED_BBOX_TRANSFORM)) {
os += (first ? "" : " | ");
os += "AXIS_ALIGNED_BBOX_TRANSFORM";
first = false;
flipped |= ::android::hardware::neuralnetworks::V1_2::OperationType::AXIS_ALIGNED_BBOX_TRANSFORM;
}
if ((o & ::android::hardware::neuralnetworks::V1_2::OperationType::BIDIRECTIONAL_SEQUENCE_LSTM) == static_cast<int32_t>(::android::hardware::neuralnetworks::V1_2::OperationType::BIDIRECTIONAL_SEQUENCE_LSTM)) {
os += (first ? "" : " | ");
os += "BIDIRECTIONAL_SEQUENCE_LSTM";
first = false;
flipped |= ::android::hardware::neuralnetworks::V1_2::OperationType::BIDIRECTIONAL_SEQUENCE_LSTM;
}
if ((o & ::android::hardware::neuralnetworks::V1_2::OperationType::BIDIRECTIONAL_SEQUENCE_RNN) == static_cast<int32_t>(::android::hardware::neuralnetworks::V1_2::OperationType::BIDIRECTIONAL_SEQUENCE_RNN)) {
os += (first ? "" : " | ");
os += "BIDIRECTIONAL_SEQUENCE_RNN";
first = false;
flipped |= ::android::hardware::neuralnetworks::V1_2::OperationType::BIDIRECTIONAL_SEQUENCE_RNN;
}
if ((o & ::android::hardware::neuralnetworks::V1_2::OperationType::BOX_WITH_NMS_LIMIT) == static_cast<int32_t>(::android::hardware::neuralnetworks::V1_2::OperationType::BOX_WITH_NMS_LIMIT)) {
os += (first ? "" : " | ");
os += "BOX_WITH_NMS_LIMIT";
first = false;
flipped |= ::android::hardware::neuralnetworks::V1_2::OperationType::BOX_WITH_NMS_LIMIT;
}
if ((o & ::android::hardware::neuralnetworks::V1_2::OperationType::CAST) == static_cast<int32_t>(::android::hardware::neuralnetworks::V1_2::OperationType::CAST)) {
os += (first ? "" : " | ");
os += "CAST";
first = false;
flipped |= ::android::hardware::neuralnetworks::V1_2::OperationType::CAST;
}
if ((o & ::android::hardware::neuralnetworks::V1_2::OperationType::CHANNEL_SHUFFLE) == static_cast<int32_t>(::android::hardware::neuralnetworks::V1_2::OperationType::CHANNEL_SHUFFLE)) {
os += (first ? "" : " | ");
os += "CHANNEL_SHUFFLE";
first = false;
flipped |= ::android::hardware::neuralnetworks::V1_2::OperationType::CHANNEL_SHUFFLE;
}
if ((o & ::android::hardware::neuralnetworks::V1_2::OperationType::DETECTION_POSTPROCESSING) == static_cast<int32_t>(::android::hardware::neuralnetworks::V1_2::OperationType::DETECTION_POSTPROCESSING)) {
os += (first ? "" : " | ");
os += "DETECTION_POSTPROCESSING";
first = false;
flipped |= ::android::hardware::neuralnetworks::V1_2::OperationType::DETECTION_POSTPROCESSING;
}
if ((o & ::android::hardware::neuralnetworks::V1_2::OperationType::EQUAL) == static_cast<int32_t>(::android::hardware::neuralnetworks::V1_2::OperationType::EQUAL)) {
os += (first ? "" : " | ");
os += "EQUAL";
first = false;
flipped |= ::android::hardware::neuralnetworks::V1_2::OperationType::EQUAL;
}
if ((o & ::android::hardware::neuralnetworks::V1_2::OperationType::EXP) == static_cast<int32_t>(::android::hardware::neuralnetworks::V1_2::OperationType::EXP)) {
os += (first ? "" : " | ");
os += "EXP";
first = false;
flipped |= ::android::hardware::neuralnetworks::V1_2::OperationType::EXP;
}
if ((o & ::android::hardware::neuralnetworks::V1_2::OperationType::EXPAND_DIMS) == static_cast<int32_t>(::android::hardware::neuralnetworks::V1_2::OperationType::EXPAND_DIMS)) {
os += (first ? "" : " | ");
os += "EXPAND_DIMS";
first = false;
flipped |= ::android::hardware::neuralnetworks::V1_2::OperationType::EXPAND_DIMS;
}
if ((o & ::android::hardware::neuralnetworks::V1_2::OperationType::GATHER) == static_cast<int32_t>(::android::hardware::neuralnetworks::V1_2::OperationType::GATHER)) {
os += (first ? "" : " | ");
os += "GATHER";
first = false;
flipped |= ::android::hardware::neuralnetworks::V1_2::OperationType::GATHER;
}
if ((o & ::android::hardware::neuralnetworks::V1_2::OperationType::GENERATE_PROPOSALS) == static_cast<int32_t>(::android::hardware::neuralnetworks::V1_2::OperationType::GENERATE_PROPOSALS)) {
os += (first ? "" : " | ");
os += "GENERATE_PROPOSALS";
first = false;
flipped |= ::android::hardware::neuralnetworks::V1_2::OperationType::GENERATE_PROPOSALS;
}
if ((o & ::android::hardware::neuralnetworks::V1_2::OperationType::GREATER) == static_cast<int32_t>(::android::hardware::neuralnetworks::V1_2::OperationType::GREATER)) {
os += (first ? "" : " | ");
os += "GREATER";
first = false;
flipped |= ::android::hardware::neuralnetworks::V1_2::OperationType::GREATER;
}
if ((o & ::android::hardware::neuralnetworks::V1_2::OperationType::GREATER_EQUAL) == static_cast<int32_t>(::android::hardware::neuralnetworks::V1_2::OperationType::GREATER_EQUAL)) {
os += (first ? "" : " | ");
os += "GREATER_EQUAL";
first = false;
flipped |= ::android::hardware::neuralnetworks::V1_2::OperationType::GREATER_EQUAL;
}
if ((o & ::android::hardware::neuralnetworks::V1_2::OperationType::GROUPED_CONV_2D) == static_cast<int32_t>(::android::hardware::neuralnetworks::V1_2::OperationType::GROUPED_CONV_2D)) {
os += (first ? "" : " | ");
os += "GROUPED_CONV_2D";
first = false;
flipped |= ::android::hardware::neuralnetworks::V1_2::OperationType::GROUPED_CONV_2D;
}
if ((o & ::android::hardware::neuralnetworks::V1_2::OperationType::HEATMAP_MAX_KEYPOINT) == static_cast<int32_t>(::android::hardware::neuralnetworks::V1_2::OperationType::HEATMAP_MAX_KEYPOINT)) {
os += (first ? "" : " | ");
os += "HEATMAP_MAX_KEYPOINT";
first = false;
flipped |= ::android::hardware::neuralnetworks::V1_2::OperationType::HEATMAP_MAX_KEYPOINT;
}
if ((o & ::android::hardware::neuralnetworks::V1_2::OperationType::INSTANCE_NORMALIZATION) == static_cast<int32_t>(::android::hardware::neuralnetworks::V1_2::OperationType::INSTANCE_NORMALIZATION)) {
os += (first ? "" : " | ");
os += "INSTANCE_NORMALIZATION";
first = false;
flipped |= ::android::hardware::neuralnetworks::V1_2::OperationType::INSTANCE_NORMALIZATION;
}
if ((o & ::android::hardware::neuralnetworks::V1_2::OperationType::LESS) == static_cast<int32_t>(::android::hardware::neuralnetworks::V1_2::OperationType::LESS)) {
os += (first ? "" : " | ");
os += "LESS";
first = false;
flipped |= ::android::hardware::neuralnetworks::V1_2::OperationType::LESS;
}
if ((o & ::android::hardware::neuralnetworks::V1_2::OperationType::LESS_EQUAL) == static_cast<int32_t>(::android::hardware::neuralnetworks::V1_2::OperationType::LESS_EQUAL)) {
os += (first ? "" : " | ");
os += "LESS_EQUAL";
first = false;
flipped |= ::android::hardware::neuralnetworks::V1_2::OperationType::LESS_EQUAL;
}
if ((o & ::android::hardware::neuralnetworks::V1_2::OperationType::LOG) == static_cast<int32_t>(::android::hardware::neuralnetworks::V1_2::OperationType::LOG)) {
os += (first ? "" : " | ");
os += "LOG";
first = false;
flipped |= ::android::hardware::neuralnetworks::V1_2::OperationType::LOG;
}
if ((o & ::android::hardware::neuralnetworks::V1_2::OperationType::LOGICAL_AND) == static_cast<int32_t>(::android::hardware::neuralnetworks::V1_2::OperationType::LOGICAL_AND)) {
os += (first ? "" : " | ");
os += "LOGICAL_AND";
first = false;
flipped |= ::android::hardware::neuralnetworks::V1_2::OperationType::LOGICAL_AND;
}
if ((o & ::android::hardware::neuralnetworks::V1_2::OperationType::LOGICAL_NOT) == static_cast<int32_t>(::android::hardware::neuralnetworks::V1_2::OperationType::LOGICAL_NOT)) {
os += (first ? "" : " | ");
os += "LOGICAL_NOT";
first = false;
flipped |= ::android::hardware::neuralnetworks::V1_2::OperationType::LOGICAL_NOT;
}
if ((o & ::android::hardware::neuralnetworks::V1_2::OperationType::LOGICAL_OR) == static_cast<int32_t>(::android::hardware::neuralnetworks::V1_2::OperationType::LOGICAL_OR)) {
os += (first ? "" : " | ");
os += "LOGICAL_OR";
first = false;
flipped |= ::android::hardware::neuralnetworks::V1_2::OperationType::LOGICAL_OR;
}
if ((o & ::android::hardware::neuralnetworks::V1_2::OperationType::LOG_SOFTMAX) == static_cast<int32_t>(::android::hardware::neuralnetworks::V1_2::OperationType::LOG_SOFTMAX)) {
os += (first ? "" : " | ");
os += "LOG_SOFTMAX";
first = false;
flipped |= ::android::hardware::neuralnetworks::V1_2::OperationType::LOG_SOFTMAX;
}
if ((o & ::android::hardware::neuralnetworks::V1_2::OperationType::MAXIMUM) == static_cast<int32_t>(::android::hardware::neuralnetworks::V1_2::OperationType::MAXIMUM)) {
os += (first ? "" : " | ");
os += "MAXIMUM";
first = false;
flipped |= ::android::hardware::neuralnetworks::V1_2::OperationType::MAXIMUM;
}
if ((o & ::android::hardware::neuralnetworks::V1_2::OperationType::MINIMUM) == static_cast<int32_t>(::android::hardware::neuralnetworks::V1_2::OperationType::MINIMUM)) {
os += (first ? "" : " | ");
os += "MINIMUM";
first = false;
flipped |= ::android::hardware::neuralnetworks::V1_2::OperationType::MINIMUM;
}
if ((o & ::android::hardware::neuralnetworks::V1_2::OperationType::NEG) == static_cast<int32_t>(::android::hardware::neuralnetworks::V1_2::OperationType::NEG)) {
os += (first ? "" : " | ");
os += "NEG";
first = false;
flipped |= ::android::hardware::neuralnetworks::V1_2::OperationType::NEG;
}
if ((o & ::android::hardware::neuralnetworks::V1_2::OperationType::NOT_EQUAL) == static_cast<int32_t>(::android::hardware::neuralnetworks::V1_2::OperationType::NOT_EQUAL)) {
os += (first ? "" : " | ");
os += "NOT_EQUAL";
first = false;
flipped |= ::android::hardware::neuralnetworks::V1_2::OperationType::NOT_EQUAL;
}
if ((o & ::android::hardware::neuralnetworks::V1_2::OperationType::PAD_V2) == static_cast<int32_t>(::android::hardware::neuralnetworks::V1_2::OperationType::PAD_V2)) {
os += (first ? "" : " | ");
os += "PAD_V2";
first = false;
flipped |= ::android::hardware::neuralnetworks::V1_2::OperationType::PAD_V2;
}
if ((o & ::android::hardware::neuralnetworks::V1_2::OperationType::POW) == static_cast<int32_t>(::android::hardware::neuralnetworks::V1_2::OperationType::POW)) {
os += (first ? "" : " | ");
os += "POW";
first = false;
flipped |= ::android::hardware::neuralnetworks::V1_2::OperationType::POW;
}
if ((o & ::android::hardware::neuralnetworks::V1_2::OperationType::PRELU) == static_cast<int32_t>(::android::hardware::neuralnetworks::V1_2::OperationType::PRELU)) {
os += (first ? "" : " | ");
os += "PRELU";
first = false;
flipped |= ::android::hardware::neuralnetworks::V1_2::OperationType::PRELU;
}
if ((o & ::android::hardware::neuralnetworks::V1_2::OperationType::QUANTIZE) == static_cast<int32_t>(::android::hardware::neuralnetworks::V1_2::OperationType::QUANTIZE)) {
os += (first ? "" : " | ");
os += "QUANTIZE";
first = false;
flipped |= ::android::hardware::neuralnetworks::V1_2::OperationType::QUANTIZE;
}
if ((o & ::android::hardware::neuralnetworks::V1_2::OperationType::QUANTIZED_16BIT_LSTM) == static_cast<int32_t>(::android::hardware::neuralnetworks::V1_2::OperationType::QUANTIZED_16BIT_LSTM)) {
os += (first ? "" : " | ");
os += "QUANTIZED_16BIT_LSTM";
first = false;
flipped |= ::android::hardware::neuralnetworks::V1_2::OperationType::QUANTIZED_16BIT_LSTM;
}
if ((o & ::android::hardware::neuralnetworks::V1_2::OperationType::RANDOM_MULTINOMIAL) == static_cast<int32_t>(::android::hardware::neuralnetworks::V1_2::OperationType::RANDOM_MULTINOMIAL)) {
os += (first ? "" : " | ");
os += "RANDOM_MULTINOMIAL";
first = false;
flipped |= ::android::hardware::neuralnetworks::V1_2::OperationType::RANDOM_MULTINOMIAL;
}
if ((o & ::android::hardware::neuralnetworks::V1_2::OperationType::REDUCE_ALL) == static_cast<int32_t>(::android::hardware::neuralnetworks::V1_2::OperationType::REDUCE_ALL)) {
os += (first ? "" : " | ");
os += "REDUCE_ALL";
first = false;
flipped |= ::android::hardware::neuralnetworks::V1_2::OperationType::REDUCE_ALL;
}
if ((o & ::android::hardware::neuralnetworks::V1_2::OperationType::REDUCE_ANY) == static_cast<int32_t>(::android::hardware::neuralnetworks::V1_2::OperationType::REDUCE_ANY)) {
os += (first ? "" : " | ");
os += "REDUCE_ANY";
first = false;
flipped |= ::android::hardware::neuralnetworks::V1_2::OperationType::REDUCE_ANY;
}
if ((o & ::android::hardware::neuralnetworks::V1_2::OperationType::REDUCE_MAX) == static_cast<int32_t>(::android::hardware::neuralnetworks::V1_2::OperationType::REDUCE_MAX)) {
os += (first ? "" : " | ");
os += "REDUCE_MAX";
first = false;
flipped |= ::android::hardware::neuralnetworks::V1_2::OperationType::REDUCE_MAX;
}
if ((o & ::android::hardware::neuralnetworks::V1_2::OperationType::REDUCE_MIN) == static_cast<int32_t>(::android::hardware::neuralnetworks::V1_2::OperationType::REDUCE_MIN)) {
os += (first ? "" : " | ");
os += "REDUCE_MIN";
first = false;
flipped |= ::android::hardware::neuralnetworks::V1_2::OperationType::REDUCE_MIN;
}
if ((o & ::android::hardware::neuralnetworks::V1_2::OperationType::REDUCE_PROD) == static_cast<int32_t>(::android::hardware::neuralnetworks::V1_2::OperationType::REDUCE_PROD)) {
os += (first ? "" : " | ");
os += "REDUCE_PROD";
first = false;
flipped |= ::android::hardware::neuralnetworks::V1_2::OperationType::REDUCE_PROD;
}
if ((o & ::android::hardware::neuralnetworks::V1_2::OperationType::REDUCE_SUM) == static_cast<int32_t>(::android::hardware::neuralnetworks::V1_2::OperationType::REDUCE_SUM)) {
os += (first ? "" : " | ");
os += "REDUCE_SUM";
first = false;
flipped |= ::android::hardware::neuralnetworks::V1_2::OperationType::REDUCE_SUM;
}
if ((o & ::android::hardware::neuralnetworks::V1_2::OperationType::ROI_ALIGN) == static_cast<int32_t>(::android::hardware::neuralnetworks::V1_2::OperationType::ROI_ALIGN)) {
os += (first ? "" : " | ");
os += "ROI_ALIGN";
first = false;
flipped |= ::android::hardware::neuralnetworks::V1_2::OperationType::ROI_ALIGN;
}
if ((o & ::android::hardware::neuralnetworks::V1_2::OperationType::ROI_POOLING) == static_cast<int32_t>(::android::hardware::neuralnetworks::V1_2::OperationType::ROI_POOLING)) {
os += (first ? "" : " | ");
os += "ROI_POOLING";
first = false;
flipped |= ::android::hardware::neuralnetworks::V1_2::OperationType::ROI_POOLING;
}
if ((o & ::android::hardware::neuralnetworks::V1_2::OperationType::RSQRT) == static_cast<int32_t>(::android::hardware::neuralnetworks::V1_2::OperationType::RSQRT)) {
os += (first ? "" : " | ");
os += "RSQRT";
first = false;
flipped |= ::android::hardware::neuralnetworks::V1_2::OperationType::RSQRT;
}
if ((o & ::android::hardware::neuralnetworks::V1_2::OperationType::SELECT) == static_cast<int32_t>(::android::hardware::neuralnetworks::V1_2::OperationType::SELECT)) {
os += (first ? "" : " | ");
os += "SELECT";
first = false;
flipped |= ::android::hardware::neuralnetworks::V1_2::OperationType::SELECT;
}
if ((o & ::android::hardware::neuralnetworks::V1_2::OperationType::SIN) == static_cast<int32_t>(::android::hardware::neuralnetworks::V1_2::OperationType::SIN)) {
os += (first ? "" : " | ");
os += "SIN";
first = false;
flipped |= ::android::hardware::neuralnetworks::V1_2::OperationType::SIN;
}
if ((o & ::android::hardware::neuralnetworks::V1_2::OperationType::SLICE) == static_cast<int32_t>(::android::hardware::neuralnetworks::V1_2::OperationType::SLICE)) {
os += (first ? "" : " | ");
os += "SLICE";
first = false;
flipped |= ::android::hardware::neuralnetworks::V1_2::OperationType::SLICE;
}
if ((o & ::android::hardware::neuralnetworks::V1_2::OperationType::SPLIT) == static_cast<int32_t>(::android::hardware::neuralnetworks::V1_2::OperationType::SPLIT)) {
os += (first ? "" : " | ");
os += "SPLIT";
first = false;
flipped |= ::android::hardware::neuralnetworks::V1_2::OperationType::SPLIT;
}
if ((o & ::android::hardware::neuralnetworks::V1_2::OperationType::SQRT) == static_cast<int32_t>(::android::hardware::neuralnetworks::V1_2::OperationType::SQRT)) {
os += (first ? "" : " | ");
os += "SQRT";
first = false;
flipped |= ::android::hardware::neuralnetworks::V1_2::OperationType::SQRT;
}
if ((o & ::android::hardware::neuralnetworks::V1_2::OperationType::TILE) == static_cast<int32_t>(::android::hardware::neuralnetworks::V1_2::OperationType::TILE)) {
os += (first ? "" : " | ");
os += "TILE";
first = false;
flipped |= ::android::hardware::neuralnetworks::V1_2::OperationType::TILE;
}
if ((o & ::android::hardware::neuralnetworks::V1_2::OperationType::TOPK_V2) == static_cast<int32_t>(::android::hardware::neuralnetworks::V1_2::OperationType::TOPK_V2)) {
os += (first ? "" : " | ");
os += "TOPK_V2";
first = false;
flipped |= ::android::hardware::neuralnetworks::V1_2::OperationType::TOPK_V2;
}
if ((o & ::android::hardware::neuralnetworks::V1_2::OperationType::TRANSPOSE_CONV_2D) == static_cast<int32_t>(::android::hardware::neuralnetworks::V1_2::OperationType::TRANSPOSE_CONV_2D)) {
os += (first ? "" : " | ");
os += "TRANSPOSE_CONV_2D";
first = false;
flipped |= ::android::hardware::neuralnetworks::V1_2::OperationType::TRANSPOSE_CONV_2D;
}
if ((o & ::android::hardware::neuralnetworks::V1_2::OperationType::UNIDIRECTIONAL_SEQUENCE_LSTM) == static_cast<int32_t>(::android::hardware::neuralnetworks::V1_2::OperationType::UNIDIRECTIONAL_SEQUENCE_LSTM)) {
os += (first ? "" : " | ");
os += "UNIDIRECTIONAL_SEQUENCE_LSTM";
first = false;
flipped |= ::android::hardware::neuralnetworks::V1_2::OperationType::UNIDIRECTIONAL_SEQUENCE_LSTM;
}
if ((o & ::android::hardware::neuralnetworks::V1_2::OperationType::UNIDIRECTIONAL_SEQUENCE_RNN) == static_cast<int32_t>(::android::hardware::neuralnetworks::V1_2::OperationType::UNIDIRECTIONAL_SEQUENCE_RNN)) {
os += (first ? "" : " | ");
os += "UNIDIRECTIONAL_SEQUENCE_RNN";
first = false;
flipped |= ::android::hardware::neuralnetworks::V1_2::OperationType::UNIDIRECTIONAL_SEQUENCE_RNN;
}
if ((o & ::android::hardware::neuralnetworks::V1_2::OperationType::RESIZE_NEAREST_NEIGHBOR) == static_cast<int32_t>(::android::hardware::neuralnetworks::V1_2::OperationType::RESIZE_NEAREST_NEIGHBOR)) {
os += (first ? "" : " | ");
os += "RESIZE_NEAREST_NEIGHBOR";
first = false;
flipped |= ::android::hardware::neuralnetworks::V1_2::OperationType::RESIZE_NEAREST_NEIGHBOR;
}
if ((o & ::android::hardware::neuralnetworks::V1_2::OperationType::OEM_OPERATION) == static_cast<int32_t>(::android::hardware::neuralnetworks::V1_2::OperationType::OEM_OPERATION)) {
os += (first ? "" : " | ");
os += "OEM_OPERATION";
first = false;
flipped |= ::android::hardware::neuralnetworks::V1_2::OperationType::OEM_OPERATION;
}
if (o != flipped) {
os += (first ? "" : " | ");
os += toHexString(o & (~flipped));
}os += " (";
os += toHexString(o);
os += ")";
return os;
}
static inline std::string toString(::android::hardware::neuralnetworks::V1_2::OperationType o) {
using ::android::hardware::details::toHexString;
if (o == ::android::hardware::neuralnetworks::V1_2::OperationType::ADD) {
return "ADD";
}
if (o == ::android::hardware::neuralnetworks::V1_2::OperationType::AVERAGE_POOL_2D) {
return "AVERAGE_POOL_2D";
}
if (o == ::android::hardware::neuralnetworks::V1_2::OperationType::CONCATENATION) {
return "CONCATENATION";
}
if (o == ::android::hardware::neuralnetworks::V1_2::OperationType::CONV_2D) {
return "CONV_2D";
}
if (o == ::android::hardware::neuralnetworks::V1_2::OperationType::DEPTHWISE_CONV_2D) {
return "DEPTHWISE_CONV_2D";
}
if (o == ::android::hardware::neuralnetworks::V1_2::OperationType::DEPTH_TO_SPACE) {
return "DEPTH_TO_SPACE";
}
if (o == ::android::hardware::neuralnetworks::V1_2::OperationType::DEQUANTIZE) {
return "DEQUANTIZE";
}
if (o == ::android::hardware::neuralnetworks::V1_2::OperationType::EMBEDDING_LOOKUP) {
return "EMBEDDING_LOOKUP";
}
if (o == ::android::hardware::neuralnetworks::V1_2::OperationType::FLOOR) {
return "FLOOR";
}
if (o == ::android::hardware::neuralnetworks::V1_2::OperationType::FULLY_CONNECTED) {
return "FULLY_CONNECTED";
}
if (o == ::android::hardware::neuralnetworks::V1_2::OperationType::HASHTABLE_LOOKUP) {
return "HASHTABLE_LOOKUP";
}
if (o == ::android::hardware::neuralnetworks::V1_2::OperationType::L2_NORMALIZATION) {
return "L2_NORMALIZATION";
}
if (o == ::android::hardware::neuralnetworks::V1_2::OperationType::L2_POOL_2D) {
return "L2_POOL_2D";
}
if (o == ::android::hardware::neuralnetworks::V1_2::OperationType::LOCAL_RESPONSE_NORMALIZATION) {
return "LOCAL_RESPONSE_NORMALIZATION";
}
if (o == ::android::hardware::neuralnetworks::V1_2::OperationType::LOGISTIC) {
return "LOGISTIC";
}
if (o == ::android::hardware::neuralnetworks::V1_2::OperationType::LSH_PROJECTION) {
return "LSH_PROJECTION";
}
if (o == ::android::hardware::neuralnetworks::V1_2::OperationType::LSTM) {
return "LSTM";
}
if (o == ::android::hardware::neuralnetworks::V1_2::OperationType::MAX_POOL_2D) {
return "MAX_POOL_2D";
}
if (o == ::android::hardware::neuralnetworks::V1_2::OperationType::MUL) {
return "MUL";
}
if (o == ::android::hardware::neuralnetworks::V1_2::OperationType::RELU) {
return "RELU";
}
if (o == ::android::hardware::neuralnetworks::V1_2::OperationType::RELU1) {
return "RELU1";
}
if (o == ::android::hardware::neuralnetworks::V1_2::OperationType::RELU6) {
return "RELU6";
}
if (o == ::android::hardware::neuralnetworks::V1_2::OperationType::RESHAPE) {
return "RESHAPE";
}
if (o == ::android::hardware::neuralnetworks::V1_2::OperationType::RESIZE_BILINEAR) {
return "RESIZE_BILINEAR";
}
if (o == ::android::hardware::neuralnetworks::V1_2::OperationType::RNN) {
return "RNN";
}
if (o == ::android::hardware::neuralnetworks::V1_2::OperationType::SOFTMAX) {
return "SOFTMAX";
}
if (o == ::android::hardware::neuralnetworks::V1_2::OperationType::SPACE_TO_DEPTH) {
return "SPACE_TO_DEPTH";
}
if (o == ::android::hardware::neuralnetworks::V1_2::OperationType::SVDF) {
return "SVDF";
}
if (o == ::android::hardware::neuralnetworks::V1_2::OperationType::TANH) {
return "TANH";
}
if (o == ::android::hardware::neuralnetworks::V1_2::OperationType::BATCH_TO_SPACE_ND) {
return "BATCH_TO_SPACE_ND";
}
if (o == ::android::hardware::neuralnetworks::V1_2::OperationType::DIV) {
return "DIV";
}
if (o == ::android::hardware::neuralnetworks::V1_2::OperationType::MEAN) {
return "MEAN";
}
if (o == ::android::hardware::neuralnetworks::V1_2::OperationType::PAD) {
return "PAD";
}
if (o == ::android::hardware::neuralnetworks::V1_2::OperationType::SPACE_TO_BATCH_ND) {
return "SPACE_TO_BATCH_ND";
}
if (o == ::android::hardware::neuralnetworks::V1_2::OperationType::SQUEEZE) {
return "SQUEEZE";
}
if (o == ::android::hardware::neuralnetworks::V1_2::OperationType::STRIDED_SLICE) {
return "STRIDED_SLICE";
}
if (o == ::android::hardware::neuralnetworks::V1_2::OperationType::SUB) {
return "SUB";
}
if (o == ::android::hardware::neuralnetworks::V1_2::OperationType::TRANSPOSE) {
return "TRANSPOSE";
}
if (o == ::android::hardware::neuralnetworks::V1_2::OperationType::ABS) {
return "ABS";
}
if (o == ::android::hardware::neuralnetworks::V1_2::OperationType::ARGMAX) {
return "ARGMAX";
}
if (o == ::android::hardware::neuralnetworks::V1_2::OperationType::ARGMIN) {
return "ARGMIN";
}
if (o == ::android::hardware::neuralnetworks::V1_2::OperationType::AXIS_ALIGNED_BBOX_TRANSFORM) {
return "AXIS_ALIGNED_BBOX_TRANSFORM";
}
if (o == ::android::hardware::neuralnetworks::V1_2::OperationType::BIDIRECTIONAL_SEQUENCE_LSTM) {
return "BIDIRECTIONAL_SEQUENCE_LSTM";
}
if (o == ::android::hardware::neuralnetworks::V1_2::OperationType::BIDIRECTIONAL_SEQUENCE_RNN) {
return "BIDIRECTIONAL_SEQUENCE_RNN";
}
if (o == ::android::hardware::neuralnetworks::V1_2::OperationType::BOX_WITH_NMS_LIMIT) {
return "BOX_WITH_NMS_LIMIT";
}
if (o == ::android::hardware::neuralnetworks::V1_2::OperationType::CAST) {
return "CAST";
}
if (o == ::android::hardware::neuralnetworks::V1_2::OperationType::CHANNEL_SHUFFLE) {
return "CHANNEL_SHUFFLE";
}
if (o == ::android::hardware::neuralnetworks::V1_2::OperationType::DETECTION_POSTPROCESSING) {
return "DETECTION_POSTPROCESSING";
}
if (o == ::android::hardware::neuralnetworks::V1_2::OperationType::EQUAL) {
return "EQUAL";
}
if (o == ::android::hardware::neuralnetworks::V1_2::OperationType::EXP) {
return "EXP";
}
if (o == ::android::hardware::neuralnetworks::V1_2::OperationType::EXPAND_DIMS) {
return "EXPAND_DIMS";
}
if (o == ::android::hardware::neuralnetworks::V1_2::OperationType::GATHER) {
return "GATHER";
}
if (o == ::android::hardware::neuralnetworks::V1_2::OperationType::GENERATE_PROPOSALS) {
return "GENERATE_PROPOSALS";
}
if (o == ::android::hardware::neuralnetworks::V1_2::OperationType::GREATER) {
return "GREATER";
}
if (o == ::android::hardware::neuralnetworks::V1_2::OperationType::GREATER_EQUAL) {
return "GREATER_EQUAL";
}
if (o == ::android::hardware::neuralnetworks::V1_2::OperationType::GROUPED_CONV_2D) {
return "GROUPED_CONV_2D";
}
if (o == ::android::hardware::neuralnetworks::V1_2::OperationType::HEATMAP_MAX_KEYPOINT) {
return "HEATMAP_MAX_KEYPOINT";
}
if (o == ::android::hardware::neuralnetworks::V1_2::OperationType::INSTANCE_NORMALIZATION) {
return "INSTANCE_NORMALIZATION";
}
if (o == ::android::hardware::neuralnetworks::V1_2::OperationType::LESS) {
return "LESS";
}
if (o == ::android::hardware::neuralnetworks::V1_2::OperationType::LESS_EQUAL) {
return "LESS_EQUAL";
}
if (o == ::android::hardware::neuralnetworks::V1_2::OperationType::LOG) {
return "LOG";
}
if (o == ::android::hardware::neuralnetworks::V1_2::OperationType::LOGICAL_AND) {
return "LOGICAL_AND";
}
if (o == ::android::hardware::neuralnetworks::V1_2::OperationType::LOGICAL_NOT) {
return "LOGICAL_NOT";
}
if (o == ::android::hardware::neuralnetworks::V1_2::OperationType::LOGICAL_OR) {
return "LOGICAL_OR";
}
if (o == ::android::hardware::neuralnetworks::V1_2::OperationType::LOG_SOFTMAX) {
return "LOG_SOFTMAX";
}
if (o == ::android::hardware::neuralnetworks::V1_2::OperationType::MAXIMUM) {
return "MAXIMUM";
}
if (o == ::android::hardware::neuralnetworks::V1_2::OperationType::MINIMUM) {
return "MINIMUM";
}
if (o == ::android::hardware::neuralnetworks::V1_2::OperationType::NEG) {
return "NEG";
}
if (o == ::android::hardware::neuralnetworks::V1_2::OperationType::NOT_EQUAL) {
return "NOT_EQUAL";
}
if (o == ::android::hardware::neuralnetworks::V1_2::OperationType::PAD_V2) {
return "PAD_V2";
}
if (o == ::android::hardware::neuralnetworks::V1_2::OperationType::POW) {
return "POW";
}
if (o == ::android::hardware::neuralnetworks::V1_2::OperationType::PRELU) {
return "PRELU";
}
if (o == ::android::hardware::neuralnetworks::V1_2::OperationType::QUANTIZE) {
return "QUANTIZE";
}
if (o == ::android::hardware::neuralnetworks::V1_2::OperationType::QUANTIZED_16BIT_LSTM) {
return "QUANTIZED_16BIT_LSTM";
}
if (o == ::android::hardware::neuralnetworks::V1_2::OperationType::RANDOM_MULTINOMIAL) {
return "RANDOM_MULTINOMIAL";
}
if (o == ::android::hardware::neuralnetworks::V1_2::OperationType::REDUCE_ALL) {
return "REDUCE_ALL";
}
if (o == ::android::hardware::neuralnetworks::V1_2::OperationType::REDUCE_ANY) {
return "REDUCE_ANY";
}
if (o == ::android::hardware::neuralnetworks::V1_2::OperationType::REDUCE_MAX) {
return "REDUCE_MAX";
}
if (o == ::android::hardware::neuralnetworks::V1_2::OperationType::REDUCE_MIN) {
return "REDUCE_MIN";
}
if (o == ::android::hardware::neuralnetworks::V1_2::OperationType::REDUCE_PROD) {
return "REDUCE_PROD";
}
if (o == ::android::hardware::neuralnetworks::V1_2::OperationType::REDUCE_SUM) {
return "REDUCE_SUM";
}
if (o == ::android::hardware::neuralnetworks::V1_2::OperationType::ROI_ALIGN) {
return "ROI_ALIGN";
}
if (o == ::android::hardware::neuralnetworks::V1_2::OperationType::ROI_POOLING) {
return "ROI_POOLING";
}
if (o == ::android::hardware::neuralnetworks::V1_2::OperationType::RSQRT) {
return "RSQRT";
}
if (o == ::android::hardware::neuralnetworks::V1_2::OperationType::SELECT) {
return "SELECT";
}
if (o == ::android::hardware::neuralnetworks::V1_2::OperationType::SIN) {
return "SIN";
}
if (o == ::android::hardware::neuralnetworks::V1_2::OperationType::SLICE) {
return "SLICE";
}
if (o == ::android::hardware::neuralnetworks::V1_2::OperationType::SPLIT) {
return "SPLIT";
}
if (o == ::android::hardware::neuralnetworks::V1_2::OperationType::SQRT) {
return "SQRT";
}
if (o == ::android::hardware::neuralnetworks::V1_2::OperationType::TILE) {
return "TILE";
}
if (o == ::android::hardware::neuralnetworks::V1_2::OperationType::TOPK_V2) {
return "TOPK_V2";
}
if (o == ::android::hardware::neuralnetworks::V1_2::OperationType::TRANSPOSE_CONV_2D) {
return "TRANSPOSE_CONV_2D";
}
if (o == ::android::hardware::neuralnetworks::V1_2::OperationType::UNIDIRECTIONAL_SEQUENCE_LSTM) {
return "UNIDIRECTIONAL_SEQUENCE_LSTM";
}
if (o == ::android::hardware::neuralnetworks::V1_2::OperationType::UNIDIRECTIONAL_SEQUENCE_RNN) {
return "UNIDIRECTIONAL_SEQUENCE_RNN";
}
if (o == ::android::hardware::neuralnetworks::V1_2::OperationType::RESIZE_NEAREST_NEIGHBOR) {
return "RESIZE_NEAREST_NEIGHBOR";
}
if (o == ::android::hardware::neuralnetworks::V1_2::OperationType::OEM_OPERATION) {
return "OEM_OPERATION";
}
std::string os;
os += toHexString(static_cast<int32_t>(o));
return os;
}
static inline void PrintTo(::android::hardware::neuralnetworks::V1_2::OperationType o, ::std::ostream* os) {
*os << toString(o);
}
template<>
inline std::string toString<::android::hardware::neuralnetworks::V1_2::OperationTypeRange>(uint32_t o) {
using ::android::hardware::details::toHexString;
std::string os;
::android::hardware::hidl_bitfield<::android::hardware::neuralnetworks::V1_2::OperationTypeRange> flipped = 0;
bool first = true;
if ((o & ::android::hardware::neuralnetworks::V1_2::OperationTypeRange::BASE_MIN) == static_cast<uint32_t>(::android::hardware::neuralnetworks::V1_2::OperationTypeRange::BASE_MIN)) {
os += (first ? "" : " | ");
os += "BASE_MIN";
first = false;
flipped |= ::android::hardware::neuralnetworks::V1_2::OperationTypeRange::BASE_MIN;
}
if ((o & ::android::hardware::neuralnetworks::V1_2::OperationTypeRange::FUNDAMENTAL_MIN) == static_cast<uint32_t>(::android::hardware::neuralnetworks::V1_2::OperationTypeRange::FUNDAMENTAL_MIN)) {
os += (first ? "" : " | ");
os += "FUNDAMENTAL_MIN";
first = false;
flipped |= ::android::hardware::neuralnetworks::V1_2::OperationTypeRange::FUNDAMENTAL_MIN;
}
if ((o & ::android::hardware::neuralnetworks::V1_2::OperationTypeRange::FUNDAMENTAL_MAX) == static_cast<uint32_t>(::android::hardware::neuralnetworks::V1_2::OperationTypeRange::FUNDAMENTAL_MAX)) {
os += (first ? "" : " | ");
os += "FUNDAMENTAL_MAX";
first = false;
flipped |= ::android::hardware::neuralnetworks::V1_2::OperationTypeRange::FUNDAMENTAL_MAX;
}
if ((o & ::android::hardware::neuralnetworks::V1_2::OperationTypeRange::OEM_MIN) == static_cast<uint32_t>(::android::hardware::neuralnetworks::V1_2::OperationTypeRange::OEM_MIN)) {
os += (first ? "" : " | ");
os += "OEM_MIN";
first = false;
flipped |= ::android::hardware::neuralnetworks::V1_2::OperationTypeRange::OEM_MIN;
}
if ((o & ::android::hardware::neuralnetworks::V1_2::OperationTypeRange::OEM_MAX) == static_cast<uint32_t>(::android::hardware::neuralnetworks::V1_2::OperationTypeRange::OEM_MAX)) {
os += (first ? "" : " | ");
os += "OEM_MAX";
first = false;
flipped |= ::android::hardware::neuralnetworks::V1_2::OperationTypeRange::OEM_MAX;
}
if ((o & ::android::hardware::neuralnetworks::V1_2::OperationTypeRange::BASE_MAX) == static_cast<uint32_t>(::android::hardware::neuralnetworks::V1_2::OperationTypeRange::BASE_MAX)) {
os += (first ? "" : " | ");
os += "BASE_MAX";
first = false;
flipped |= ::android::hardware::neuralnetworks::V1_2::OperationTypeRange::BASE_MAX;
}
if (o != flipped) {
os += (first ? "" : " | ");
os += toHexString(o & (~flipped));
}os += " (";
os += toHexString(o);
os += ")";
return os;
}
static inline std::string toString(::android::hardware::neuralnetworks::V1_2::OperationTypeRange o) {
using ::android::hardware::details::toHexString;
if (o == ::android::hardware::neuralnetworks::V1_2::OperationTypeRange::BASE_MIN) {
return "BASE_MIN";
}
if (o == ::android::hardware::neuralnetworks::V1_2::OperationTypeRange::FUNDAMENTAL_MIN) {
return "FUNDAMENTAL_MIN";
}
if (o == ::android::hardware::neuralnetworks::V1_2::OperationTypeRange::FUNDAMENTAL_MAX) {
return "FUNDAMENTAL_MAX";
}
if (o == ::android::hardware::neuralnetworks::V1_2::OperationTypeRange::OEM_MIN) {
return "OEM_MIN";
}
if (o == ::android::hardware::neuralnetworks::V1_2::OperationTypeRange::OEM_MAX) {
return "OEM_MAX";
}
if (o == ::android::hardware::neuralnetworks::V1_2::OperationTypeRange::BASE_MAX) {
return "BASE_MAX";
}
std::string os;
os += toHexString(static_cast<uint32_t>(o));
return os;
}
static inline void PrintTo(::android::hardware::neuralnetworks::V1_2::OperationTypeRange o, ::std::ostream* os) {
*os << toString(o);
}
template<>
inline std::string toString<::android::hardware::neuralnetworks::V1_2::DeviceType>(int32_t o) {
using ::android::hardware::details::toHexString;
std::string os;
::android::hardware::hidl_bitfield<::android::hardware::neuralnetworks::V1_2::DeviceType> flipped = 0;
bool first = true;
if ((o & ::android::hardware::neuralnetworks::V1_2::DeviceType::OTHER) == static_cast<int32_t>(::android::hardware::neuralnetworks::V1_2::DeviceType::OTHER)) {
os += (first ? "" : " | ");
os += "OTHER";
first = false;
flipped |= ::android::hardware::neuralnetworks::V1_2::DeviceType::OTHER;
}
if ((o & ::android::hardware::neuralnetworks::V1_2::DeviceType::CPU) == static_cast<int32_t>(::android::hardware::neuralnetworks::V1_2::DeviceType::CPU)) {
os += (first ? "" : " | ");
os += "CPU";
first = false;
flipped |= ::android::hardware::neuralnetworks::V1_2::DeviceType::CPU;
}
if ((o & ::android::hardware::neuralnetworks::V1_2::DeviceType::GPU) == static_cast<int32_t>(::android::hardware::neuralnetworks::V1_2::DeviceType::GPU)) {
os += (first ? "" : " | ");
os += "GPU";
first = false;
flipped |= ::android::hardware::neuralnetworks::V1_2::DeviceType::GPU;
}
if ((o & ::android::hardware::neuralnetworks::V1_2::DeviceType::ACCELERATOR) == static_cast<int32_t>(::android::hardware::neuralnetworks::V1_2::DeviceType::ACCELERATOR)) {
os += (first ? "" : " | ");
os += "ACCELERATOR";
first = false;
flipped |= ::android::hardware::neuralnetworks::V1_2::DeviceType::ACCELERATOR;
}
if (o != flipped) {
os += (first ? "" : " | ");
os += toHexString(o & (~flipped));
}os += " (";
os += toHexString(o);
os += ")";
return os;
}
static inline std::string toString(::android::hardware::neuralnetworks::V1_2::DeviceType o) {
using ::android::hardware::details::toHexString;
if (o == ::android::hardware::neuralnetworks::V1_2::DeviceType::OTHER) {
return "OTHER";
}
if (o == ::android::hardware::neuralnetworks::V1_2::DeviceType::CPU) {
return "CPU";
}
if (o == ::android::hardware::neuralnetworks::V1_2::DeviceType::GPU) {
return "GPU";
}
if (o == ::android::hardware::neuralnetworks::V1_2::DeviceType::ACCELERATOR) {
return "ACCELERATOR";
}
std::string os;
os += toHexString(static_cast<int32_t>(o));
return os;
}
static inline void PrintTo(::android::hardware::neuralnetworks::V1_2::DeviceType o, ::std::ostream* os) {
*os << toString(o);
}
static inline std::string toString(const ::android::hardware::neuralnetworks::V1_2::Capabilities::OperandPerformance& o) {
using ::android::hardware::toString;
std::string os;
os += "{";
os += ".type = ";
os += ::android::hardware::neuralnetworks::V1_2::toString(o.type);
os += ", .info = ";
os += ::android::hardware::neuralnetworks::V1_0::toString(o.info);
os += "}"; return os;
}
static inline void PrintTo(const ::android::hardware::neuralnetworks::V1_2::Capabilities::OperandPerformance& o, ::std::ostream* os) {
*os << toString(o);
}
static inline bool operator==(const ::android::hardware::neuralnetworks::V1_2::Capabilities::OperandPerformance& lhs, const ::android::hardware::neuralnetworks::V1_2::Capabilities::OperandPerformance& rhs) {
if (lhs.type != rhs.type) {
return false;
}
if (lhs.info != rhs.info) {
return false;
}
return true;
}
static inline bool operator!=(const ::android::hardware::neuralnetworks::V1_2::Capabilities::OperandPerformance& lhs, const ::android::hardware::neuralnetworks::V1_2::Capabilities::OperandPerformance& rhs){
return !(lhs == rhs);
}
static inline std::string toString(const ::android::hardware::neuralnetworks::V1_2::Capabilities& o) {
using ::android::hardware::toString;
std::string os;
os += "{";
os += ".relaxedFloat32toFloat16PerformanceScalar = ";
os += ::android::hardware::neuralnetworks::V1_0::toString(o.relaxedFloat32toFloat16PerformanceScalar);
os += ", .relaxedFloat32toFloat16PerformanceTensor = ";
os += ::android::hardware::neuralnetworks::V1_0::toString(o.relaxedFloat32toFloat16PerformanceTensor);
os += ", .operandPerformance = ";
os += ::android::hardware::toString(o.operandPerformance);
os += "}"; return os;
}
static inline void PrintTo(const ::android::hardware::neuralnetworks::V1_2::Capabilities& o, ::std::ostream* os) {
*os << toString(o);
}
static inline bool operator==(const ::android::hardware::neuralnetworks::V1_2::Capabilities& lhs, const ::android::hardware::neuralnetworks::V1_2::Capabilities& rhs) {
if (lhs.relaxedFloat32toFloat16PerformanceScalar != rhs.relaxedFloat32toFloat16PerformanceScalar) {
return false;
}
if (lhs.relaxedFloat32toFloat16PerformanceTensor != rhs.relaxedFloat32toFloat16PerformanceTensor) {
return false;
}
if (lhs.operandPerformance != rhs.operandPerformance) {
return false;
}
return true;
}
static inline bool operator!=(const ::android::hardware::neuralnetworks::V1_2::Capabilities& lhs, const ::android::hardware::neuralnetworks::V1_2::Capabilities& rhs){
return !(lhs == rhs);
}
static inline std::string toString(const ::android::hardware::neuralnetworks::V1_2::Operation& o) {
using ::android::hardware::toString;
std::string os;
os += "{";
os += ".type = ";
os += ::android::hardware::neuralnetworks::V1_2::toString(o.type);
os += ", .inputs = ";
os += ::android::hardware::toString(o.inputs);
os += ", .outputs = ";
os += ::android::hardware::toString(o.outputs);
os += "}"; return os;
}
static inline void PrintTo(const ::android::hardware::neuralnetworks::V1_2::Operation& o, ::std::ostream* os) {
*os << toString(o);
}
static inline bool operator==(const ::android::hardware::neuralnetworks::V1_2::Operation& lhs, const ::android::hardware::neuralnetworks::V1_2::Operation& rhs) {
if (lhs.type != rhs.type) {
return false;
}
if (lhs.inputs != rhs.inputs) {
return false;
}
if (lhs.outputs != rhs.outputs) {
return false;
}
return true;
}
static inline bool operator!=(const ::android::hardware::neuralnetworks::V1_2::Operation& lhs, const ::android::hardware::neuralnetworks::V1_2::Operation& rhs){
return !(lhs == rhs);
}
static inline std::string toString(const ::android::hardware::neuralnetworks::V1_2::SymmPerChannelQuantParams& o) {
using ::android::hardware::toString;
std::string os;
os += "{";
os += ".scales = ";
os += ::android::hardware::toString(o.scales);
os += ", .channelDim = ";
os += ::android::hardware::toString(o.channelDim);
os += "}"; return os;
}
static inline void PrintTo(const ::android::hardware::neuralnetworks::V1_2::SymmPerChannelQuantParams& o, ::std::ostream* os) {
*os << toString(o);
}
static inline bool operator==(const ::android::hardware::neuralnetworks::V1_2::SymmPerChannelQuantParams& lhs, const ::android::hardware::neuralnetworks::V1_2::SymmPerChannelQuantParams& rhs) {
if (lhs.scales != rhs.scales) {
return false;
}
if (lhs.channelDim != rhs.channelDim) {
return false;
}
return true;
}
static inline bool operator!=(const ::android::hardware::neuralnetworks::V1_2::SymmPerChannelQuantParams& lhs, const ::android::hardware::neuralnetworks::V1_2::SymmPerChannelQuantParams& rhs){
return !(lhs == rhs);
}
static inline std::string toString(const ::android::hardware::neuralnetworks::V1_2::Operand::ExtraParams& o) {
using ::android::hardware::toString;
std::string os;
os += "{";
switch (o.getDiscriminator()) {
case ::android::hardware::neuralnetworks::V1_2::Operand::ExtraParams::hidl_discriminator::none: {
os += ".none = ";
os += toString(o.none());
break;
}
case ::android::hardware::neuralnetworks::V1_2::Operand::ExtraParams::hidl_discriminator::channelQuant: {
os += ".channelQuant = ";
os += toString(o.channelQuant());
break;
}
case ::android::hardware::neuralnetworks::V1_2::Operand::ExtraParams::hidl_discriminator::extension: {
os += ".extension = ";
os += toString(o.extension());
break;
}
default: {
::android::hardware::details::logAlwaysFatal((
"Unknown union discriminator (value: " +
std::to_string((uint8_t) o.getDiscriminator()) + ").").c_str());
}
}
os += "}"; return os;
}
static inline void PrintTo(const ::android::hardware::neuralnetworks::V1_2::Operand::ExtraParams& o, ::std::ostream* os) {
*os << toString(o);
}
static inline bool operator==(const ::android::hardware::neuralnetworks::V1_2::Operand::ExtraParams& lhs, const ::android::hardware::neuralnetworks::V1_2::Operand::ExtraParams& rhs) {
if (lhs.getDiscriminator() != rhs.getDiscriminator()) {
return false;
}
switch (lhs.getDiscriminator()) {
case ::android::hardware::neuralnetworks::V1_2::Operand::ExtraParams::hidl_discriminator::none: {
return (lhs.none() == rhs.none());
}
case ::android::hardware::neuralnetworks::V1_2::Operand::ExtraParams::hidl_discriminator::channelQuant: {
return (lhs.channelQuant() == rhs.channelQuant());
}
case ::android::hardware::neuralnetworks::V1_2::Operand::ExtraParams::hidl_discriminator::extension: {
return (lhs.extension() == rhs.extension());
}
default: {
::android::hardware::details::logAlwaysFatal((
"Unknown union discriminator (value: " +
std::to_string((uint8_t) lhs.getDiscriminator()) + ").").c_str());
}
}
return true;
}
static inline bool operator!=(const ::android::hardware::neuralnetworks::V1_2::Operand::ExtraParams& lhs, const ::android::hardware::neuralnetworks::V1_2::Operand::ExtraParams& rhs){
return !(lhs == rhs);
}
static inline std::string toString(const ::android::hardware::neuralnetworks::V1_2::Operand& o) {
using ::android::hardware::toString;
std::string os;
os += "{";
os += ".type = ";
os += ::android::hardware::neuralnetworks::V1_2::toString(o.type);
os += ", .dimensions = ";
os += ::android::hardware::toString(o.dimensions);
os += ", .numberOfConsumers = ";
os += ::android::hardware::toString(o.numberOfConsumers);
os += ", .scale = ";
os += ::android::hardware::toString(o.scale);
os += ", .zeroPoint = ";
os += ::android::hardware::toString(o.zeroPoint);
os += ", .lifetime = ";
os += ::android::hardware::neuralnetworks::V1_0::toString(o.lifetime);
os += ", .location = ";
os += ::android::hardware::neuralnetworks::V1_0::toString(o.location);
os += ", .extraParams = ";
os += ::android::hardware::neuralnetworks::V1_2::toString(o.extraParams);
os += "}"; return os;
}
static inline void PrintTo(const ::android::hardware::neuralnetworks::V1_2::Operand& o, ::std::ostream* os) {
*os << toString(o);
}
static inline bool operator==(const ::android::hardware::neuralnetworks::V1_2::Operand& lhs, const ::android::hardware::neuralnetworks::V1_2::Operand& rhs) {
if (lhs.type != rhs.type) {
return false;
}
if (lhs.dimensions != rhs.dimensions) {
return false;
}
if (lhs.numberOfConsumers != rhs.numberOfConsumers) {
return false;
}
if (lhs.scale != rhs.scale) {
return false;
}
if (lhs.zeroPoint != rhs.zeroPoint) {
return false;
}
if (lhs.lifetime != rhs.lifetime) {
return false;
}
if (lhs.location != rhs.location) {
return false;
}
if (lhs.extraParams != rhs.extraParams) {
return false;
}
return true;
}
static inline bool operator!=(const ::android::hardware::neuralnetworks::V1_2::Operand& lhs, const ::android::hardware::neuralnetworks::V1_2::Operand& rhs){
return !(lhs == rhs);
}
static inline std::string toString(const ::android::hardware::neuralnetworks::V1_2::Model::ExtensionNameAndPrefix& o) {
using ::android::hardware::toString;
std::string os;
os += "{";
os += ".name = ";
os += ::android::hardware::toString(o.name);
os += ", .prefix = ";
os += ::android::hardware::toString(o.prefix);
os += "}"; return os;
}
static inline void PrintTo(const ::android::hardware::neuralnetworks::V1_2::Model::ExtensionNameAndPrefix& o, ::std::ostream* os) {
*os << toString(o);
}
static inline bool operator==(const ::android::hardware::neuralnetworks::V1_2::Model::ExtensionNameAndPrefix& lhs, const ::android::hardware::neuralnetworks::V1_2::Model::ExtensionNameAndPrefix& rhs) {
if (lhs.name != rhs.name) {
return false;
}
if (lhs.prefix != rhs.prefix) {
return false;
}
return true;
}
static inline bool operator!=(const ::android::hardware::neuralnetworks::V1_2::Model::ExtensionNameAndPrefix& lhs, const ::android::hardware::neuralnetworks::V1_2::Model::ExtensionNameAndPrefix& rhs){
return !(lhs == rhs);
}
template<>
inline std::string toString<::android::hardware::neuralnetworks::V1_2::Model::ExtensionTypeEncoding>(uint8_t o) {
using ::android::hardware::details::toHexString;
std::string os;
::android::hardware::hidl_bitfield<::android::hardware::neuralnetworks::V1_2::Model::ExtensionTypeEncoding> flipped = 0;
bool first = true;
if ((o & ::android::hardware::neuralnetworks::V1_2::Model::ExtensionTypeEncoding::HIGH_BITS_PREFIX) == static_cast<uint8_t>(::android::hardware::neuralnetworks::V1_2::Model::ExtensionTypeEncoding::HIGH_BITS_PREFIX)) {
os += (first ? "" : " | ");
os += "HIGH_BITS_PREFIX";
first = false;
flipped |= ::android::hardware::neuralnetworks::V1_2::Model::ExtensionTypeEncoding::HIGH_BITS_PREFIX;
}
if ((o & ::android::hardware::neuralnetworks::V1_2::Model::ExtensionTypeEncoding::LOW_BITS_TYPE) == static_cast<uint8_t>(::android::hardware::neuralnetworks::V1_2::Model::ExtensionTypeEncoding::LOW_BITS_TYPE)) {
os += (first ? "" : " | ");
os += "LOW_BITS_TYPE";
first = false;
flipped |= ::android::hardware::neuralnetworks::V1_2::Model::ExtensionTypeEncoding::LOW_BITS_TYPE;
}
if (o != flipped) {
os += (first ? "" : " | ");
os += toHexString(o & (~flipped));
}os += " (";
os += toHexString(o);
os += ")";
return os;
}
static inline std::string toString(::android::hardware::neuralnetworks::V1_2::Model::ExtensionTypeEncoding o) {
using ::android::hardware::details::toHexString;
if (o == ::android::hardware::neuralnetworks::V1_2::Model::ExtensionTypeEncoding::HIGH_BITS_PREFIX) {
return "HIGH_BITS_PREFIX";
}
if (o == ::android::hardware::neuralnetworks::V1_2::Model::ExtensionTypeEncoding::LOW_BITS_TYPE) {
return "LOW_BITS_TYPE";
}
std::string os;
os += toHexString(static_cast<uint8_t>(o));
return os;
}
static inline void PrintTo(::android::hardware::neuralnetworks::V1_2::Model::ExtensionTypeEncoding o, ::std::ostream* os) {
*os << toString(o);
}
static inline std::string toString(const ::android::hardware::neuralnetworks::V1_2::Model& o) {
using ::android::hardware::toString;
std::string os;
os += "{";
os += ".operands = ";
os += ::android::hardware::toString(o.operands);
os += ", .operations = ";
os += ::android::hardware::toString(o.operations);
os += ", .inputIndexes = ";
os += ::android::hardware::toString(o.inputIndexes);
os += ", .outputIndexes = ";
os += ::android::hardware::toString(o.outputIndexes);
os += ", .operandValues = ";
os += ::android::hardware::toString(o.operandValues);
os += ", .pools = ";
os += ::android::hardware::toString(o.pools);
os += ", .relaxComputationFloat32toFloat16 = ";
os += ::android::hardware::toString(o.relaxComputationFloat32toFloat16);
os += ", .extensionNameToPrefix = ";
os += ::android::hardware::toString(o.extensionNameToPrefix);
os += "}"; return os;
}
static inline void PrintTo(const ::android::hardware::neuralnetworks::V1_2::Model& o, ::std::ostream* os) {
*os << toString(o);
}
// operator== and operator!= are not generated for Model
static inline std::string toString(const ::android::hardware::neuralnetworks::V1_2::OutputShape& o) {
using ::android::hardware::toString;
std::string os;
os += "{";
os += ".dimensions = ";
os += ::android::hardware::toString(o.dimensions);
os += ", .isSufficient = ";
os += ::android::hardware::toString(o.isSufficient);
os += "}"; return os;
}
static inline void PrintTo(const ::android::hardware::neuralnetworks::V1_2::OutputShape& o, ::std::ostream* os) {
*os << toString(o);
}
static inline bool operator==(const ::android::hardware::neuralnetworks::V1_2::OutputShape& lhs, const ::android::hardware::neuralnetworks::V1_2::OutputShape& rhs) {
if (lhs.dimensions != rhs.dimensions) {
return false;
}
if (lhs.isSufficient != rhs.isSufficient) {
return false;
}
return true;
}
static inline bool operator!=(const ::android::hardware::neuralnetworks::V1_2::OutputShape& lhs, const ::android::hardware::neuralnetworks::V1_2::OutputShape& rhs){
return !(lhs == rhs);
}
template<>
inline std::string toString<::android::hardware::neuralnetworks::V1_2::MeasureTiming>(int32_t o) {
using ::android::hardware::details::toHexString;
std::string os;
::android::hardware::hidl_bitfield<::android::hardware::neuralnetworks::V1_2::MeasureTiming> flipped = 0;
bool first = true;
if ((o & ::android::hardware::neuralnetworks::V1_2::MeasureTiming::NO) == static_cast<int32_t>(::android::hardware::neuralnetworks::V1_2::MeasureTiming::NO)) {
os += (first ? "" : " | ");
os += "NO";
first = false;
flipped |= ::android::hardware::neuralnetworks::V1_2::MeasureTiming::NO;
}
if ((o & ::android::hardware::neuralnetworks::V1_2::MeasureTiming::YES) == static_cast<int32_t>(::android::hardware::neuralnetworks::V1_2::MeasureTiming::YES)) {
os += (first ? "" : " | ");
os += "YES";
first = false;
flipped |= ::android::hardware::neuralnetworks::V1_2::MeasureTiming::YES;
}
if (o != flipped) {
os += (first ? "" : " | ");
os += toHexString(o & (~flipped));
}os += " (";
os += toHexString(o);
os += ")";
return os;
}
static inline std::string toString(::android::hardware::neuralnetworks::V1_2::MeasureTiming o) {
using ::android::hardware::details::toHexString;
if (o == ::android::hardware::neuralnetworks::V1_2::MeasureTiming::NO) {
return "NO";
}
if (o == ::android::hardware::neuralnetworks::V1_2::MeasureTiming::YES) {
return "YES";
}
std::string os;
os += toHexString(static_cast<int32_t>(o));
return os;
}
static inline void PrintTo(::android::hardware::neuralnetworks::V1_2::MeasureTiming o, ::std::ostream* os) {
*os << toString(o);
}
static inline std::string toString(const ::android::hardware::neuralnetworks::V1_2::Timing& o) {
using ::android::hardware::toString;
std::string os;
os += "{";
os += ".timeOnDevice = ";
os += ::android::hardware::toString(o.timeOnDevice);
os += ", .timeInDriver = ";
os += ::android::hardware::toString(o.timeInDriver);
os += "}"; return os;
}
static inline void PrintTo(const ::android::hardware::neuralnetworks::V1_2::Timing& o, ::std::ostream* os) {
*os << toString(o);
}
static inline bool operator==(const ::android::hardware::neuralnetworks::V1_2::Timing& lhs, const ::android::hardware::neuralnetworks::V1_2::Timing& rhs) {
if (lhs.timeOnDevice != rhs.timeOnDevice) {
return false;
}
if (lhs.timeInDriver != rhs.timeInDriver) {
return false;
}
return true;
}
static inline bool operator!=(const ::android::hardware::neuralnetworks::V1_2::Timing& lhs, const ::android::hardware::neuralnetworks::V1_2::Timing& rhs){
return !(lhs == rhs);
}
static inline std::string toString(const ::android::hardware::neuralnetworks::V1_2::FmqRequestDatum::PacketInformation& o) {
using ::android::hardware::toString;
std::string os;
os += "{";
os += ".packetSize = ";
os += ::android::hardware::toString(o.packetSize);
os += ", .numberOfInputOperands = ";
os += ::android::hardware::toString(o.numberOfInputOperands);
os += ", .numberOfOutputOperands = ";
os += ::android::hardware::toString(o.numberOfOutputOperands);
os += ", .numberOfPools = ";
os += ::android::hardware::toString(o.numberOfPools);
os += "}"; return os;
}
static inline void PrintTo(const ::android::hardware::neuralnetworks::V1_2::FmqRequestDatum::PacketInformation& o, ::std::ostream* os) {
*os << toString(o);
}
static inline bool operator==(const ::android::hardware::neuralnetworks::V1_2::FmqRequestDatum::PacketInformation& lhs, const ::android::hardware::neuralnetworks::V1_2::FmqRequestDatum::PacketInformation& rhs) {
if (lhs.packetSize != rhs.packetSize) {
return false;
}
if (lhs.numberOfInputOperands != rhs.numberOfInputOperands) {
return false;
}
if (lhs.numberOfOutputOperands != rhs.numberOfOutputOperands) {
return false;
}
if (lhs.numberOfPools != rhs.numberOfPools) {
return false;
}
return true;
}
static inline bool operator!=(const ::android::hardware::neuralnetworks::V1_2::FmqRequestDatum::PacketInformation& lhs, const ::android::hardware::neuralnetworks::V1_2::FmqRequestDatum::PacketInformation& rhs){
return !(lhs == rhs);
}
static inline std::string toString(const ::android::hardware::neuralnetworks::V1_2::FmqRequestDatum::OperandInformation& o) {
using ::android::hardware::toString;
std::string os;
os += "{";
os += ".hasNoValue = ";
os += ::android::hardware::toString(o.hasNoValue);
os += ", .location = ";
os += ::android::hardware::neuralnetworks::V1_0::toString(o.location);
os += ", .numberOfDimensions = ";
os += ::android::hardware::toString(o.numberOfDimensions);
os += "}"; return os;
}
static inline void PrintTo(const ::android::hardware::neuralnetworks::V1_2::FmqRequestDatum::OperandInformation& o, ::std::ostream* os) {
*os << toString(o);
}
static inline bool operator==(const ::android::hardware::neuralnetworks::V1_2::FmqRequestDatum::OperandInformation& lhs, const ::android::hardware::neuralnetworks::V1_2::FmqRequestDatum::OperandInformation& rhs) {
if (lhs.hasNoValue != rhs.hasNoValue) {
return false;
}
if (lhs.location != rhs.location) {
return false;
}
if (lhs.numberOfDimensions != rhs.numberOfDimensions) {
return false;
}
return true;
}
static inline bool operator!=(const ::android::hardware::neuralnetworks::V1_2::FmqRequestDatum::OperandInformation& lhs, const ::android::hardware::neuralnetworks::V1_2::FmqRequestDatum::OperandInformation& rhs){
return !(lhs == rhs);
}
static inline std::string toString(const ::android::hardware::neuralnetworks::V1_2::FmqRequestDatum& o) {
using ::android::hardware::toString;
std::string os;
os += "{";
switch (o.getDiscriminator()) {
case ::android::hardware::neuralnetworks::V1_2::FmqRequestDatum::hidl_discriminator::packetInformation: {
os += ".packetInformation = ";
os += toString(o.packetInformation());
break;
}
case ::android::hardware::neuralnetworks::V1_2::FmqRequestDatum::hidl_discriminator::inputOperandInformation: {
os += ".inputOperandInformation = ";
os += toString(o.inputOperandInformation());
break;
}
case ::android::hardware::neuralnetworks::V1_2::FmqRequestDatum::hidl_discriminator::inputOperandDimensionValue: {
os += ".inputOperandDimensionValue = ";
os += toString(o.inputOperandDimensionValue());
break;
}
case ::android::hardware::neuralnetworks::V1_2::FmqRequestDatum::hidl_discriminator::outputOperandInformation: {
os += ".outputOperandInformation = ";
os += toString(o.outputOperandInformation());
break;
}
case ::android::hardware::neuralnetworks::V1_2::FmqRequestDatum::hidl_discriminator::outputOperandDimensionValue: {
os += ".outputOperandDimensionValue = ";
os += toString(o.outputOperandDimensionValue());
break;
}
case ::android::hardware::neuralnetworks::V1_2::FmqRequestDatum::hidl_discriminator::poolIdentifier: {
os += ".poolIdentifier = ";
os += toString(o.poolIdentifier());
break;
}
case ::android::hardware::neuralnetworks::V1_2::FmqRequestDatum::hidl_discriminator::measureTiming: {
os += ".measureTiming = ";
os += toString(o.measureTiming());
break;
}
default: {
::android::hardware::details::logAlwaysFatal((
"Unknown union discriminator (value: " +
std::to_string((uint8_t) o.getDiscriminator()) + ").").c_str());
}
}
os += "}"; return os;
}
static inline void PrintTo(const ::android::hardware::neuralnetworks::V1_2::FmqRequestDatum& o, ::std::ostream* os) {
*os << toString(o);
}
static inline bool operator==(const ::android::hardware::neuralnetworks::V1_2::FmqRequestDatum& lhs, const ::android::hardware::neuralnetworks::V1_2::FmqRequestDatum& rhs) {
if (lhs.getDiscriminator() != rhs.getDiscriminator()) {
return false;
}
switch (lhs.getDiscriminator()) {
case ::android::hardware::neuralnetworks::V1_2::FmqRequestDatum::hidl_discriminator::packetInformation: {
return (lhs.packetInformation() == rhs.packetInformation());
}
case ::android::hardware::neuralnetworks::V1_2::FmqRequestDatum::hidl_discriminator::inputOperandInformation: {
return (lhs.inputOperandInformation() == rhs.inputOperandInformation());
}
case ::android::hardware::neuralnetworks::V1_2::FmqRequestDatum::hidl_discriminator::inputOperandDimensionValue: {
return (lhs.inputOperandDimensionValue() == rhs.inputOperandDimensionValue());
}
case ::android::hardware::neuralnetworks::V1_2::FmqRequestDatum::hidl_discriminator::outputOperandInformation: {
return (lhs.outputOperandInformation() == rhs.outputOperandInformation());
}
case ::android::hardware::neuralnetworks::V1_2::FmqRequestDatum::hidl_discriminator::outputOperandDimensionValue: {
return (lhs.outputOperandDimensionValue() == rhs.outputOperandDimensionValue());
}
case ::android::hardware::neuralnetworks::V1_2::FmqRequestDatum::hidl_discriminator::poolIdentifier: {
return (lhs.poolIdentifier() == rhs.poolIdentifier());
}
case ::android::hardware::neuralnetworks::V1_2::FmqRequestDatum::hidl_discriminator::measureTiming: {
return (lhs.measureTiming() == rhs.measureTiming());
}
default: {
::android::hardware::details::logAlwaysFatal((
"Unknown union discriminator (value: " +
std::to_string((uint8_t) lhs.getDiscriminator()) + ").").c_str());
}
}
return true;
}
static inline bool operator!=(const ::android::hardware::neuralnetworks::V1_2::FmqRequestDatum& lhs, const ::android::hardware::neuralnetworks::V1_2::FmqRequestDatum& rhs){
return !(lhs == rhs);
}
static inline std::string toString(const ::android::hardware::neuralnetworks::V1_2::FmqResultDatum::PacketInformation& o) {
using ::android::hardware::toString;
std::string os;
os += "{";
os += ".packetSize = ";
os += ::android::hardware::toString(o.packetSize);
os += ", .errorStatus = ";
os += ::android::hardware::neuralnetworks::V1_0::toString(o.errorStatus);
os += ", .numberOfOperands = ";
os += ::android::hardware::toString(o.numberOfOperands);
os += "}"; return os;
}
static inline void PrintTo(const ::android::hardware::neuralnetworks::V1_2::FmqResultDatum::PacketInformation& o, ::std::ostream* os) {
*os << toString(o);
}
static inline bool operator==(const ::android::hardware::neuralnetworks::V1_2::FmqResultDatum::PacketInformation& lhs, const ::android::hardware::neuralnetworks::V1_2::FmqResultDatum::PacketInformation& rhs) {
if (lhs.packetSize != rhs.packetSize) {
return false;
}
if (lhs.errorStatus != rhs.errorStatus) {
return false;
}
if (lhs.numberOfOperands != rhs.numberOfOperands) {
return false;
}
return true;
}
static inline bool operator!=(const ::android::hardware::neuralnetworks::V1_2::FmqResultDatum::PacketInformation& lhs, const ::android::hardware::neuralnetworks::V1_2::FmqResultDatum::PacketInformation& rhs){
return !(lhs == rhs);
}
static inline std::string toString(const ::android::hardware::neuralnetworks::V1_2::FmqResultDatum::OperandInformation& o) {
using ::android::hardware::toString;
std::string os;
os += "{";
os += ".isSufficient = ";
os += ::android::hardware::toString(o.isSufficient);
os += ", .numberOfDimensions = ";
os += ::android::hardware::toString(o.numberOfDimensions);
os += "}"; return os;
}
static inline void PrintTo(const ::android::hardware::neuralnetworks::V1_2::FmqResultDatum::OperandInformation& o, ::std::ostream* os) {
*os << toString(o);
}
static inline bool operator==(const ::android::hardware::neuralnetworks::V1_2::FmqResultDatum::OperandInformation& lhs, const ::android::hardware::neuralnetworks::V1_2::FmqResultDatum::OperandInformation& rhs) {
if (lhs.isSufficient != rhs.isSufficient) {
return false;
}
if (lhs.numberOfDimensions != rhs.numberOfDimensions) {
return false;
}
return true;
}
static inline bool operator!=(const ::android::hardware::neuralnetworks::V1_2::FmqResultDatum::OperandInformation& lhs, const ::android::hardware::neuralnetworks::V1_2::FmqResultDatum::OperandInformation& rhs){
return !(lhs == rhs);
}
static inline std::string toString(const ::android::hardware::neuralnetworks::V1_2::FmqResultDatum& o) {
using ::android::hardware::toString;
std::string os;
os += "{";
switch (o.getDiscriminator()) {
case ::android::hardware::neuralnetworks::V1_2::FmqResultDatum::hidl_discriminator::packetInformation: {
os += ".packetInformation = ";
os += toString(o.packetInformation());
break;
}
case ::android::hardware::neuralnetworks::V1_2::FmqResultDatum::hidl_discriminator::operandInformation: {
os += ".operandInformation = ";
os += toString(o.operandInformation());
break;
}
case ::android::hardware::neuralnetworks::V1_2::FmqResultDatum::hidl_discriminator::operandDimensionValue: {
os += ".operandDimensionValue = ";
os += toString(o.operandDimensionValue());
break;
}
case ::android::hardware::neuralnetworks::V1_2::FmqResultDatum::hidl_discriminator::executionTiming: {
os += ".executionTiming = ";
os += toString(o.executionTiming());
break;
}
default: {
::android::hardware::details::logAlwaysFatal((
"Unknown union discriminator (value: " +
std::to_string((uint8_t) o.getDiscriminator()) + ").").c_str());
}
}
os += "}"; return os;
}
static inline void PrintTo(const ::android::hardware::neuralnetworks::V1_2::FmqResultDatum& o, ::std::ostream* os) {
*os << toString(o);
}
static inline bool operator==(const ::android::hardware::neuralnetworks::V1_2::FmqResultDatum& lhs, const ::android::hardware::neuralnetworks::V1_2::FmqResultDatum& rhs) {
if (lhs.getDiscriminator() != rhs.getDiscriminator()) {
return false;
}
switch (lhs.getDiscriminator()) {
case ::android::hardware::neuralnetworks::V1_2::FmqResultDatum::hidl_discriminator::packetInformation: {
return (lhs.packetInformation() == rhs.packetInformation());
}
case ::android::hardware::neuralnetworks::V1_2::FmqResultDatum::hidl_discriminator::operandInformation: {
return (lhs.operandInformation() == rhs.operandInformation());
}
case ::android::hardware::neuralnetworks::V1_2::FmqResultDatum::hidl_discriminator::operandDimensionValue: {
return (lhs.operandDimensionValue() == rhs.operandDimensionValue());
}
case ::android::hardware::neuralnetworks::V1_2::FmqResultDatum::hidl_discriminator::executionTiming: {
return (lhs.executionTiming() == rhs.executionTiming());
}
default: {
::android::hardware::details::logAlwaysFatal((
"Unknown union discriminator (value: " +
std::to_string((uint8_t) lhs.getDiscriminator()) + ").").c_str());
}
}
return true;
}
static inline bool operator!=(const ::android::hardware::neuralnetworks::V1_2::FmqResultDatum& lhs, const ::android::hardware::neuralnetworks::V1_2::FmqResultDatum& rhs){
return !(lhs == rhs);
}
static inline std::string toString(const ::android::hardware::neuralnetworks::V1_2::Extension::OperandTypeInformation& o) {
using ::android::hardware::toString;
std::string os;
os += "{";
os += ".type = ";
os += ::android::hardware::toString(o.type);
os += ", .isTensor = ";
os += ::android::hardware::toString(o.isTensor);
os += ", .byteSize = ";
os += ::android::hardware::toString(o.byteSize);
os += "}"; return os;
}
static inline void PrintTo(const ::android::hardware::neuralnetworks::V1_2::Extension::OperandTypeInformation& o, ::std::ostream* os) {
*os << toString(o);
}
static inline bool operator==(const ::android::hardware::neuralnetworks::V1_2::Extension::OperandTypeInformation& lhs, const ::android::hardware::neuralnetworks::V1_2::Extension::OperandTypeInformation& rhs) {
if (lhs.type != rhs.type) {
return false;
}
if (lhs.isTensor != rhs.isTensor) {
return false;
}
if (lhs.byteSize != rhs.byteSize) {
return false;
}
return true;
}
static inline bool operator!=(const ::android::hardware::neuralnetworks::V1_2::Extension::OperandTypeInformation& lhs, const ::android::hardware::neuralnetworks::V1_2::Extension::OperandTypeInformation& rhs){
return !(lhs == rhs);
}
static inline std::string toString(const ::android::hardware::neuralnetworks::V1_2::Extension& o) {
using ::android::hardware::toString;
std::string os;
os += "{";
os += ".name = ";
os += ::android::hardware::toString(o.name);
os += ", .operandTypes = ";
os += ::android::hardware::toString(o.operandTypes);
os += "}"; return os;
}
static inline void PrintTo(const ::android::hardware::neuralnetworks::V1_2::Extension& o, ::std::ostream* os) {
*os << toString(o);
}
static inline bool operator==(const ::android::hardware::neuralnetworks::V1_2::Extension& lhs, const ::android::hardware::neuralnetworks::V1_2::Extension& rhs) {
if (lhs.name != rhs.name) {
return false;
}
if (lhs.operandTypes != rhs.operandTypes) {
return false;
}
return true;
}
static inline bool operator!=(const ::android::hardware::neuralnetworks::V1_2::Extension& lhs, const ::android::hardware::neuralnetworks::V1_2::Extension& rhs){
return !(lhs == rhs);
}
} // namespace V1_2
} // namespace neuralnetworks
} // namespace hardware
} // namespace android
//
// global type declarations for package
//
namespace android {
namespace hardware {
namespace details {
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wc++17-extensions"
template<> inline constexpr std::array<::android::hardware::neuralnetworks::V1_2::Constant, 2> hidl_enum_values<::android::hardware::neuralnetworks::V1_2::Constant> = {
::android::hardware::neuralnetworks::V1_2::Constant::BYTE_SIZE_OF_CACHE_TOKEN,
::android::hardware::neuralnetworks::V1_2::Constant::MAX_NUMBER_OF_CACHE_FILES,
};
#pragma clang diagnostic pop
} // namespace details
} // namespace hardware
} // namespace android
namespace android {
namespace hardware {
namespace details {
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wc++17-extensions"
template<> inline constexpr std::array<::android::hardware::neuralnetworks::V1_2::OperandType, 16> hidl_enum_values<::android::hardware::neuralnetworks::V1_2::OperandType> = {
::android::hardware::neuralnetworks::V1_2::OperandType::FLOAT32,
::android::hardware::neuralnetworks::V1_2::OperandType::INT32,
::android::hardware::neuralnetworks::V1_2::OperandType::UINT32,
::android::hardware::neuralnetworks::V1_2::OperandType::TENSOR_FLOAT32,
::android::hardware::neuralnetworks::V1_2::OperandType::TENSOR_INT32,
::android::hardware::neuralnetworks::V1_2::OperandType::TENSOR_QUANT8_ASYMM,
::android::hardware::neuralnetworks::V1_2::OperandType::OEM,
::android::hardware::neuralnetworks::V1_2::OperandType::TENSOR_OEM_BYTE,
::android::hardware::neuralnetworks::V1_2::OperandType::BOOL,
::android::hardware::neuralnetworks::V1_2::OperandType::TENSOR_QUANT16_SYMM,
::android::hardware::neuralnetworks::V1_2::OperandType::TENSOR_FLOAT16,
::android::hardware::neuralnetworks::V1_2::OperandType::TENSOR_BOOL8,
::android::hardware::neuralnetworks::V1_2::OperandType::FLOAT16,
::android::hardware::neuralnetworks::V1_2::OperandType::TENSOR_QUANT8_SYMM_PER_CHANNEL,
::android::hardware::neuralnetworks::V1_2::OperandType::TENSOR_QUANT16_ASYMM,
::android::hardware::neuralnetworks::V1_2::OperandType::TENSOR_QUANT8_SYMM,
};
#pragma clang diagnostic pop
} // namespace details
} // namespace hardware
} // namespace android
namespace android {
namespace hardware {
namespace details {
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wc++17-extensions"
template<> inline constexpr std::array<::android::hardware::neuralnetworks::V1_2::OperandTypeRange, 6> hidl_enum_values<::android::hardware::neuralnetworks::V1_2::OperandTypeRange> = {
::android::hardware::neuralnetworks::V1_2::OperandTypeRange::BASE_MIN,
::android::hardware::neuralnetworks::V1_2::OperandTypeRange::FUNDAMENTAL_MIN,
::android::hardware::neuralnetworks::V1_2::OperandTypeRange::FUNDAMENTAL_MAX,
::android::hardware::neuralnetworks::V1_2::OperandTypeRange::OEM_MIN,
::android::hardware::neuralnetworks::V1_2::OperandTypeRange::OEM_MAX,
::android::hardware::neuralnetworks::V1_2::OperandTypeRange::BASE_MAX,
};
#pragma clang diagnostic pop
} // namespace details
} // namespace hardware
} // namespace android
namespace android {
namespace hardware {
namespace details {
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wc++17-extensions"
template<> inline constexpr std::array<::android::hardware::neuralnetworks::V1_2::OperationType, 96> hidl_enum_values<::android::hardware::neuralnetworks::V1_2::OperationType> = {
::android::hardware::neuralnetworks::V1_2::OperationType::ADD,
::android::hardware::neuralnetworks::V1_2::OperationType::AVERAGE_POOL_2D,
::android::hardware::neuralnetworks::V1_2::OperationType::CONCATENATION,
::android::hardware::neuralnetworks::V1_2::OperationType::CONV_2D,
::android::hardware::neuralnetworks::V1_2::OperationType::DEPTHWISE_CONV_2D,
::android::hardware::neuralnetworks::V1_2::OperationType::DEPTH_TO_SPACE,
::android::hardware::neuralnetworks::V1_2::OperationType::DEQUANTIZE,
::android::hardware::neuralnetworks::V1_2::OperationType::EMBEDDING_LOOKUP,
::android::hardware::neuralnetworks::V1_2::OperationType::FLOOR,
::android::hardware::neuralnetworks::V1_2::OperationType::FULLY_CONNECTED,
::android::hardware::neuralnetworks::V1_2::OperationType::HASHTABLE_LOOKUP,
::android::hardware::neuralnetworks::V1_2::OperationType::L2_NORMALIZATION,
::android::hardware::neuralnetworks::V1_2::OperationType::L2_POOL_2D,
::android::hardware::neuralnetworks::V1_2::OperationType::LOCAL_RESPONSE_NORMALIZATION,
::android::hardware::neuralnetworks::V1_2::OperationType::LOGISTIC,
::android::hardware::neuralnetworks::V1_2::OperationType::LSH_PROJECTION,
::android::hardware::neuralnetworks::V1_2::OperationType::LSTM,
::android::hardware::neuralnetworks::V1_2::OperationType::MAX_POOL_2D,
::android::hardware::neuralnetworks::V1_2::OperationType::MUL,
::android::hardware::neuralnetworks::V1_2::OperationType::RELU,
::android::hardware::neuralnetworks::V1_2::OperationType::RELU1,
::android::hardware::neuralnetworks::V1_2::OperationType::RELU6,
::android::hardware::neuralnetworks::V1_2::OperationType::RESHAPE,
::android::hardware::neuralnetworks::V1_2::OperationType::RESIZE_BILINEAR,
::android::hardware::neuralnetworks::V1_2::OperationType::RNN,
::android::hardware::neuralnetworks::V1_2::OperationType::SOFTMAX,
::android::hardware::neuralnetworks::V1_2::OperationType::SPACE_TO_DEPTH,
::android::hardware::neuralnetworks::V1_2::OperationType::SVDF,
::android::hardware::neuralnetworks::V1_2::OperationType::TANH,
::android::hardware::neuralnetworks::V1_2::OperationType::BATCH_TO_SPACE_ND,
::android::hardware::neuralnetworks::V1_2::OperationType::DIV,
::android::hardware::neuralnetworks::V1_2::OperationType::MEAN,
::android::hardware::neuralnetworks::V1_2::OperationType::PAD,
::android::hardware::neuralnetworks::V1_2::OperationType::SPACE_TO_BATCH_ND,
::android::hardware::neuralnetworks::V1_2::OperationType::SQUEEZE,
::android::hardware::neuralnetworks::V1_2::OperationType::STRIDED_SLICE,
::android::hardware::neuralnetworks::V1_2::OperationType::SUB,
::android::hardware::neuralnetworks::V1_2::OperationType::TRANSPOSE,
::android::hardware::neuralnetworks::V1_2::OperationType::ABS,
::android::hardware::neuralnetworks::V1_2::OperationType::ARGMAX,
::android::hardware::neuralnetworks::V1_2::OperationType::ARGMIN,
::android::hardware::neuralnetworks::V1_2::OperationType::AXIS_ALIGNED_BBOX_TRANSFORM,
::android::hardware::neuralnetworks::V1_2::OperationType::BIDIRECTIONAL_SEQUENCE_LSTM,
::android::hardware::neuralnetworks::V1_2::OperationType::BIDIRECTIONAL_SEQUENCE_RNN,
::android::hardware::neuralnetworks::V1_2::OperationType::BOX_WITH_NMS_LIMIT,
::android::hardware::neuralnetworks::V1_2::OperationType::CAST,
::android::hardware::neuralnetworks::V1_2::OperationType::CHANNEL_SHUFFLE,
::android::hardware::neuralnetworks::V1_2::OperationType::DETECTION_POSTPROCESSING,
::android::hardware::neuralnetworks::V1_2::OperationType::EQUAL,
::android::hardware::neuralnetworks::V1_2::OperationType::EXP,
::android::hardware::neuralnetworks::V1_2::OperationType::EXPAND_DIMS,
::android::hardware::neuralnetworks::V1_2::OperationType::GATHER,
::android::hardware::neuralnetworks::V1_2::OperationType::GENERATE_PROPOSALS,
::android::hardware::neuralnetworks::V1_2::OperationType::GREATER,
::android::hardware::neuralnetworks::V1_2::OperationType::GREATER_EQUAL,
::android::hardware::neuralnetworks::V1_2::OperationType::GROUPED_CONV_2D,
::android::hardware::neuralnetworks::V1_2::OperationType::HEATMAP_MAX_KEYPOINT,
::android::hardware::neuralnetworks::V1_2::OperationType::INSTANCE_NORMALIZATION,
::android::hardware::neuralnetworks::V1_2::OperationType::LESS,
::android::hardware::neuralnetworks::V1_2::OperationType::LESS_EQUAL,
::android::hardware::neuralnetworks::V1_2::OperationType::LOG,
::android::hardware::neuralnetworks::V1_2::OperationType::LOGICAL_AND,
::android::hardware::neuralnetworks::V1_2::OperationType::LOGICAL_NOT,
::android::hardware::neuralnetworks::V1_2::OperationType::LOGICAL_OR,
::android::hardware::neuralnetworks::V1_2::OperationType::LOG_SOFTMAX,
::android::hardware::neuralnetworks::V1_2::OperationType::MAXIMUM,
::android::hardware::neuralnetworks::V1_2::OperationType::MINIMUM,
::android::hardware::neuralnetworks::V1_2::OperationType::NEG,
::android::hardware::neuralnetworks::V1_2::OperationType::NOT_EQUAL,
::android::hardware::neuralnetworks::V1_2::OperationType::PAD_V2,
::android::hardware::neuralnetworks::V1_2::OperationType::POW,
::android::hardware::neuralnetworks::V1_2::OperationType::PRELU,
::android::hardware::neuralnetworks::V1_2::OperationType::QUANTIZE,
::android::hardware::neuralnetworks::V1_2::OperationType::QUANTIZED_16BIT_LSTM,
::android::hardware::neuralnetworks::V1_2::OperationType::RANDOM_MULTINOMIAL,
::android::hardware::neuralnetworks::V1_2::OperationType::REDUCE_ALL,
::android::hardware::neuralnetworks::V1_2::OperationType::REDUCE_ANY,
::android::hardware::neuralnetworks::V1_2::OperationType::REDUCE_MAX,
::android::hardware::neuralnetworks::V1_2::OperationType::REDUCE_MIN,
::android::hardware::neuralnetworks::V1_2::OperationType::REDUCE_PROD,
::android::hardware::neuralnetworks::V1_2::OperationType::REDUCE_SUM,
::android::hardware::neuralnetworks::V1_2::OperationType::ROI_ALIGN,
::android::hardware::neuralnetworks::V1_2::OperationType::ROI_POOLING,
::android::hardware::neuralnetworks::V1_2::OperationType::RSQRT,
::android::hardware::neuralnetworks::V1_2::OperationType::SELECT,
::android::hardware::neuralnetworks::V1_2::OperationType::SIN,
::android::hardware::neuralnetworks::V1_2::OperationType::SLICE,
::android::hardware::neuralnetworks::V1_2::OperationType::SPLIT,
::android::hardware::neuralnetworks::V1_2::OperationType::SQRT,
::android::hardware::neuralnetworks::V1_2::OperationType::TILE,
::android::hardware::neuralnetworks::V1_2::OperationType::TOPK_V2,
::android::hardware::neuralnetworks::V1_2::OperationType::TRANSPOSE_CONV_2D,
::android::hardware::neuralnetworks::V1_2::OperationType::UNIDIRECTIONAL_SEQUENCE_LSTM,
::android::hardware::neuralnetworks::V1_2::OperationType::UNIDIRECTIONAL_SEQUENCE_RNN,
::android::hardware::neuralnetworks::V1_2::OperationType::RESIZE_NEAREST_NEIGHBOR,
::android::hardware::neuralnetworks::V1_2::OperationType::OEM_OPERATION,
};
#pragma clang diagnostic pop
} // namespace details
} // namespace hardware
} // namespace android
namespace android {
namespace hardware {
namespace details {
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wc++17-extensions"
template<> inline constexpr std::array<::android::hardware::neuralnetworks::V1_2::OperationTypeRange, 6> hidl_enum_values<::android::hardware::neuralnetworks::V1_2::OperationTypeRange> = {
::android::hardware::neuralnetworks::V1_2::OperationTypeRange::BASE_MIN,
::android::hardware::neuralnetworks::V1_2::OperationTypeRange::FUNDAMENTAL_MIN,
::android::hardware::neuralnetworks::V1_2::OperationTypeRange::FUNDAMENTAL_MAX,
::android::hardware::neuralnetworks::V1_2::OperationTypeRange::OEM_MIN,
::android::hardware::neuralnetworks::V1_2::OperationTypeRange::OEM_MAX,
::android::hardware::neuralnetworks::V1_2::OperationTypeRange::BASE_MAX,
};
#pragma clang diagnostic pop
} // namespace details
} // namespace hardware
} // namespace android
namespace android {
namespace hardware {
namespace details {
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wc++17-extensions"
template<> inline constexpr std::array<::android::hardware::neuralnetworks::V1_2::DeviceType, 4> hidl_enum_values<::android::hardware::neuralnetworks::V1_2::DeviceType> = {
::android::hardware::neuralnetworks::V1_2::DeviceType::OTHER,
::android::hardware::neuralnetworks::V1_2::DeviceType::CPU,
::android::hardware::neuralnetworks::V1_2::DeviceType::GPU,
::android::hardware::neuralnetworks::V1_2::DeviceType::ACCELERATOR,
};
#pragma clang diagnostic pop
} // namespace details
} // namespace hardware
} // namespace android
namespace android {
namespace hardware {
namespace details {
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wc++17-extensions"
template<> inline constexpr std::array<::android::hardware::neuralnetworks::V1_2::Model::ExtensionTypeEncoding, 2> hidl_enum_values<::android::hardware::neuralnetworks::V1_2::Model::ExtensionTypeEncoding> = {
::android::hardware::neuralnetworks::V1_2::Model::ExtensionTypeEncoding::HIGH_BITS_PREFIX,
::android::hardware::neuralnetworks::V1_2::Model::ExtensionTypeEncoding::LOW_BITS_TYPE,
};
#pragma clang diagnostic pop
} // namespace details
} // namespace hardware
} // namespace android
namespace android {
namespace hardware {
namespace details {
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wc++17-extensions"
template<> inline constexpr std::array<::android::hardware::neuralnetworks::V1_2::MeasureTiming, 2> hidl_enum_values<::android::hardware::neuralnetworks::V1_2::MeasureTiming> = {
::android::hardware::neuralnetworks::V1_2::MeasureTiming::NO,
::android::hardware::neuralnetworks::V1_2::MeasureTiming::YES,
};
#pragma clang diagnostic pop
} // namespace details
} // namespace hardware
} // namespace android
#endif // HIDL_GENERATED_ANDROID_HARDWARE_NEURALNETWORKS_V1_2_TYPES_H