blob: 3a78050cca43dd27e986365690e818125cae0df8 [file] [log] [blame]
#ifndef HIDL_GENERATED_ANDROID_HARDWARE_NEURALNETWORKS_V1_0_TYPES_H
#define HIDL_GENERATED_ANDROID_HARDWARE_NEURALNETWORKS_V1_0_TYPES_H
#include <hidl/HidlSupport.h>
#include <hidl/MQDescriptor.h>
#include <utils/NativeHandle.h>
#include <utils/misc.h>
namespace android {
namespace hardware {
namespace neuralnetworks {
namespace V1_0 {
// Forward declaration for forward reference support:
enum class OperandType : int32_t;
enum class OperationType : int32_t;
enum class FusedActivationFunc : int32_t;
enum class OperandLifeTime : int32_t;
enum class DeviceStatus : int32_t;
struct PerformanceInfo;
struct Capabilities;
struct DataLocation;
struct Operand;
struct Operation;
struct Model;
struct RequestArgument;
struct Request;
enum class ErrorStatus : int32_t;
/**
* Operand types.
*
* The type of an operand in a model.
*
* Types prefaced with TENSOR_* must be used for tensor data (i.e., tensors
* with at least one dimension). Types not prefaced by TENSOR_* represent
* scalar values and must have no dimensions.
*
* Although we define many types, most operators accept just a few
* types. Most used are {@link OperandType::TENSOR_FLOAT32},
* {@link OperandType::TENSOR_QUANT8_ASYMM},
* and {@link OperandType::INT32}.
*/
enum class OperandType : int32_t {
/**
* A 32 bit floating point scalar value.
*/
FLOAT32 = 0,
/**
* A signed 32 bit integer scalar value.
*/
INT32 = 1,
/**
* An unsigned 32 bit integer scalar value.
*/
UINT32 = 2,
/**
* A tensor of 32 bit floating point values.
*/
TENSOR_FLOAT32 = 3,
/**
* A tensor of 32 bit integer values.
*/
TENSOR_INT32 = 4,
/**
* A tensor of 8 bit unsigned integers that represent real numbers.
*
* Attached to this tensor are two numbers that can be used to convert the
* 8 bit integer to the real value and vice versa. These two numbers are:
* - scale: a 32 bit floating point value greater than zero.
* - zeroPoint: a 32 bit integer, in range [0, 255].
*
* The formula is:
* real_value = (integer_value - zeroPoint) * scale.
*/
TENSOR_QUANT8_ASYMM = 5,
/**
* DEPRECATED. Since HAL version 1.2, extensions are the preferred
* alternative to OEM operation and data types.
*
* OEM specific scalar value.
*/
OEM = 10000,
/**
* DEPRECATED. Since HAL version 1.2, extensions are the preferred
* alternative to OEM operation and data types.
*
* A tensor of OEM specific values.
*/
TENSOR_OEM_BYTE = 10001,
};
/**
* Operation types.
*
* The type of an operation in a model.
*/
enum class OperationType : int32_t {
/**
* Adds two tensors, element-wise.
*
* Takes two input tensors of identical {@link OperandType} and compatible
* dimensions. The output is the sum of both input tensors, optionally
* modified by an activation function.
*
* Two dimensions are compatible when:
* 1. they are equal, or
* 2. one of them is 1
*
* The size of the output is the maximum size along each dimension of the
* input operands. It starts with the trailing dimensions, and works its
* way forward.
*
* Example:
*
* input1.dimension = {4, 1, 2}
* input2.dimension = {5, 4, 3, 1}
* output.dimension = {5, 4, 3, 2}
*
* Supported tensor {@link OperandType}:
* * {@link OperandType::TENSOR_FLOAT32}
* * {@link OperandType::TENSOR_QUANT8_ASYMM}
*
* Supported tensor rank: up to 4
*
* Inputs:
* * 0: A tensor.
* * 1: A tensor of the same {@link OperandType}, and compatible dimensions
* as input0.
* For a {@link OperandType::TENSOR_QUANT8_ASYMM} tensor,
* the scales and zeroPoint can be different from input0 scale and zeroPoint.
* * 2: An {@link OperandType::INT32} scalar, and has to be one of the
* {@link FusedActivationFunc} values. Specifies the activation to
* invoke on the result.
*
* Outputs:
* * 0: The sum, a tensor of the same {@link OperandType} as input0.
* For a {@link OperandType::TENSOR_QUANT8_ASYMM} tensor,
* the scale and zeroPoint can be different from inputs' scale and zeroPoint.
*/
ADD = 0,
/**
* Performs a 2-D average pooling operation.
*
* The output dimensions are functions of the filter dimensions, stride, and
* padding.
*
* The values in the output tensor are computed as:
*
* output[b, i, j, channel] =
* sum_{di, dj}(
* input[b, strides[1] * i + di, strides[2] * j + dj, channel]
* ) / sum(1)
*
* Supported tensor {@link OperandType}:
* * {@link OperandType::TENSOR_FLOAT32}
* * {@link OperandType::TENSOR_QUANT8_ASYMM}
*
* Supported tensor rank: 4, with "NHWC" (i.e., Num_samples, Height, Width,
* and Channels) data layout.
*
* Both explicit padding and implicit padding are supported.
*
* Inputs (explicit padding):
* * 0: A 4-D tensor, of shape [batches, height, width, depth], specifying
* the input.
* * 1: An {@link OperandType::INT32} scalar, specifying the padding on
* the left, in the ‘width’ dimension.
* * 2: An {@link OperandType::INT32} scalar, specifying the padding on
* the right, in the ‘width’ dimension.
* * 3: An {@link OperandType::INT32} scalar, specifying the padding on
* the top, in the ‘height’ dimension.
* * 4: An {@link OperandType::INT32} scalar, specifying the padding on
* the bottom, in the ‘height’ dimension.
* * 5: An {@link OperandType::INT32} scalar, specifying the stride when
* walking through input in the ‘width’ dimension.
* * 6: An {@link OperandType::INT32} scalar, specifying the stride when
* walking through input in the ‘height’ dimension.
* * 7: An {@link OperandType::INT32} scalar, specifying the filter
* width.
* * 8: An {@link OperandType::INT32} scalar, specifying the filter
* height.
* * 9: An {@link OperandType::INT32} scalar, and has to be one of the
* {@link FusedActivationFunc} values. Specifies the activation to
* invoke on the result.
*
* Inputs (implicit padding):
* * 0: A 4-D tensor, of shape [batches, height, width, depth], specifying
* the input.
* * 1: An {@link OperandType::INT32} scalar, specifying the implicit
* padding scheme, has to be one of the
* following values: {0 (NONE), 1 (SAME), 2 (VALID)}.
* * 2: An {@link OperandType::INT32} scalar, specifying the stride when
* walking through input in the ‘width’ dimension.
* * 3: An {@link OperandType::INT32} scalar, specifying the stride when
* walking through input in the ‘height’ dimension.
* * 4: An {@link OperandType::INT32} scalar, specifying the filter
* width.
* * 5: An {@link OperandType::INT32} scalar, specifying the filter
* height.
* * 6: An {@link OperandType::INT32} scalar, and has to be one of the
* {@link FusedActivationFunc} values. Specifies the activation to
* invoke on the result.
*
* Outputs:
* * 0: The output 4-D tensor, of shape
* [batches, out_height, out_width, depth].
* For a {@link OperandType::TENSOR_QUANT8_ASYMM} tensor,
* the scale and zeroPoint must be the same as input0.
*/
AVERAGE_POOL_2D = 1,
/**
* Concatenates the input tensors along the given dimension.
*
* The input tensors must have identical {@link OperandType} and the same
* dimensions except the dimension along the concatenation axis.
*
* Supported tensor {@link OperandType}:
* * {@link OperandType::TENSOR_FLOAT32}
* * {@link OperandType::TENSOR_QUANT8_ASYMM}
*
* Supported tensor rank: up to 4
*
* Inputs:
* * 0 ~ n-1: The list of n input tensors, of shape
* [D0, D1, ..., Daxis(i), ..., Dm].
* All input tensors of
* {@link OperandType::TENSOR_QUANT8_ASYMM}
* must have the same scale and zeroPoint as the output tensor.
* * n: An {@link OperandType::INT32} scalar, specifying the
* concatenation axis.
*
* Outputs:
* * 0: The output, a tensor of the same {@link OperandType} as the input
* tensors. The output shape is [D0, D1, ..., sum(Daxis(i)), ..., Dm].
* For a {@link OperandType::TENSOR_QUANT8_ASYMM} tensor, the scale and zeroPoint
* values must be the same as the input tensors'.
*/
CONCATENATION = 2,
/**
* Performs a 2-D convolution operation.
*
* The CONV_2D op sweeps a 2-D filter that can mix channels together over a
* batch of images, applying the filter to each window of each image of the
* appropriate size.
*
* The output dimensions are functions of the filter dimensions, stride, and
* padding.
*
* The values in the output tensor are computed as:
*
* output[b, i, j, channel] =
* sum_{di, dj, k} (
* input[b, strides[1] * i + di, strides[2] * j + dj, k] *
* filter[channel, di, dj, k]
* ) + bias[channel]
*
* Supported tensor {@link OperandType} configurations:
* * 32 bit floating point:
* * * {@link OperandType::TENSOR_FLOAT32} for input, filter, output, and bias.
*
* * Quantized:
* * * {@link OperandType::TENSOR_QUANT8_ASYMM} for input, filter, and output.
* * * {@link OperandType::TENSOR_INT32} for bias (with scale set to
* * * input.scale * filter.scale).
*
* Supported tensor rank: 4, with "NHWC" (i.e., Num_samples, Height, Width,
* and Channels) data layout.
*
* Both explicit padding and implicit padding are supported.
*
* Inputs (explicit padding):
* * 0: A 4-D tensor, of shape [batches, height, width, depth_in],
* specifying the input.
* * 1: A 4-D tensor, of shape
* [depth_out, filter_height, filter_width, depth_in], specifying the
* filter.
* * 2: A 1-D tensor, of shape [depth_out], specifying the bias. For input
* tensor of type {@link OperandType::TENSOR_FLOAT32}
* the bias must be of the same type.
* For filter tensor of {@link OperandType::TENSOR_QUANT8_ASYMM},
* the bias should be of {@link OperandType::TENSOR_INT32}, with zeroPoint
* of 0 and bias_scale == input_scale * filter_scale.
* * 3: An {@link OperandType::INT32} scalar, specifying the padding on
* the left, in the ‘width’ dimension.
* * 4: An {@link OperandType::INT32} scalar, specifying the padding on
* the right, in the ‘width’ dimension.
* * 5: An {@link OperandType::INT32} scalar, specifying the padding on
* the top, in the ‘height’ dimension.
* * 6: An {@link OperandType::INT32} scalar, specifying the padding on
* the bottom, in the ‘height’ dimension.
* * 7: An {@link OperandType::INT32} scalar, specifying the stride when
* walking through input in the ‘width’ dimension.
* * 8: An {@link OperandType::INT32} scalar, specifying the stride when
* walking through input in the ‘height’ dimension.
* * 9: An {@link OperandType::INT32} scalar, and has to be one of the
* {@link FusedActivationFunc} values. Specifies the activation to
* invoke on the result.
*
* Inputs (implicit padding):
* * 0: A 4-D tensor, of shape [batches, height, width, depth_in],
* specifying the input.
* * 1: A 4-D tensor, of shape
* [depth_out, filter_height, filter_width, depth_in], specifying the
* filter.
* * 2: A 1-D tensor, of shape [depth_out], specifying the bias. For input
* tensor of type {@link OperandType::TENSOR_FLOAT32}
* the bias must be of the same
* type.
* For filter tensor of {@link OperandType::TENSOR_QUANT8_ASYMM},
* the bias should be of {@link OperandType::TENSOR_INT32}, with zeroPoint
* of 0 and bias_scale == input_scale * filter_scale.
* * 3: An {@link OperandType::INT32} scalar, specifying the implicit
* padding scheme, has to be one of the
* following values: {0 (NONE), 1 (SAME), 2 (VALID)}.
* * 4: An {@link OperandType::INT32} scalar, specifying the stride when
* walking through input in the ‘width’ dimension.
* * 5: An {@link OperandType::INT32} scalar, specifying the stride when
* walking through input in the ‘height’ dimension.
* * 6: An {@link OperandType::INT32} scalar, and has to be one of the
* {@link FusedActivationFunc} values. Specifies the activation to
* invoke on the result.
*
* Outputs:
* * 0: The output 4-D tensor, of shape
* [batches, out_height, out_width, depth_out].
* For output tensor of {@link OperandType::TENSOR_QUANT8_ASYMM},
* the following condition must be satisfied: output_scale > input_scale * filter_scale
*/
CONV_2D = 3,
/**
* Performs a depthwise 2-D convolution operation.
*
* Given an input tensor of shape [batches, height, width, depth_in] and a
* filter tensor of shape [1, filter_height, filter_width, depth_out]
* containing depth_out convolutional filters of depth 1, DEPTHWISE_CONV
* applies a different filter to each input channel (expanding from 1
* channel to channel_multiplier channels for each), then concatenates the
* results together.
*
* The output has depth_out = depth_in * depth_multiplier channels.
* The output dimensions are functions of the filter dimensions, stride, and
* padding.
*
* The values in the output tensor are computed as:
*
* output[b, i, j, k * channel_multiplier + q] =
* sum_{di, dj} (
* input[b, strides[1] * i + di, strides[2] * j + dj, k] *
* filter[1, di, dj, k * channel_multiplier + q]
* ) + bias[k * channel_multiplier + q]
*
* Supported tensor {@link OperandType} configurations:
* * 32 bit floating point:
* * * {@link OperandType::TENSOR_FLOAT32} for input, filter, output, and bias.
*
* * Quantized:
* * * {@link OperandType::TENSOR_QUANT8_ASYMM} for input, filter, and output.
* * * {@link OperandType::TENSOR_INT32} for bias (with scale set to
* * * input.scale * filter.scale).
*
* Supported tensor rank: 4, with "NHWC" (i.e., Num_samples, Height, Width,
* and Channels) data layout.
*
* Both explicit padding and implicit padding are supported.
*
* Inputs (explicit padding):
* * 0: A 4-D tensor, of shape [batches, height, width, depth_in],
* specifying the input.
* * 1: A 4-D tensor, of shape [1, filter_height, filter_width, depth_out],
* specifying the filter.
* * 2: A 1-D tensor, of shape [depth_out], specifying the bias. For input
* tensor of type {@link OperandType::TENSOR_FLOAT32}
* the bias must be of the same type.
* For filter tensor of {@link OperandType::TENSOR_QUANT8_ASYMM},
* the bias should be of {@link OperandType::TENSOR_INT32}, with zeroPoint
* of 0 and bias_scale == input_scale * filter_scale.
* * 3: An {@link OperandType::INT32} scalar, specifying the padding on
* the left, in the ‘width’ dimension.
* * 4: An {@link OperandType::INT32} scalar, specifying the padding on
* the right, in the ‘width’ dimension.
* * 5: An {@link OperandType::INT32} scalar, specifying the padding on
* the top, in the ‘height’ dimension.
* * 6: An {@link OperandType::INT32} scalar, specifying the padding on
* the bottom, in the ‘height’ dimension.
* * 7: An {@link OperandType::INT32} scalar, specifying the stride when
* walking through input in the ‘width’ dimension.
* * 8: An {@link OperandType::INT32} scalar, specifying the stride when
* walking through input in the ‘height’ dimension.
* * 9: An {@link OperandType::INT32} scalar, specifying the depthwise
* multiplier.
* * 10: An {@link OperandType::INT32} scalar, and has to be one of the
* {@link FusedActivationFunc} values. Specifies the activation to
* invoke on the result.
*
* Inputs (implicit padding):
* * 0: A 4-D tensor, of shape [batches, height, width, depth_in],
* specifying the input.
* * 1: A 4-D tensor, of shape [1, filter_height, filter_width, depth_out],
* specifying the filter.
* * 2: A 1-D tensor, of shape [depth_out], specifying the bias. For input
* tensor of type {@link OperandType::TENSOR_FLOAT32}
* the bias must be of the same type.
* For filter tensor of {@link OperandType::TENSOR_QUANT8_ASYMM},
* the bias should be of {@link OperandType::TENSOR_INT32}, with zeroPoint
* of 0 and bias_scale == input_scale * filter_scale.
* * 3: An {@link OperandType::INT32} scalar, specifying the implicit
* padding scheme, has to be one of the
* following values: {0 (NONE), 1 (SAME), 2 (VALID)}.
* * 4: An {@link OperandType::INT32} scalar, specifying the stride when
* walking through input in the ‘width’ dimension.
* * 5: An {@link OperandType::INT32} scalar, specifying the stride when
* walking through input in the ‘height’ dimension.
* * 6: An {@link OperandType::INT32} scalar, specifying the depthwise
* multiplier.
* * 7: An {@link OperandType::INT32} scalar, and has to be one of the
* {@link FusedActivationFunc} values. Specifies the activation to
* invoke on the result.
*
* Outputs:
* * 0: The output 4-D tensor, of shape
* [batches, out_height, out_width, depth_out]. For
* output tensor of {@link OperandType::TENSOR_QUANT8_ASYMM},
* the following condition must be satisfied:
* output_scale > input_scale * filter_scale
*/
DEPTHWISE_CONV_2D = 4,
/**
* Rearranges data from depth into blocks of spatial data.
*
* More specifically, this op outputs a copy of the input tensor where
* values from the depth dimension are moved in spatial blocks to the height
* and width dimensions. The value block_size indicates the input block size
* and how the data is moved.
*
* Chunks of data of size block_size * block_size from depth are rearranged
* into non-overlapping blocks of size block_size x block_size.
*
* The width of the output tensor is input_depth * block_size, whereas the
* height is input_height * block_size. The depth of the input tensor must
* be divisible by block_size * block_size
*
* Supported tensor {@link OperandType}:
* * {@link OperandType::TENSOR_FLOAT32}
* * {@link OperandType::TENSOR_QUANT8_ASYMM}
*
* Supported tensor rank: 4, with "NHWC" (i.e., Num_samples, Height, Width,
* and Channels) data layout.
*
* Inputs:
* * 0: A 4-D tensor, of shape [batches, height, width, depth_in],
* specifying the input.
* * 1: An {@link OperandType::INT32} scalar, specifying the block_size.
* block_size must be >=1 and block_size * block_size must be a divisor
* of the input depth.
*
* Outputs:
* * 0: The output 4-D tensor, of shape [batch, height*block_size,
* width*block_size, depth/(block_size*block_size)].
* For a {@link OperandType::TENSOR_QUANT8_ASYMM} tensor,
* the scale and zeroPoint must be the same as input0.
*/
DEPTH_TO_SPACE = 5,
/**
* Dequantizes the input tensor.
*
* The formula is:
*
* output = (input - zeroPoint) * scale.
*
* Supported input tensor {@link OperandType}:
* * {@link OperandType::TENSOR_QUANT8_ASYMM}
*
* Supported output tensor {@link OperandType}:
* * {@link OperandType::TENSOR_FLOAT32}.
*
* Supported tensor rank: up to 4
*
* Inputs:
* * 0: A tensor.
*
* Outputs:
* * 0: A tensor with the same shape as input0.
*/
DEQUANTIZE = 6,
/**
* Looks up sub-tensors in the input tensor.
*
* This operator takes for input a tensor of values (Values) and
* a one-dimensional tensor of selection indices (Lookups).
* The output tensor is the concatenation of sub-tensors of Values as
* selected by Lookups.
*
* Think of Values as being sliced along its first dimension:
* The entries in Lookups select which slices are concatenated together
* to create the output tensor.
*
* For example, if Values has shape of [40, 200, 300] and
* Lookups has shape of [3], all three values found in Lookups are
* expected to be between 0 and 39. The resulting tensor must
* have shape of [3, 200, 300].
*
* If a value in Lookups is out of bounds, the operation must fail
* and an error must be reported.
*
* Supported value tensor {@link OperandType}:
* * {@link OperandType::TENSOR_FLOAT32}
*
* Supported value tensor rank: from 2
*
* Inputs:
* * 0: Lookups. A 1-D tensor of {@link OperandType::TENSOR_INT32}.
* The values are indices into the first dimension of Values.
* * 1: Values. An n-D tensor, where n >= 2, from which sub-tensors are
* extracted.
*
* Output:
* * 0: A n-D tensor with the same rank and shape as the Values
* tensor, except for the first dimension which has the same size
* as Lookups' only dimension.
* For a {@link OperandType::TENSOR_QUANT8_ASYMM} tensor,
* the scale and zeroPoint must be the same as input1.
*/
EMBEDDING_LOOKUP = 7,
/**
* Computes element-wise floor() on the input tensor.
*
* Supported tensor {@link OperandType}:
* * {@link OperandType::TENSOR_FLOAT32}
*
* Supported tensor rank: up to 4
*
* Inputs:
* * 0: A tensor.
*
* Outputs:
* * 0: The output tensor, of the same {@link OperandType} and dimensions as
* the input tensor.
*/
FLOOR = 8,
/**
* Denotes a fully (densely) connected layer, which connects all elements
* in the input tensor with each element in the output tensor.
*
* This layer implements the operation:
*
* outputs = activation(inputs * weights’ + bias)
*
* Supported tensor {@link OperandType}:
* * {@link OperandType::TENSOR_FLOAT32}
* * {@link OperandType::TENSOR_QUANT8_ASYMM}
*
* Supported tensor rank: up to 4.
*
* Inputs:
* * 0: A tensor of at least rank 2, specifying the input. If rank is
* greater than 2, then it gets flattened to a 2-D Tensor. The
* (flattened) 2-D Tensor is reshaped (if necessary) to
* [batch_size, input_size], where "input_size" corresponds to the
* number of inputs to the layer, matching the second dimension of
* weights, and "batch_size" is calculated by dividing the number of
* elements by "input_size".
* * 1: A 2-D tensor, specifying the weights, of shape
* [num_units, input_size], where "num_units" corresponds to the number
* of output nodes.
* * 2: A 1-D tensor, of shape [num_units], specifying the bias. For input
* tensor of {@link OperandType::TENSOR_FLOAT32}, the bias should
* also be of {@link OperandType::TENSOR_FLOAT32}.
* For input tensor of {@link OperandType::TENSOR_QUANT8_ASYMM},
* the bias should be of {@link OperandType::TENSOR_INT32},
* with zeroPoint of 0 and bias_scale == input_scale * filter_scale.
* * 3: An {@link OperandType::INT32} scalar, and has to be one of the
* {@link FusedActivationFunc} values. Specifies the activation to
* invoke on the result.
*
* Outputs:
* * 0: The output tensor, of shape [batch_size, num_units]. For
* output tensor of {@link OperandType::TENSOR_QUANT8_ASYMM}, the following
* condition must be satisfied: output_scale > input_scale * filter_scale.
*/
FULLY_CONNECTED = 9,
/**
* Looks up sub-tensors in the input tensor using a key-value map.
*
* This operator takes for input a tensor of values (Values),
* a one-dimensional tensor of selection values (Lookups) and
* a one-dimensional tensor that maps these values to Values
* indexes. The output tensor is the concatenation of sub-tensors of
* Values as selected by Lookups via Keys.
*
* Think of Values as being sliced along its outer-most dimension.
* The output is a concatenation of selected slices, with one slice
* for each entry of Lookups. The slice selected is the one at the
* same index as the Maps entry that matches the value in Lookups.
*
* For a hit, the corresponding sub-tensor of Values is included
* in the Output tensor. For a miss, the corresponding sub-tensor in
* Output must have zero values.
*
* For example, if Values has shape of [40, 200, 300],
* Keys should have a shape of [40]. If Lookups tensor has shape
* of [3], three slices are being concatenated, so the resulting tensor
* must have the shape of [3, 200, 300]. If the first entry in Lookups
* has the value 123456, that value must be located in Keys tensor.
* If the sixth entry of Keys contains 123456, the sixth slice of Values
* must be selected. If no entry in Keys has 123456, a slice of zeroes
* must be concatenated.
*
* Supported value tensor {@link OperandType}:
* * {@link OperandType::TENSOR_FLOAT32}
* * {@link OperandType::TENSOR_INT32}
* * {@link OperandType::TENSOR_QUANT8_ASYMM}
*
* Supported value tensor rank: from 2
*
* Inputs:
* * 0: Lookups. A 1-D {@link OperandType::TENSOR_INT32} tensor with
* shape [ k ].
* * 1: Keys. A 1-D {@link OperandType::TENSOR_INT32} tensor with shape
* [ n ]; Keys and Values pair represent a map, i.e., the ith element
* in Keys (Keys[i]) is the key to select the ith sub-tensor in Values
* (Values[i]), where 0 <= i <= n-1. Keys tensor *MUST* be sorted in
* ascending order.
* * 2: Values. A tensor with shape of [ n, … ]; i.e., the first dimension
* must be n.
*
* Outputs:
* * 0: Output. A tensor with shape [ k …].
* For a {@link OperandType::TENSOR_QUANT8_ASYMM} tensor,
* the scale and zeroPoint must be the same as input2.
* * 1: Hits. A boolean tensor with shape [ k ] indicates whether the lookup
* hits (True) or not (False).
* Stored as {@link OperandType::TENSOR_QUANT8_ASYMM} with offset 0
* and scale 1.0f.
* A non-zero byte represents True, a hit. A zero indicates otherwise.
*/
HASHTABLE_LOOKUP = 10,
/**
* Applies L2 normalization along the axis dimension.
*
* The values in the output tensor are computed as:
*
* output[batch, row, col, channel] =
* input[batch, row, col, channel] /
* sqrt(sum_{c} pow(input[batch, row, col, c], 2))
*
* Supported tensor {@link OperandType}:
* * {@link OperandType::TENSOR_FLOAT32}
*
* Supported tensor rank: 4, with "NHWC" data layout (i.e., Num_samples,
* Height, Width, and Channels).
*
* Inputs:
* * 0: A 4-D tensor, specifying the tensor to be normalized.
*
* Outputs:
* * 0: A tensor of the same {@link OperandType} and same shape as input0.
*/
L2_NORMALIZATION = 11,
/**
* Performs an 2-D L2 pooling operation.
*
* The output dimensions are functions of the filter dimensions, stride, and
* padding.
*
* The values in the output tensor are computed as:
*
* output[b, i, j, c] =
* sqrt(sum_{di, dj} pow(input[b, strides[1] * i + di, strides[2] * j + dj, c], 2) /
* sum(1))
*
* Supported tensor {@link OperandType}:
* * {@link OperandType::TENSOR_FLOAT32}
*
* Supported tensor rank: 4, with "NHWC" (i.e., Num_samples, Height, Width,
* and Channels) data layout.
*
* Both explicit padding and implicit padding are supported.
*
* Inputs (explicit padding):
* * 0: A 4-D tensor, of shape [batches, height, width, depth], specifying
* the input.
* * 1: An {@link OperandType::INT32} scalar, specifying the padding on
* the left, in the ‘width’ dimension.
* * 2: An {@link OperandType::INT32} scalar, specifying the padding on
* the right, in the ‘width’ dimension.
* * 3: An {@link OperandType::INT32} scalar, specifying the padding on
* the top, in the ‘height’ dimension.
* * 4: An {@link OperandType::INT32} scalar, specifying the padding on
* the bottom, in the ‘height’ dimension.
* * 5: An {@link OperandType::INT32} scalar, specifying the stride when
* walking through input in the ‘width’ dimension.
* * 6: An {@link OperandType::INT32} scalar, specifying the stride when
* walking through input in the ‘height’ dimension.
* * 7: An {@link OperandType::INT32} scalar, specifying the filter
* width.
* * 8: An {@link OperandType::INT32} scalar, specifying the filter
* height.
* * 9: An {@link OperandType::INT32} scalar, and has to be one of the
* {@link FusedActivationFunc} values. Specifies the activation to
* invoke on the result.
*
* Inputs (implicit padding):
* * 0: A 4-D tensor, of shape [batches, height, width, depth], specifying
* the input.
* * 1: An {@link OperandType::INT32} scalar, specifying the implicit
* padding scheme, has to be one of the
* following values: {0 (NONE), 1 (SAME), 2 (VALID)}.
* * 2: An {@link OperandType::INT32} scalar, specifying the stride when
* walking through input in the ‘width’ dimension.
* * 3: An {@link OperandType::INT32} scalar, specifying the stride when
* walking through input in the ‘height’ dimension.
* * 4: An {@link OperandType::INT32} scalar, specifying the filter
* width.
* * 5: An {@link OperandType::INT32} scalar, specifying the filter
* height.
* * 6: An {@link OperandType::INT32} scalar, and has to be one of the
* {@link FusedActivationFunc} values. Specifies the activation to
* invoke on the result.
*
* Outputs:
* * 0: The output 4-D tensor, of shape
* [batches, out_height, out_width, depth].
*/
L2_POOL_2D = 12,
/**
* Applies Local Response Normalization along the depth dimension.
*
* The 4-D input tensor is treated as a 3-D array of 1-D vectors (along the
* last dimension), and each vector is normalized independently. Within a
* given vector, each component is divided by the weighted, squared sum of
* inputs within depth_radius.
*
* The output is calculated using this formula:
*
* sqr_sum[a, b, c, d] = sum(
* pow(input[a, b, c, d - depth_radius : d + depth_radius + 1], 2))
* output = input / pow((bias + alpha * sqr_sum), beta)
*
* Supported tensor {@link OperandType}:
* * {@link OperandType::TENSOR_FLOAT32}
*
* Supported tensor rank: 4, with "NHWC" data layout.
*
* Inputs:
* * 0: A 4-D tensor, of shape [batches, height, width, depth], specifying
* the input.
* * 1: An {@link OperandType::INT32} scalar, specifying the radius of
* the normalization window.
* * 2: A scalar, specifying the bias, must not be zero.
* For input tensor of {@link OperandType::TENSOR_FLOAT32}, the bias
* value must be of {@link OperandType::FLOAT32}.
* * 3: A scalar, specifying the scale factor, alpha.
* For input tensor of {@link OperandType::TENSOR_FLOAT32}, the
* alpha value must be of {@link OperandType::FLOAT32}.
* * 4: A scalar, specifying the exponent, beta.
* For input tensor of {@link OperandType::TENSOR_FLOAT32}, the beta
* value must be of {@link OperandType::FLOAT32}.
*
* Outputs:
* * 0: The output tensor of same shape as input0.
*/
LOCAL_RESPONSE_NORMALIZATION = 13,
/**
* Computes sigmoid activation on the input tensor element-wise.
*
* The output is calculated using this formula:
*
* output = 1 / (1 + exp(-input))
*
* Supported tensor {@link OperandType}:
* * {@link OperandType::TENSOR_FLOAT32}
* * {@link OperandType::TENSOR_QUANT8_ASYMM}
*
* Supported tensor rank: up to 4.
*
* Inputs:
* * 0: A tensor, specifying the input.
*
* Outputs:
* * 0: The output tensor of same shape as input0.
* For {@link OperandType::TENSOR_QUANT8_ASYMM},
* the scale must be 1.f / 256 and the zeroPoint must be 0.
*/
LOGISTIC = 14,
/**
* Projects an input to a bit vector via locality senstive hashing.
*
* Supported input tensor {@link OperandType}:
* * {@link OperandType::TENSOR_FLOAT32}
* * {@link OperandType::TENSOR_INT32}
* * {@link OperandType::TENSOR_QUANT8_ASYMM}
*
* Supported input tensor rank: from 1
*
* Inputs:
* * 0: Hash functions. Dim.size == 2, DataType: Float.
* Tensor[0].Dim[0]: Number of hash functions.
* Tensor[0].Dim[1]: Number of projected output bits generated by each
* hash function.
* If the projection type is Sparse:
* Tensor[0].Dim[1] + ceil(log2(Tensor[0].Dim[0])) <= 32
*
* * 1: Input. Dim.size >= 1, no restriction on DataType.
* * 2: Weight. Optional. Dim.size == 1, DataType: Float.
* If not set, each input element is considered to have the same weight
* of 1.0.
* Tensor[1].Dim[0] == Tensor[2].Dim[0]
* * 3: Type:
* Sparse:
* Value LSHProjectionType_SPARSE(=1).
* Computed bit vector is considered to be sparse.
* Each output element is an int32 made up of multiple bits
* computed from hash functions.
*
* Dense:
* Value LSHProjectionType_DENSE(=2).
* Computed bit vector is considered to be dense. Each output
* element represents a bit and can take the value of either
* 0 or 1.
*
* Outputs:
* * 0: If the projection type is Sparse:
* Output.Dim == { Tensor[0].Dim[0] }
* A tensor of int32 that represents hash signatures.
*
* If the projection type is Dense:
* Output.Dim == { Tensor[0].Dim[0] * Tensor[0].Dim[1] }
* A flattened tensor that represents projected bit vectors.
*/
LSH_PROJECTION = 15,
/**
* Performs a single time step in a Long Short-Term Memory (LSTM) layer
*
* The LSTM operation is described by the following equations.
*
* \f{eqnarray*}{
* i_t =& \sigma(W_{xi}x_t+W_{hi}h_{t-1}+W_{ci}C_{t-1}+b_i) & \\
* f_t =& \sigma(W_{xf}x_t+W_{hf}h_{t-1}+W_{cf}C_{t-1}+b_f) & \\
* C_t =& clip(f_t \odot C_{t-1} + i_t \odot
* g(W_{xc}x_t+W_{hc}h_{t-1}+b_c),\ t_{cell}) & \\
* o_t =& \sigma(W_{xo}x_t+W_{ho}h_{t-1}+W_{co}C_t+b_o) & \\
* & & \\
* & clip(W_{proj}(o_t \odot g(C_t))+b_{proj},\ t_{proj})
* & if\ there\ is\ a\ projection; \\
* h_t =& & \\
* & o_t \odot g(C_t) & otherwise. \\
* \f}
* Where:
* * \f$x_t\f$ is the input,
* * \f$i_t\f$ is the input gate,
* * \f$f_t\f$ is the forget gate,
* * \f$C_t\f$ is the cell state,
* * \f$o_t\f$ is the output,
* * \f$h_t\f$ is the output state,
* * \f$\sigma\f$ is the logistic sigmoid function,
* * \f$g\f$ is the cell input and cell output activation function, usually
* \f$tahn\f$,
* * \f$W_{xi}\f$ is the input-to-input weight matrix,
* * \f$W_{hi}\f$ is the recurrent to input weight matrix,
* * \f$W_{ci}\f$ is the cell-to-input weight matrix,
* * \f$b_i\f$ is the input gate bias,
* * \f$W_{xf}\f$ is the input-to-forget weight matrix,
* * \f$W_{hf}\f$ is the recurrent-to-forget weight matrix,
* * \f$W_{cf}\f$ is the cell-to-forget weight matrix,
* * \f$b_f\f$ is the forget gate bias,
* * \f$W_{xc}\f$ is the input-to-cell weight matrix,
* * \f$W_{hc}\f$ is the recurrent-to-cell weight matrix,
* * \f$b_c\f$ is the cell bias,
* * \f$W_{xo}\f$ is the input-to-output weight matrix,
* * \f$W_{ho}\f$ is the recurrent-to-output weight matrix,
* * \f$W_{co}\f$ is the cell-to-output weight matrix,
* * \f$b_o\f$ is the output gate bias,
* * \f$W_{proj}\f$ is the projection weight matrix,
* * \f$b_{proj}\f$ is the projection bias,
* * \f$t_{cell}\f$ is the threshold for clipping the cell state, and
* * \f$t_{proj}\f$ is the threshold for clipping the projected output.
* * \f$\odot\f$ is the
* <a href="https://en.wikipedia.org/wiki/Hadamard_product_(matrices)">
* Hadamard product</a> that takes two matrices and produces another
* matrix, each element of which is the product of the corresponding
* elements of the input matrices.
*
* The operation has the following independently optional inputs:
* * The cell-to-input weights (\f$W_{ci}\f$), cell-to-forget weights
* (\f$W_{cf}\f$) and cell-to-output weights (\f$W_{co}\f$) either all
* have values or neither of them have values (i.e., all set to null). If
* they have values, the peephole optimization is used.
* * The input-to-input weights (\f$W_{xi}\f$), recurrent-to-input weights
* (\f$W_{hi}\f$) and input gate bias (\f$b_i\f$) either all have values,
* or none of them have values. If they have no values, coupling of input
* and forget gates (CIFG) is used, in which case the input gate
* (\f$i_t\f$) is calculated using the following equation instead.
* \f{eqnarray*}{
* i_t = 1 - f_t
* \f}
* In case peephole optimization is used and CIFG is not used
* cell-to-input (\f$W_{ci}\f$) weights must be present. Otherwise, the
* cell-to-input weights must have no value.
* * The projection weights (\f$W_{proj}\f$) is required only for the
* recurrent projection layer, and should otherwise have no value.
* * The projection bias (\f$b_{proj}\f$) may (but not required to) have a
* value if the recurrent projection layer exists, and should otherwise
* have no value.
*
* References:
*
* The default non-peephole non-CIFG implementation is based on:
* http://www.bioinf.jku.at/publications/older/2604.pdf
* S. Hochreiter and J. Schmidhuber. "Long Short-Term Memory". Neural
* Computation, 9(8):1735-1780, 1997.
*
* The peephole implementation and projection layer is based on:
* https://research.google.com/pubs/archive/43905.pdf
* Hasim Sak, Andrew Senior, and Francoise Beaufays. "Long short-term memory
* recurrent neural network architectures for large scale acoustic
* modeling." INTERSPEECH, 2014.
* (However, the concept of peephole optimization was introduced in work
* prior to this paper.)
*
* The coupling of input and forget gate (CIFG) is based on:
* http://arxiv.org/pdf/1503.04069.pdf
* Greff et al. "LSTM: A Search Space Odyssey"
*
* Supported tensor {@link OperandType}:
* * {@link OperandType::TENSOR_FLOAT32}
*
* All input and output tensors must be of the same type.
*
* Inputs:
* * 0: The input (\f$x_t\f$).
* A 2-D tensor of shape [batch_size, input_size], where “batch_size”
* corresponds to the batching dimension, and “input_size” is the size
* of the input.
* * 1: The input-to-input weights (\f$W_{xi}\f$). Optional.
* A 2-D tensor of shape [num_units, input_size], where “num_units”
* corresponds to the number of cell units.
* * 2: The input-to-forget weights (\f$W_{xf}\f$).
* A 2-D tensor of shape [num_units, input_size].
* * 3: The input-to-cell weights (\f$W_{xc}\f$).
* A 2-D tensor of shape [num_units, input_size].
* * 4: The input-to-output weights (\f$W_{xo}\f$).
* A 2-D tensor of shape [num_units, input_size].
* * 5: The recurrent-to-input weights (\f$W_{hi}\f$). Optional.
* A 2-D tensor of shape [num_units, output_size], where “output_size”
* corresponds to either the number of cell units (i.e., “num_units”),
* or the second dimension of the “projection_weights”, if defined.
* * 6: The recurrent-to-forget weights (\f$W_{hf}\f$).
* A 2-D tensor of shape [num_units, output_size].
* * 7: The recurrent-to-cell weights (\f$W_{hc}\f$).
* A 2-D tensor of shape [num_units, output_size].
* * 8: The recurrent-to-output weights (\f$W_{ho}\f$).
* A 2-D tensor of shape [num_units, output_size].
* * 9: The cell-to-input weights (\f$W_{ci}\f$). Optional.
* A 1-D tensor of shape [num_units].
* * 10:The cell-to-forget weights (\f$W_{cf}\f$). Optional.
* A 1-D tensor of shape [num_units].
* * 11:The cell-to-output weights (\f$W_{co}\f$). Optional.
* A 1-D tensor of shape [num_units].
* * 12:The input gate bias (\f$b_i\f$). Optional.
* A 1-D tensor of shape [num_units].
* * 13:The forget gate bias (\f$b_f\f$).
* A 1-D tensor of shape [num_units].
* * 14:The cell bias (\f$b_c\f$).
* A 1-D tensor of shape [num_units].
* * 15:The output gate bias (\f$b_o\f$).
* A 1-D tensor of shape [num_units].
* * 16:The projection weights (\f$W_{proj}\f$). Optional.
* A 2-D tensor of shape [output_size, num_units].
* * 17:The projection bias (\f$b_{proj}\f$). Optional.
* A 1-D tensor of shape [output_size].
* * 18:The output state (in) (\f$h_{t-1}\f$).
* A 2-D tensor of shape [batch_size, output_size].
* * 19:The cell state (in) (\f$C_{t-1}\f$).
* A 2-D tensor of shape [batch_size, num_units].
* * 20:The activation function (\f$g\f$).
* A value indicating the activation function:
* <ul>
* <li>0: None;
* <li>1: Relu;
* <li>3: Relu6;
* <li>4: Tanh;
* <li>6: Sigmoid.
* </ul>
* * 21:The clipping threshold (\f$t_{cell}\f$) for the cell state, such
* that values are bound within [-cell_clip, cell_clip]. If set to 0.0
* then clipping is disabled.
* * 22:The clipping threshold (\f$t_{proj}\f$) for the output from the
* projection layer, such that values are bound within
* [-proj_clip, proj_clip]. If set to 0.0 then clipping is disabled.
*
* Outputs:
* * 0: The scratch buffer.
* A 2-D tensor of shape [batch_size, num_units * 3] with CIFG, or
* [batch_size, num_units * 4] without CIFG.
* * 1: The output state (out) (\f$h_t\f$).
* A 2-D tensor of shape [batch_size, output_size].
* * 2: The cell state (out) (\f$C_t\f$).
* A 2-D tensor of shape [batch_size, num_units].
* * 3: The output (\f$o_t\f$).
* A 2-D tensor of shape [batch_size, output_size]. This is effectively
* the same as the current “output state (out)” value.
*/
LSTM = 16,
/**
* Performs an 2-D max pooling operation.
*
* The output dimensions are functions of the filter dimensions, stride, and
* padding.
*
* The values in the output tensor are computed as:
*
* output[b, i, j, channel] =
* max_{di, dj} (
* input[b, strides[1] * i + di, strides[2] * j + dj, channel]
* )
*
* Supported tensor {@link OperandType}:
* * {@link OperandType::TENSOR_FLOAT32}
* * {@link OperandType::TENSOR_QUANT8_ASYMM}
*
* Supported tensor rank: 4, with "NHWC" (i.e., Num_samples, Height, Width,
* and Channels) data layout.
*
* Both explicit padding and implicit padding are supported.
*
* Inputs (explicit padding):
* * 0: A 4-D tensor, of shape [batches, height, width, depth], specifying
* the input.
* * 1: An {@link OperandType::INT32} scalar, specifying the padding on
* the left, in the ‘width’ dimension.
* * 2: An {@link OperandType::INT32} scalar, specifying the padding on
* the right, in the ‘width’ dimension.
* * 3: An {@link OperandType::INT32} scalar, specifying the padding on
* the top, in the ‘height’ dimension.
* * 4: An {@link OperandType::INT32} scalar, specifying the padding on
* the bottom, in the ‘height’ dimension.
* * 5: An {@link OperandType::INT32} scalar, specifying the stride when
* walking through input in the ‘width’ dimension.
* * 6: An {@link OperandType::INT32} scalar, specifying the stride when
* walking through input in the ‘height’ dimension.
* * 7: An {@link OperandType::INT32} scalar, specifying the filter
* width.
* * 8: An {@link OperandType::INT32} scalar, specifying the filter
* height.
* * 9: An {@link OperandType::INT32} scalar, and has to be one of the
* {@link FusedActivationFunc} values. Specifies the activation to
* invoke on the result.
*
* Inputs (implicit padding):
* * 0: A 4-D tensor, of shape [batches, height, width, depth], specifying
* the input.
* * 1: An {@link OperandType::INT32} scalar, specifying the implicit
* padding scheme, has to be one of the
* following values: {0 (NONE), 1 (SAME), 2 (VALID)}.
* * 2: An {@link OperandType::INT32} scalar, specifying the stride when
* walking through input in the ‘width’ dimension.
* * 3: An {@link OperandType::INT32} scalar, specifying the stride when
* walking through input in the ‘height’ dimension.
* * 4: An {@link OperandType::INT32} scalar, specifying the filter
* width.
* * 5: An {@link OperandType::INT32} scalar, specifying the filter
* height.
* * 6: An {@link OperandType::INT32} scalar, and has to be one of the
* {@link FusedActivationFunc} values. Specifies the activation to
* invoke on the result.
*
* Outputs:
* * 0: The output 4-D tensor, of shape
* [batches, out_height, out_width, depth].
* For a {@link OperandType::TENSOR_QUANT8_ASYMM} tensor,
* the scale and zeroPoint must be the same as input0.
*/
MAX_POOL_2D = 17,
/**
* Multiplies two tensors, element-wise.
*
* Takes two input tensors of identical {@link OperandType} and compatible
* dimensions. The output is the product of both input tensors, optionally
* modified by an activation function.
*
* Two dimensions are compatible when:
* 1. they are equal, or
* 2. one of them is 1
*
* The size of the resulting output is the maximum size along each dimension
* of the input operands. It starts with the trailing dimensions, and works
* its way forward.
*
* Supported tensor {@link OperandType}:
* * {@link OperandType::TENSOR_FLOAT32}
* * {@link OperandType::TENSOR_QUANT8_ASYMM}
*
* Supported tensor rank: up to 4
*
* Inputs:
* * 0: A tensor.
* * 1: A tensor of the same {@link OperandType}, and compatible dimensions
* as input0.
* * 2: An {@link OperandType::INT32} scalar, and has to be one of the
* {@link FusedActivationFunc} values. Specifies the activation to
* invoke on the result.
*
* Outputs:
* * 0: The product, a tensor of the same {@link OperandType} as input0.
* For output tensor of {@link OperandType::TENSOR_QUANT8_ASYMM},
* the following condition must be satisfied:
* output_scale > input1_scale * input2_scale.
*/
MUL = 18,
/**
* Computes rectified linear activation on the input tensor element-wise.
*
* The output is calculated using this formula:
*
* output = max(0, input)
*
* Supported tensor {@link OperandType}:
* * {@link OperandType::TENSOR_FLOAT32}
* * {@link OperandType::TENSOR_QUANT8_ASYMM}
*
* Supported tensor rank: up to 4.
*
* Inputs:
* * 0: A tensor, specifying the input.
*
* Outputs:
* * 0: The output tensor of same shape as input0.
* For a {@link OperandType::TENSOR_QUANT8_ASYMM} tensor,
* the scale and zeroPoint must be the same as input0.
*/
RELU = 19,
/**
* Computes rectified linear 1 activation on the input tensor element-wise.
*
* The output is calculated using this formula:
*
* output = min(1.f, max(-1.f, input))
*
* Supported tensor {@link OperandType}:
* * {@link OperandType::TENSOR_FLOAT32}
* * {@link OperandType::TENSOR_QUANT8_ASYMM}
*
* Supported tensor rank: up to 4.
*
* Inputs:
* * 0: A tensor, specifying the input.
*
* Outputs:
* * 0: The output tensor of the same shape as input0.
* For a {@link OperandType::TENSOR_QUANT8_ASYMM} tensor,
* the scale and zeroPoint must be the same as input0.
*/
RELU1 = 20,
/**
* Computes rectified linear 6 activation on the input tensor element-wise.
*
* The output is calculated using this formula:
*
* output = min(6, max(0, input))
*
* Supported tensor {@link OperandType}:
* * {@link OperandType::TENSOR_FLOAT32}
* * {@link OperandType::TENSOR_QUANT8_ASYMM}
*
* Supported tensor rank: up to 4.
*
* Inputs:
* * 0: A tensor, specifying the input.
*
* Outputs:
* * 0: The output tensor of same shape as input0.
* For a {@link OperandType::TENSOR_QUANT8_ASYMM} tensor,
* the scale and zeroPoint must be the same as input0.
*/
RELU6 = 21,
/**
* Reshapes a tensor.
*
* Given tensor, this operation returns a tensor that has the same values as
* tensor, but with a newly specified shape.
*
* Supported tensor {@link OperandType}:
* * {@link OperandType::TENSOR_FLOAT32}
* * {@link OperandType::TENSOR_QUANT8_ASYMM}
*
* Supported tensor rank: up to 4.
*
* Inputs:
* * 0: A tensor, specifying the tensor to be reshaped.
* * 1: A 1-D tensor of {@link OperandType::TENSOR_INT32}, defining the
* shape of the output tensor. The number of elements implied by shape
* must be the same as the number of elements in the input tensor.
*
* If one component of shape is the special value -1, the size of that
* dimension is computed so that the total size remains constant. In
* particular, a shape of [-1] flattens into 1-D. At most one component
* of shape can be -1.
*
* Outputs:
* * 0: The output tensor, of shape specified by the input shape.
* For a {@link OperandType::TENSOR_QUANT8_ASYMM} tensor,
* the scale and zeroPoint must be the same as input0.
*/
RESHAPE = 22,
/**
* Resizes images to given size using the bilinear interpretation.
*
* Resized images must be distorted if their output aspect ratio is not the
* same as input aspect ratio. The corner pixels of output may not be the
* same as corner pixels of input.
*
* Supported tensor {@link OperandType}:
* * {@link OperandType::TENSOR_FLOAT32}
*
* Supported tensor rank: 4, with "NHWC" (i.e., Num_samples, Height, Width,
* and Channels) data layout.
*
* Inputs (resizing by shape):
* * 0: A 4-D tensor, of shape [batches, height, width, depth], specifying
* the input.
* * 1: An {@link OperandType::INT32} scalar, specifying the output
* width of the output tensor.
* * 2: An {@link OperandType::INT32} scalar, specifying the output
* height of the output tensor.
*
* Outputs:
* * 0: The output 4-D tensor, of shape
* [batches, new_height, new_width, depth].
*/
RESIZE_BILINEAR = 23,
/**
* A basic recurrent neural network layer.
*
* This layer implements the operation:
* outputs = state = activation(inputs * input_weights +
* state * recurrent_weights + bias)
*
* Where:
* * “input_weights” is a weight matrix that multiplies the inputs;
* * “recurrent_weights” is a weight matrix that multiplies the current
* “state” which itself is the output from the previous time step
* computation;
* * “bias” is a bias vector (added to each output vector in the batch);
* * “activation” is the function passed as the “fused_activation_function”
* argument (if not “NONE”).
*
* Supported tensor {@link OperandType}:
* * {@link OperandType::TENSOR_FLOAT32}
*
* The input tensors must all be the same type.
*
* Inputs:
* * 0: input.
* A 2-D tensor of shape [batch_size, input_size], where “batch_size”
* corresponds to the batching dimension, and “input_size” is the size
* of the input.
* * 1: weights.
* A 2-D tensor of shape [num_units, input_size], where “num_units”
* corresponds to the number of units.
* * 2: recurrent_weights.
* A 2-D tensor of shape [num_units, num_units], with columns
* corresponding to the weights from each unit.
* * 3: bias.
* A 1-D tensor of shape [num_units].
* * 4: hidden state (in).
* A 2-D tensor of shape [batch_size, num_units].
* * 5: fused_activation_function.
* An optional {@link FusedActivationFunc} value indicating the
* activation function. If “NONE” is specified then it results in a
* linear activation.
*
* Outputs:
* * 0: hidden state (out).
* A 2-D tensor of shape [batch_size, num_units].
*
* * 1: output.
* A 2-D tensor of shape [batch_size, num_units]. This is effectively
* the same as the current state value.
*/
RNN = 24,
/**
* Computes the softmax activation on the input tensor element-wise, per
* batch, by normalizing the input vector so the maximum coefficient is
* zero.
*
* The output is calculated using this formula:
*
* output[batch, i] =
* exp((input[batch, i] - max(input[batch, :])) * beta) /
* sum_{k}{exp((input[batch, k] - max(input[batch, :])) * beta)}
*
* For input tensor with rank other than 2, the activation will be applied
* independently on each 1-D slice along specified dimension.
*
* Supported tensor {@link OperandType}:
* * {@link OperandType::TENSOR_FLOAT32}
* * {@link OperandType::TENSOR_QUANT8_ASYMM}
*
* Supported tensor rank: 2 or 4.
*
* Inputs:
* * 0: A 2-D or 4-D tensor, specifying the tensor to be reshaped.
* * 1: A scalar, specifying the positive scaling factor for the exponent,
* beta. If input0 is of {@link OperandType::TENSOR_FLOAT32} or
* {@link OperandType::TENSOR_QUANT8_ASYMM}, the scalar must be of
* {@link OperandType::FLOAT32}.
*
* Outputs:
* * 0: The output tensor of same shape as input0.
* For {@link OperandType::TENSOR_QUANT8_ASYMM},
* the scale must be 1.f / 256 and the zeroPoint must be 0.
*/
SOFTMAX = 25,
/**
* Rearranges blocks of spatial data, into depth.
*
* More specifically, this op outputs a copy of the input tensor where
* values from the height and width dimensions are moved to the depth
* dimension. The value block_size indicates the input block size and how
* the data is moved.
*
* Chunks of data of size block_size * block_size from depth are rearranged
* into non-overlapping blocks of size block_size x block_size.
*
* The depth of the output tensor is input_depth * block_size * block_size.
* The input tensor's height and width must be divisible by block_size.
*
* Supported tensor {@link OperandType}:
* * {@link OperandType::TENSOR_FLOAT32}
* * {@link OperandType::TENSOR_QUANT8_ASYMM}
*
* Supported tensor rank: 4, with "NHWC" (i.e., Num_samples, Height, Width,
* and Channels) data layout.
*
* Inputs:
* * 0: A 4-D tensor, of shape [batches, height, width, depth_in],
* specifying the input.
* * 1: An {@link OperandType::INT32} scalar, specifying the block_size.
* block_size must be >=1 and block_size must be a divisor of both the
* input height and width.
*
* Outputs:
* * 0: The output 4-D tensor, of shape [batches, height/block_size,
* width/block_size, depth_in*block_size*block_size].
* For a {@link OperandType::TENSOR_QUANT8_ASYMM} tensor,
* the scale and zeroPoint must be the same as input0.
*/
SPACE_TO_DEPTH = 26,
/**
* SVDF op is a kind of stateful layer derived from the notion that a
* densely connected layer that's processing a sequence of input frames can
* be approximated by using a singular value decomposition of each of its
* nodes. The implementation is based on:
*
* https://research.google.com/pubs/archive/43813.pdf
*
* P. Nakkiran, R. Alvarez, R. Prabhavalkar, C. Parada.
* “Compressing Deep Neural Networks using a Rank-Constrained Topology”.
* INTERSPEECH, 2015.
*
* It processes the incoming input using a 2-stage filtering mechanism:
* * stage 1 performs filtering on the "features" dimension, whose outputs
* get pushed into a memory of fixed-size memory_size.
* * stage 2 performs filtering on the "time" dimension of the memory_size
* memoized outputs of stage 1.
*
* Specifically, for rank 1, this layer implements the operation:
*
* memory = push(conv1d(inputs, weights_feature, feature_dim,
* "PADDING_VALID"));
* outputs = activation(memory * weights_time + bias);
*
* Where:
* * “weights_feature” is a weights matrix that processes the inputs (by
* convolving the input with every “feature filter”), and whose outputs
* get pushed, stacked in order, into the fixed-size “memory” (the oldest
* entry gets dropped);
* * “weights_time” is a weights matrix that processes the “memory” (by a
* batched matrix multiplication on the num_units);
* * “bias” is an optional bias vector (added to each output vector in the
* batch); and
* * “activation” is the function passed as the “fused_activation_function”
* argument (if not “NONE”).
*
* Each rank adds a dimension to the weights matrices by means of stacking
* the filters.
*
* Supported tensor {@link OperandType}:
* * {@link OperandType::TENSOR_FLOAT32}
*
* All input tensors must be the same type.
*
* Inputs:
* * 0: input.
* A 2-D tensor of shape [batch_size, input_size], where “batch_size”
* corresponds to the batching dimension, and “input_size” is the size
* of the input.
* * 1: weights_feature.
* A 2-D tensor of shape [num_units, input_size], where “num_units”
* corresponds to the number of units.
* * 2: weights_time.
* A 2-D tensor of shape [num_units, memory_size], where “memory_size”
* corresponds to the fixed-size of the memory.
* * 3: bias.
* An optional 1-D tensor of shape [num_units].
* * 4: state (in).
* A 2-D tensor of shape [batch_size, (memory_size - 1) * num_units * rank].
* * 5: rank.
* The rank of the SVD approximation.
* * 6: fused_activation_function.
* An optional {@link FusedActivationFunc} value indicating the
* activation function. If “NONE” is specified then it results in a
* linear activation.
*
* Outputs:
* * 0: state (out).
* A 2-D tensor of the same {@link OperandType} as the inputs, with shape
* [batch_size, (memory_size - 1) * num_units * rank].
* * 1: output.
* A 2-D tensor of the same {@link OperandType} as the inputs, with shape
* [batch_size, num_units].
*/
SVDF = 27,
/**
* Computes hyperbolic tangent of input tensor element-wise.
*
* The output is calculated using this formula:
*
* output = tanh(input)
*
* Supported tensor {@link OperandType}:
* * {@link OperandType::TENSOR_FLOAT32}
*
* Supported tensor rank: up to 4.
*
* Inputs:
* * 0: A tensor, specifying the input.
*
* Outputs:
* * 0: The output tensor of same shape as input0.
*/
TANH = 28,
/**
* DEPRECATED. Since NNAPI 1.2, extensions are the preferred alternative to
* OEM operation and data types.
*
* This operation is OEM specific. It should only be used for OEM
* applications.
*/
OEM_OPERATION = 10000,
};
/**
* Fused activation function types.
*/
enum class FusedActivationFunc : int32_t {
NONE = 0,
RELU = 1,
RELU1 = 2,
RELU6 = 3,
};
/**
* How an operand is used.
*/
enum class OperandLifeTime : int32_t {
/**
* The operand is internal to the model. It's created by an operation and
* consumed by other operations. It must be an output operand of
* exactly one operation.
*/
TEMPORARY_VARIABLE = 0,
/**
* The operand is an input of the model. It must not be an output
* operand of any operation.
*
* An operand can't be both input and output of a model.
*/
MODEL_INPUT = 1 /* ::android::hardware::neuralnetworks::V1_0::OperandLifeTime.TEMPORARY_VARIABLE implicitly + 1 */,
/**
* The operand is an output of the model. It must be an output
* operand of exactly one operation.
*
* An operand can't be both input and output of a model.
*/
MODEL_OUTPUT = 2 /* ::android::hardware::neuralnetworks::V1_0::OperandLifeTime.MODEL_INPUT implicitly + 1 */,
/**
* The operand is a constant found in Model.operandValues. It must
* not be an output operand of any operation.
*/
CONSTANT_COPY = 3 /* ::android::hardware::neuralnetworks::V1_0::OperandLifeTime.MODEL_OUTPUT implicitly + 1 */,
/**
* The operand is a constant that was specified via a Memory
* object. It must not be an output operand of any operation.
*/
CONSTANT_REFERENCE = 4 /* ::android::hardware::neuralnetworks::V1_0::OperandLifeTime.CONSTANT_COPY implicitly + 1 */,
/**
* The operand does not have a value. This is valid only for optional
* arguments of operations.
*/
NO_VALUE = 5 /* ::android::hardware::neuralnetworks::V1_0::OperandLifeTime.CONSTANT_REFERENCE implicitly + 1 */,
};
/**
* Status of a device.
*/
enum class DeviceStatus : int32_t {
AVAILABLE = 0,
BUSY = 1 /* ::android::hardware::neuralnetworks::V1_0::DeviceStatus.AVAILABLE implicitly + 1 */,
OFFLINE = 2 /* ::android::hardware::neuralnetworks::V1_0::DeviceStatus.BUSY implicitly + 1 */,
UNKNOWN = 3 /* ::android::hardware::neuralnetworks::V1_0::DeviceStatus.OFFLINE implicitly + 1 */,
};
/**
* Performance information for the reference workload.
*
* Used by a driver to report its performance characteristics.
*/
struct PerformanceInfo final {
/**
* Ratio of the time taken by the driver to execute the
* workload compared to the time the CPU would take for the
* same workload. A lower number is better.
*/
float execTime __attribute__ ((aligned(4)));
/**
* Ratio of the energy used by the driver compared to what
* the CPU would use for doing the same workload. A lower number
* is better.
*/
float powerUsage __attribute__ ((aligned(4)));
};
static_assert(offsetof(::android::hardware::neuralnetworks::V1_0::PerformanceInfo, execTime) == 0, "wrong offset");
static_assert(offsetof(::android::hardware::neuralnetworks::V1_0::PerformanceInfo, powerUsage) == 4, "wrong offset");
static_assert(sizeof(::android::hardware::neuralnetworks::V1_0::PerformanceInfo) == 8, "wrong size");
static_assert(__alignof(::android::hardware::neuralnetworks::V1_0::PerformanceInfo) == 4, "wrong alignment");
/**
* The capabilities of a driver.
*/
struct Capabilities final {
/**
* Driver performance when operating on float32 data.
*/
::android::hardware::neuralnetworks::V1_0::PerformanceInfo float32Performance __attribute__ ((aligned(4)));
/**
* Driver performance when operating on asymmetric 8-bit quantized data.
*/
::android::hardware::neuralnetworks::V1_0::PerformanceInfo quantized8Performance __attribute__ ((aligned(4)));
};
static_assert(offsetof(::android::hardware::neuralnetworks::V1_0::Capabilities, float32Performance) == 0, "wrong offset");
static_assert(offsetof(::android::hardware::neuralnetworks::V1_0::Capabilities, quantized8Performance) == 8, "wrong offset");
static_assert(sizeof(::android::hardware::neuralnetworks::V1_0::Capabilities) == 16, "wrong size");
static_assert(__alignof(::android::hardware::neuralnetworks::V1_0::Capabilities) == 4, "wrong alignment");
/**
* Describes the location of a data object.
*/
struct DataLocation final {
/**
* The index of the memory pool where this location is found.
*/
uint32_t poolIndex __attribute__ ((aligned(4)));
/**
* Offset in bytes from the start of the pool.
*/
uint32_t offset __attribute__ ((aligned(4)));
/**
* The length of the data in bytes.
*/
uint32_t length __attribute__ ((aligned(4)));
};
static_assert(offsetof(::android::hardware::neuralnetworks::V1_0::DataLocation, poolIndex) == 0, "wrong offset");
static_assert(offsetof(::android::hardware::neuralnetworks::V1_0::DataLocation, offset) == 4, "wrong offset");
static_assert(offsetof(::android::hardware::neuralnetworks::V1_0::DataLocation, length) == 8, "wrong offset");
static_assert(sizeof(::android::hardware::neuralnetworks::V1_0::DataLocation) == 12, "wrong size");
static_assert(__alignof(::android::hardware::neuralnetworks::V1_0::DataLocation) == 4, "wrong alignment");
/**
* Describes one operand of the model's graph.
*/
struct Operand final {
/**
* Data type of the operand.
*/
::android::hardware::neuralnetworks::V1_0::OperandType type __attribute__ ((aligned(4)));
/**
* Dimensions of the operand.
*
* For a scalar operand, dimensions.size() must be 0.
*
* For a tensor operand, dimensions.size() must be at least 1;
* however, any of the dimensions may be unspecified.
*
* A tensor operand with all dimensions specified has "fully
* specified" dimensions. Whenever possible (i.e., whenever the
* dimensions are known at model construction time), a tensor
* operand should have (but is not required to have) fully
* specified dimensions, in order to enable the best possible
* performance.
*
* If a tensor operand's dimensions are not fully specified, the
* dimensions of the operand are deduced from the operand
* dimensions and values of the operation for which that operand
* is an output.
*
* In the following situations, a tensor operand's dimensions must
* be fully specified:
*
* . The operand has lifetime CONSTANT_COPY or
* CONSTANT_REFERENCE.
*
* . The operand has lifetime MODEL_INPUT or MODEL_OUTPUT. Fully
* specified dimensions must either be present in the
* Operand or they must be provided in the corresponding
* RequestArgument.
* EXCEPTION: If the input or output is optional and omitted
* (by setting the hasNoValue field of the corresponding
* RequestArgument to true) then it need not have fully
* specified dimensions.
*
* A tensor operand with some number of unspecified dimensions is
* represented by setting each unspecified dimension to 0.
*/
::android::hardware::hidl_vec<uint32_t> dimensions __attribute__ ((aligned(8)));
/**
* The number of times this operand appears as an operation input.
*
* (For example, if this operand appears once in one operation's
* input list, and three times in another operation's input list,
* then numberOfConsumers = 4.)
*/
uint32_t numberOfConsumers __attribute__ ((aligned(4)));
/**
* Quantized scale of the operand.
*
* Only applicable if the operand is of type TENSOR_QUANT8_ASYMM or
* TENSOR_INT32.
*/
float scale __attribute__ ((aligned(4)));
/**
* Quantized zero-point offset of the operand.
*
* Only applicable if the operand is of type TENSOR_QUANT8_ASYMM.
*/
int32_t zeroPoint __attribute__ ((aligned(4)));
/**
* How the operand is used.
*/
::android::hardware::neuralnetworks::V1_0::OperandLifeTime lifetime __attribute__ ((aligned(4)));
/**
* Where to find the data for this operand.
* If the lifetime is TEMPORARY_VARIABLE, MODEL_INPUT, MODEL_OUTPUT, or
* NO_VALUE:
* - All the fields must be 0.
* If the lifetime is CONSTANT_COPY:
* - location.poolIndex is 0.
* - location.offset is the offset in bytes into Model.operandValues.
* - location.length is set.
* If the lifetime is CONSTANT_REFERENCE:
* - location.poolIndex is set.
* - location.offset is the offset in bytes into the specified pool.
* - location.length is set.
*/
::android::hardware::neuralnetworks::V1_0::DataLocation location __attribute__ ((aligned(4)));
};
static_assert(offsetof(::android::hardware::neuralnetworks::V1_0::Operand, type) == 0, "wrong offset");
static_assert(offsetof(::android::hardware::neuralnetworks::V1_0::Operand, dimensions) == 8, "wrong offset");
static_assert(offsetof(::android::hardware::neuralnetworks::V1_0::Operand, numberOfConsumers) == 24, "wrong offset");
static_assert(offsetof(::android::hardware::neuralnetworks::V1_0::Operand, scale) == 28, "wrong offset");
static_assert(offsetof(::android::hardware::neuralnetworks::V1_0::Operand, zeroPoint) == 32, "wrong offset");
static_assert(offsetof(::android::hardware::neuralnetworks::V1_0::Operand, lifetime) == 36, "wrong offset");
static_assert(offsetof(::android::hardware::neuralnetworks::V1_0::Operand, location) == 40, "wrong offset");
static_assert(sizeof(::android::hardware::neuralnetworks::V1_0::Operand) == 56, "wrong size");
static_assert(__alignof(::android::hardware::neuralnetworks::V1_0::Operand) == 8, "wrong alignment");
/**
* Describes one operation of the model's graph.
*/
struct Operation final {
/**
* The operation type.
*/
::android::hardware::neuralnetworks::V1_0::OperationType type __attribute__ ((aligned(4)));
/**
* Describes the table that contains the indexes of the inputs of the
* operation. The offset is the index in the operandIndexes table.
*/
::android::hardware::hidl_vec<uint32_t> inputs __attribute__ ((aligned(8)));
/**
* Describes the table that contains the indexes of the outputs of the
* operation. The offset is the index in the operandIndexes table.
*/
::android::hardware::hidl_vec<uint32_t> outputs __attribute__ ((aligned(8)));
};
static_assert(offsetof(::android::hardware::neuralnetworks::V1_0::Operation, type) == 0, "wrong offset");
static_assert(offsetof(::android::hardware::neuralnetworks::V1_0::Operation, inputs) == 8, "wrong offset");
static_assert(offsetof(::android::hardware::neuralnetworks::V1_0::Operation, outputs) == 24, "wrong offset");
static_assert(sizeof(::android::hardware::neuralnetworks::V1_0::Operation) == 40, "wrong size");
static_assert(__alignof(::android::hardware::neuralnetworks::V1_0::Operation) == 8, "wrong alignment");
/**
* A Neural Network Model.
*
* This includes not only the execution graph, but also constant data such as
* weights or scalars added at construction time. The only information that
* might not be known is the shape of the input tensors.
*/
struct Model final {
/**
* All operands included in the model.
*/
::android::hardware::hidl_vec<::android::hardware::neuralnetworks::V1_0::Operand> operands __attribute__ ((aligned(8)));
/**
* All operations included in the model.
*
* The operations are sorted into execution order. Every operand
* with lifetime MODEL_OUTPUT or TEMPORARY_VARIABLE must be
* written before it is read.
*/
::android::hardware::hidl_vec<::android::hardware::neuralnetworks::V1_0::Operation> operations __attribute__ ((aligned(8)));
/**
* Input indexes of the model. There must be at least one.
*
* Each value corresponds to the index of the operand in "operands".
*/
::android::hardware::hidl_vec<uint32_t> inputIndexes __attribute__ ((aligned(8)));
/**
* Output indexes of the model. There must be at least one.
*
* Each value corresponds to the index of the operand in "operands".
*/
::android::hardware::hidl_vec<uint32_t> outputIndexes __attribute__ ((aligned(8)));
/**
* A byte buffer containing operand data that were copied into the model.
*
* An operand's value must be located here if and only if Operand::lifetime
* equals OperandLifeTime::CONSTANT_COPY.
*/
::android::hardware::hidl_vec<uint8_t> operandValues __attribute__ ((aligned(8)));
/**
* A collection of shared memory pools containing operand values.
*
* An operand's value must be located here if and only if Operand::lifetime
* equals OperandLifeTime::CONSTANT_REFERENCE.
*/
::android::hardware::hidl_vec<::android::hardware::hidl_memory> pools __attribute__ ((aligned(8)));
};
static_assert(offsetof(::android::hardware::neuralnetworks::V1_0::Model, operands) == 0, "wrong offset");
static_assert(offsetof(::android::hardware::neuralnetworks::V1_0::Model, operations) == 16, "wrong offset");
static_assert(offsetof(::android::hardware::neuralnetworks::V1_0::Model, inputIndexes) == 32, "wrong offset");
static_assert(offsetof(::android::hardware::neuralnetworks::V1_0::Model, outputIndexes) == 48, "wrong offset");
static_assert(offsetof(::android::hardware::neuralnetworks::V1_0::Model, operandValues) == 64, "wrong offset");
static_assert(offsetof(::android::hardware::neuralnetworks::V1_0::Model, pools) == 80, "wrong offset");
static_assert(sizeof(::android::hardware::neuralnetworks::V1_0::Model) == 96, "wrong size");
static_assert(__alignof(::android::hardware::neuralnetworks::V1_0::Model) == 8, "wrong alignment");
/**
* Metadata information specifying the location of the input or output data and
* any updates to the input or output operand.
*/
struct RequestArgument final {
/**
* If true, the argument does not have a value. This can be used for
* operations that take optional arguments. If true, the fields of location
* are set to 0 and the dimensions vector is left empty.
*/
bool hasNoValue __attribute__ ((aligned(1)));
/**
* The location within one of the memory pools passed in the Request.
*/
::android::hardware::neuralnetworks::V1_0::DataLocation location __attribute__ ((aligned(4)));
/**
* Updated dimension information.
*
* If dimensions.size() > 0, dimension information was provided
* along with the argument. This can be the case for models that
* accept inputs of varying size. This can't change the rank, just
* the value of the dimensions that were unspecified in the
* model. If dimensions.size() > 0, then all dimensions must be
* specified here; and any dimension that was specified in the
* model must have the same value here.
*
* If the dimensions in the model are not fully specified, then
* they must be fully specified here, unless hasNoValue is set to
* true. If the dimensions in the model are fully specified, then
* either dimensions.size() may be 0, or the dimensions in the
* model must be identical to the dimensions here.
*/
::android::hardware::hidl_vec<uint32_t> dimensions __attribute__ ((aligned(8)));
};
static_assert(offsetof(::android::hardware::neuralnetworks::V1_0::RequestArgument, hasNoValue) == 0, "wrong offset");
static_assert(offsetof(::android::hardware::neuralnetworks::V1_0::RequestArgument, location) == 4, "wrong offset");
static_assert(offsetof(::android::hardware::neuralnetworks::V1_0::RequestArgument, dimensions) == 16, "wrong offset");
static_assert(sizeof(::android::hardware::neuralnetworks::V1_0::RequestArgument) == 32, "wrong size");
static_assert(__alignof(::android::hardware::neuralnetworks::V1_0::RequestArgument) == 8, "wrong alignment");
/**
* Inputs to be sent to and outputs to be retrieved from a prepared model.
*
* A Request serves two primary tasks:
* 1) Provides the input and output data to be used when executing the model.
* 2) Specifies any updates to the input operand metadata that were left
* unspecified at model preparation time.
*
* An output must not overlap with any other output, with an input, or
* with an operand of lifetime CONSTANT_REFERENCE.
*/
struct Request final {
/**
* Input data and information to be used in the execution of a prepared
* model.
*
* The index of the input corresponds to the index in Model.inputIndexes.
* E.g., input[i] corresponds to Model.inputIndexes[i].
*/
::android::hardware::hidl_vec<::android::hardware::neuralnetworks::V1_0::RequestArgument> inputs __attribute__ ((aligned(8)));
/**
* Output data and information to be used in the execution of a prepared
* model.
*
* The index of the output corresponds to the index in Model.outputIndexes.
* E.g., output[i] corresponds to Model.outputIndexes[i].
*/
::android::hardware::hidl_vec<::android::hardware::neuralnetworks::V1_0::RequestArgument> outputs __attribute__ ((aligned(8)));
/**
* A collection of shared memory pools containing operand data for both the
* inputs and the outputs to a model.
*/
::android::hardware::hidl_vec<::android::hardware::hidl_memory> pools __attribute__ ((aligned(8)));
};
static_assert(offsetof(::android::hardware::neuralnetworks::V1_0::Request, inputs) == 0, "wrong offset");
static_assert(offsetof(::android::hardware::neuralnetworks::V1_0::Request, outputs) == 16, "wrong offset");
static_assert(offsetof(::android::hardware::neuralnetworks::V1_0::Request, pools) == 32, "wrong offset");
static_assert(sizeof(::android::hardware::neuralnetworks::V1_0::Request) == 48, "wrong size");
static_assert(__alignof(::android::hardware::neuralnetworks::V1_0::Request) == 8, "wrong alignment");
/**
* Return status of a function.
*/
enum class ErrorStatus : int32_t {
NONE = 0,
DEVICE_UNAVAILABLE = 1 /* ::android::hardware::neuralnetworks::V1_0::ErrorStatus.NONE implicitly + 1 */,
GENERAL_FAILURE = 2 /* ::android::hardware::neuralnetworks::V1_0::ErrorStatus.DEVICE_UNAVAILABLE implicitly + 1 */,
OUTPUT_INSUFFICIENT_SIZE = 3 /* ::android::hardware::neuralnetworks::V1_0::ErrorStatus.GENERAL_FAILURE implicitly + 1 */,
INVALID_ARGUMENT = 4 /* ::android::hardware::neuralnetworks::V1_0::ErrorStatus.OUTPUT_INSUFFICIENT_SIZE implicitly + 1 */,
};
//
// type declarations for package
//
template<typename>
static inline std::string toString(int32_t o);
static inline std::string toString(::android::hardware::neuralnetworks::V1_0::OperandType o);
static inline void PrintTo(::android::hardware::neuralnetworks::V1_0::OperandType o, ::std::ostream* os);
constexpr int32_t operator|(const ::android::hardware::neuralnetworks::V1_0::OperandType lhs, const ::android::hardware::neuralnetworks::V1_0::OperandType rhs) {
return static_cast<int32_t>(static_cast<int32_t>(lhs) | static_cast<int32_t>(rhs));
}
constexpr int32_t operator|(const int32_t lhs, const ::android::hardware::neuralnetworks::V1_0::OperandType rhs) {
return static_cast<int32_t>(lhs | static_cast<int32_t>(rhs));
}
constexpr int32_t operator|(const ::android::hardware::neuralnetworks::V1_0::OperandType lhs, const int32_t rhs) {
return static_cast<int32_t>(static_cast<int32_t>(lhs) | rhs);
}
constexpr int32_t operator&(const ::android::hardware::neuralnetworks::V1_0::OperandType lhs, const ::android::hardware::neuralnetworks::V1_0::OperandType rhs) {
return static_cast<int32_t>(static_cast<int32_t>(lhs) & static_cast<int32_t>(rhs));
}
constexpr int32_t operator&(const int32_t lhs, const ::android::hardware::neuralnetworks::V1_0::OperandType rhs) {
return static_cast<int32_t>(lhs & static_cast<int32_t>(rhs));
}
constexpr int32_t operator&(const ::android::hardware::neuralnetworks::V1_0::OperandType lhs, const int32_t rhs) {
return static_cast<int32_t>(static_cast<int32_t>(lhs) & rhs);
}
constexpr int32_t &operator|=(int32_t& v, const ::android::hardware::neuralnetworks::V1_0::OperandType e) {
v |= static_cast<int32_t>(e);
return v;
}
constexpr int32_t &operator&=(int32_t& v, const ::android::hardware::neuralnetworks::V1_0::OperandType e) {
v &= static_cast<int32_t>(e);
return v;
}
template<typename>
static inline std::string toString(int32_t o);
static inline std::string toString(::android::hardware::neuralnetworks::V1_0::OperationType o);
static inline void PrintTo(::android::hardware::neuralnetworks::V1_0::OperationType o, ::std::ostream* os);
constexpr int32_t operator|(const ::android::hardware::neuralnetworks::V1_0::OperationType lhs, const ::android::hardware::neuralnetworks::V1_0::OperationType rhs) {
return static_cast<int32_t>(static_cast<int32_t>(lhs) | static_cast<int32_t>(rhs));
}
constexpr int32_t operator|(const int32_t lhs, const ::android::hardware::neuralnetworks::V1_0::OperationType rhs) {
return static_cast<int32_t>(lhs | static_cast<int32_t>(rhs));
}
constexpr int32_t operator|(const ::android::hardware::neuralnetworks::V1_0::OperationType lhs, const int32_t rhs) {
return static_cast<int32_t>(static_cast<int32_t>(lhs) | rhs);
}
constexpr int32_t operator&(const ::android::hardware::neuralnetworks::V1_0::OperationType lhs, const ::android::hardware::neuralnetworks::V1_0::OperationType rhs) {
return static_cast<int32_t>(static_cast<int32_t>(lhs) & static_cast<int32_t>(rhs));
}
constexpr int32_t operator&(const int32_t lhs, const ::android::hardware::neuralnetworks::V1_0::OperationType rhs) {
return static_cast<int32_t>(lhs & static_cast<int32_t>(rhs));
}
constexpr int32_t operator&(const ::android::hardware::neuralnetworks::V1_0::OperationType lhs, const int32_t rhs) {
return static_cast<int32_t>(static_cast<int32_t>(lhs) & rhs);
}
constexpr int32_t &operator|=(int32_t& v, const ::android::hardware::neuralnetworks::V1_0::OperationType e) {
v |= static_cast<int32_t>(e);
return v;
}
constexpr int32_t &operator&=(int32_t& v, const ::android::hardware::neuralnetworks::V1_0::OperationType e) {
v &= static_cast<int32_t>(e);
return v;
}
template<typename>
static inline std::string toString(int32_t o);
static inline std::string toString(::android::hardware::neuralnetworks::V1_0::FusedActivationFunc o);
static inline void PrintTo(::android::hardware::neuralnetworks::V1_0::FusedActivationFunc o, ::std::ostream* os);
constexpr int32_t operator|(const ::android::hardware::neuralnetworks::V1_0::FusedActivationFunc lhs, const ::android::hardware::neuralnetworks::V1_0::FusedActivationFunc rhs) {
return static_cast<int32_t>(static_cast<int32_t>(lhs) | static_cast<int32_t>(rhs));
}
constexpr int32_t operator|(const int32_t lhs, const ::android::hardware::neuralnetworks::V1_0::FusedActivationFunc rhs) {
return static_cast<int32_t>(lhs | static_cast<int32_t>(rhs));
}
constexpr int32_t operator|(const ::android::hardware::neuralnetworks::V1_0::FusedActivationFunc lhs, const int32_t rhs) {
return static_cast<int32_t>(static_cast<int32_t>(lhs) | rhs);
}
constexpr int32_t operator&(const ::android::hardware::neuralnetworks::V1_0::FusedActivationFunc lhs, const ::android::hardware::neuralnetworks::V1_0::FusedActivationFunc rhs) {
return static_cast<int32_t>(static_cast<int32_t>(lhs) & static_cast<int32_t>(rhs));
}
constexpr int32_t operator&(const int32_t lhs, const ::android::hardware::neuralnetworks::V1_0::FusedActivationFunc rhs) {
return static_cast<int32_t>(lhs & static_cast<int32_t>(rhs));
}
constexpr int32_t operator&(const ::android::hardware::neuralnetworks::V1_0::FusedActivationFunc lhs, const int32_t rhs) {
return static_cast<int32_t>(static_cast<int32_t>(lhs) & rhs);
}
constexpr int32_t &operator|=(int32_t& v, const ::android::hardware::neuralnetworks::V1_0::FusedActivationFunc e) {
v |= static_cast<int32_t>(e);
return v;
}
constexpr int32_t &operator&=(int32_t& v, const ::android::hardware::neuralnetworks::V1_0::FusedActivationFunc e) {
v &= static_cast<int32_t>(e);
return v;
}
template<typename>
static inline std::string toString(int32_t o);
static inline std::string toString(::android::hardware::neuralnetworks::V1_0::OperandLifeTime o);
static inline void PrintTo(::android::hardware::neuralnetworks::V1_0::OperandLifeTime o, ::std::ostream* os);
constexpr int32_t operator|(const ::android::hardware::neuralnetworks::V1_0::OperandLifeTime lhs, const ::android::hardware::neuralnetworks::V1_0::OperandLifeTime rhs) {
return static_cast<int32_t>(static_cast<int32_t>(lhs) | static_cast<int32_t>(rhs));
}
constexpr int32_t operator|(const int32_t lhs, const ::android::hardware::neuralnetworks::V1_0::OperandLifeTime rhs) {
return static_cast<int32_t>(lhs | static_cast<int32_t>(rhs));
}
constexpr int32_t operator|(const ::android::hardware::neuralnetworks::V1_0::OperandLifeTime lhs, const int32_t rhs) {
return static_cast<int32_t>(static_cast<int32_t>(lhs) | rhs);
}
constexpr int32_t operator&(const ::android::hardware::neuralnetworks::V1_0::OperandLifeTime lhs, const ::android::hardware::neuralnetworks::V1_0::OperandLifeTime rhs) {
return static_cast<int32_t>(static_cast<int32_t>(lhs) & static_cast<int32_t>(rhs));
}
constexpr int32_t operator&(const int32_t lhs, const ::android::hardware::neuralnetworks::V1_0::OperandLifeTime rhs) {
return static_cast<int32_t>(lhs & static_cast<int32_t>(rhs));
}
constexpr int32_t operator&(const ::android::hardware::neuralnetworks::V1_0::OperandLifeTime lhs, const int32_t rhs) {
return static_cast<int32_t>(static_cast<int32_t>(lhs) & rhs);
}
constexpr int32_t &operator|=(int32_t& v, const ::android::hardware::neuralnetworks::V1_0::OperandLifeTime e) {
v |= static_cast<int32_t>(e);
return v;
}
constexpr int32_t &operator&=(int32_t& v, const ::android::hardware::neuralnetworks::V1_0::OperandLifeTime e) {
v &= static_cast<int32_t>(e);
return v;
}
template<typename>
static inline std::string toString(int32_t o);
static inline std::string toString(::android::hardware::neuralnetworks::V1_0::DeviceStatus o);
static inline void PrintTo(::android::hardware::neuralnetworks::V1_0::DeviceStatus o, ::std::ostream* os);
constexpr int32_t operator|(const ::android::hardware::neuralnetworks::V1_0::DeviceStatus lhs, const ::android::hardware::neuralnetworks::V1_0::DeviceStatus rhs) {
return static_cast<int32_t>(static_cast<int32_t>(lhs) | static_cast<int32_t>(rhs));
}
constexpr int32_t operator|(const int32_t lhs, const ::android::hardware::neuralnetworks::V1_0::DeviceStatus rhs) {
return static_cast<int32_t>(lhs | static_cast<int32_t>(rhs));
}
constexpr int32_t operator|(const ::android::hardware::neuralnetworks::V1_0::DeviceStatus lhs, const int32_t rhs) {
return static_cast<int32_t>(static_cast<int32_t>(lhs) | rhs);
}
constexpr int32_t operator&(const ::android::hardware::neuralnetworks::V1_0::DeviceStatus lhs, const ::android::hardware::neuralnetworks::V1_0::DeviceStatus rhs) {
return static_cast<int32_t>(static_cast<int32_t>(lhs) & static_cast<int32_t>(rhs));
}
constexpr int32_t operator&(const int32_t lhs, const ::android::hardware::neuralnetworks::V1_0::DeviceStatus rhs) {
return static_cast<int32_t>(lhs & static_cast<int32_t>(rhs));
}
constexpr int32_t operator&(const ::android::hardware::neuralnetworks::V1_0::DeviceStatus lhs, const int32_t rhs) {
return static_cast<int32_t>(static_cast<int32_t>(lhs) & rhs);
}
constexpr int32_t &operator|=(int32_t& v, const ::android::hardware::neuralnetworks::V1_0::DeviceStatus e) {
v |= static_cast<int32_t>(e);
return v;
}
constexpr int32_t &operator&=(int32_t& v, const ::android::hardware::neuralnetworks::V1_0::DeviceStatus e) {
v &= static_cast<int32_t>(e);
return v;
}
static inline std::string toString(const ::android::hardware::neuralnetworks::V1_0::PerformanceInfo& o);
static inline void PrintTo(const ::android::hardware::neuralnetworks::V1_0::PerformanceInfo& o, ::std::ostream*);
static inline bool operator==(const ::android::hardware::neuralnetworks::V1_0::PerformanceInfo& lhs, const ::android::hardware::neuralnetworks::V1_0::PerformanceInfo& rhs);
static inline bool operator!=(const ::android::hardware::neuralnetworks::V1_0::PerformanceInfo& lhs, const ::android::hardware::neuralnetworks::V1_0::PerformanceInfo& rhs);
static inline std::string toString(const ::android::hardware::neuralnetworks::V1_0::Capabilities& o);
static inline void PrintTo(const ::android::hardware::neuralnetworks::V1_0::Capabilities& o, ::std::ostream*);
static inline bool operator==(const ::android::hardware::neuralnetworks::V1_0::Capabilities& lhs, const ::android::hardware::neuralnetworks::V1_0::Capabilities& rhs);
static inline bool operator!=(const ::android::hardware::neuralnetworks::V1_0::Capabilities& lhs, const ::android::hardware::neuralnetworks::V1_0::Capabilities& rhs);
static inline std::string toString(const ::android::hardware::neuralnetworks::V1_0::DataLocation& o);
static inline void PrintTo(const ::android::hardware::neuralnetworks::V1_0::DataLocation& o, ::std::ostream*);
static inline bool operator==(const ::android::hardware::neuralnetworks::V1_0::DataLocation& lhs, const ::android::hardware::neuralnetworks::V1_0::DataLocation& rhs);
static inline bool operator!=(const ::android::hardware::neuralnetworks::V1_0::DataLocation& lhs, const ::android::hardware::neuralnetworks::V1_0::DataLocation& rhs);
static inline std::string toString(const ::android::hardware::neuralnetworks::V1_0::Operand& o);
static inline void PrintTo(const ::android::hardware::neuralnetworks::V1_0::Operand& o, ::std::ostream*);
static inline bool operator==(const ::android::hardware::neuralnetworks::V1_0::Operand& lhs, const ::android::hardware::neuralnetworks::V1_0::Operand& rhs);
static inline bool operator!=(const ::android::hardware::neuralnetworks::V1_0::Operand& lhs, const ::android::hardware::neuralnetworks::V1_0::Operand& rhs);
static inline std::string toString(const ::android::hardware::neuralnetworks::V1_0::Operation& o);
static inline void PrintTo(const ::android::hardware::neuralnetworks::V1_0::Operation& o, ::std::ostream*);
static inline bool operator==(const ::android::hardware::neuralnetworks::V1_0::Operation& lhs, const ::android::hardware::neuralnetworks::V1_0::Operation& rhs);
static inline bool operator!=(const ::android::hardware::neuralnetworks::V1_0::Operation& lhs, const ::android::hardware::neuralnetworks::V1_0::Operation& rhs);
static inline std::string toString(const ::android::hardware::neuralnetworks::V1_0::Model& o);
static inline void PrintTo(const ::android::hardware::neuralnetworks::V1_0::Model& o, ::std::ostream*);
// operator== and operator!= are not generated for Model
static inline std::string toString(const ::android::hardware::neuralnetworks::V1_0::RequestArgument& o);
static inline void PrintTo(const ::android::hardware::neuralnetworks::V1_0::RequestArgument& o, ::std::ostream*);
static inline bool operator==(const ::android::hardware::neuralnetworks::V1_0::RequestArgument& lhs, const ::android::hardware::neuralnetworks::V1_0::RequestArgument& rhs);
static inline bool operator!=(const ::android::hardware::neuralnetworks::V1_0::RequestArgument& lhs, const ::android::hardware::neuralnetworks::V1_0::RequestArgument& rhs);
static inline std::string toString(const ::android::hardware::neuralnetworks::V1_0::Request& o);
static inline void PrintTo(const ::android::hardware::neuralnetworks::V1_0::Request& o, ::std::ostream*);
// operator== and operator!= are not generated for Request
template<typename>
static inline std::string toString(int32_t o);
static inline std::string toString(::android::hardware::neuralnetworks::V1_0::ErrorStatus o);
static inline void PrintTo(::android::hardware::neuralnetworks::V1_0::ErrorStatus o, ::std::ostream* os);
constexpr int32_t operator|(const ::android::hardware::neuralnetworks::V1_0::ErrorStatus lhs, const ::android::hardware::neuralnetworks::V1_0::ErrorStatus rhs) {
return static_cast<int32_t>(static_cast<int32_t>(lhs) | static_cast<int32_t>(rhs));
}
constexpr int32_t operator|(const int32_t lhs, const ::android::hardware::neuralnetworks::V1_0::ErrorStatus rhs) {
return static_cast<int32_t>(lhs | static_cast<int32_t>(rhs));
}
constexpr int32_t operator|(const ::android::hardware::neuralnetworks::V1_0::ErrorStatus lhs, const int32_t rhs) {
return static_cast<int32_t>(static_cast<int32_t>(lhs) | rhs);
}
constexpr int32_t operator&(const ::android::hardware::neuralnetworks::V1_0::ErrorStatus lhs, const ::android::hardware::neuralnetworks::V1_0::ErrorStatus rhs) {
return static_cast<int32_t>(static_cast<int32_t>(lhs) & static_cast<int32_t>(rhs));
}
constexpr int32_t operator&(const int32_t lhs, const ::android::hardware::neuralnetworks::V1_0::ErrorStatus rhs) {
return static_cast<int32_t>(lhs & static_cast<int32_t>(rhs));
}
constexpr int32_t operator&(const ::android::hardware::neuralnetworks::V1_0::ErrorStatus lhs, const int32_t rhs) {
return static_cast<int32_t>(static_cast<int32_t>(lhs) & rhs);
}
constexpr int32_t &operator|=(int32_t& v, const ::android::hardware::neuralnetworks::V1_0::ErrorStatus e) {
v |= static_cast<int32_t>(e);
return v;
}
constexpr int32_t &operator&=(int32_t& v, const ::android::hardware::neuralnetworks::V1_0::ErrorStatus e) {
v &= static_cast<int32_t>(e);
return v;
}
//
// type header definitions for package
//
template<>
inline std::string toString<::android::hardware::neuralnetworks::V1_0::OperandType>(int32_t o) {
using ::android::hardware::details::toHexString;
std::string os;
::android::hardware::hidl_bitfield<::android::hardware::neuralnetworks::V1_0::OperandType> flipped = 0;
bool first = true;
if ((o & ::android::hardware::neuralnetworks::V1_0::OperandType::FLOAT32) == static_cast<int32_t>(::android::hardware::neuralnetworks::V1_0::OperandType::FLOAT32)) {
os += (first ? "" : " | ");
os += "FLOAT32";
first = false;
flipped |= ::android::hardware::neuralnetworks::V1_0::OperandType::FLOAT32;
}
if ((o & ::android::hardware::neuralnetworks::V1_0::OperandType::INT32) == static_cast<int32_t>(::android::hardware::neuralnetworks::V1_0::OperandType::INT32)) {
os += (first ? "" : " | ");
os += "INT32";
first = false;
flipped |= ::android::hardware::neuralnetworks::V1_0::OperandType::INT32;
}
if ((o & ::android::hardware::neuralnetworks::V1_0::OperandType::UINT32) == static_cast<int32_t>(::android::hardware::neuralnetworks::V1_0::OperandType::UINT32)) {
os += (first ? "" : " | ");
os += "UINT32";
first = false;
flipped |= ::android::hardware::neuralnetworks::V1_0::OperandType::UINT32;
}
if ((o & ::android::hardware::neuralnetworks::V1_0::OperandType::TENSOR_FLOAT32) == static_cast<int32_t>(::android::hardware::neuralnetworks::V1_0::OperandType::TENSOR_FLOAT32)) {
os += (first ? "" : " | ");
os += "TENSOR_FLOAT32";
first = false;
flipped |= ::android::hardware::neuralnetworks::V1_0::OperandType::TENSOR_FLOAT32;
}
if ((o & ::android::hardware::neuralnetworks::V1_0::OperandType::TENSOR_INT32) == static_cast<int32_t>(::android::hardware::neuralnetworks::V1_0::OperandType::TENSOR_INT32)) {
os += (first ? "" : " | ");
os += "TENSOR_INT32";
first = false;
flipped |= ::android::hardware::neuralnetworks::V1_0::OperandType::TENSOR_INT32;
}
if ((o & ::android::hardware::neuralnetworks::V1_0::OperandType::TENSOR_QUANT8_ASYMM) == static_cast<int32_t>(::android::hardware::neuralnetworks::V1_0::OperandType::TENSOR_QUANT8_ASYMM)) {
os += (first ? "" : " | ");
os += "TENSOR_QUANT8_ASYMM";
first = false;
flipped |= ::android::hardware::neuralnetworks::V1_0::OperandType::TENSOR_QUANT8_ASYMM;
}
if ((o & ::android::hardware::neuralnetworks::V1_0::OperandType::OEM) == static_cast<int32_t>(::android::hardware::neuralnetworks::V1_0::OperandType::OEM)) {
os += (first ? "" : " | ");
os += "OEM";
first = false;
flipped |= ::android::hardware::neuralnetworks::V1_0::OperandType::OEM;
}
if ((o & ::android::hardware::neuralnetworks::V1_0::OperandType::TENSOR_OEM_BYTE) == static_cast<int32_t>(::android::hardware::neuralnetworks::V1_0::OperandType::TENSOR_OEM_BYTE)) {
os += (first ? "" : " | ");
os += "TENSOR_OEM_BYTE";
first = false;
flipped |= ::android::hardware::neuralnetworks::V1_0::OperandType::TENSOR_OEM_BYTE;
}
if (o != flipped) {
os += (first ? "" : " | ");
os += toHexString(o & (~flipped));
}os += " (";
os += toHexString(o);
os += ")";
return os;
}
static inline std::string toString(::android::hardware::neuralnetworks::V1_0::OperandType o) {
using ::android::hardware::details::toHexString;
if (o == ::android::hardware::neuralnetworks::V1_0::OperandType::FLOAT32) {
return "FLOAT32";
}
if (o == ::android::hardware::neuralnetworks::V1_0::OperandType::INT32) {
return "INT32";
}
if (o == ::android::hardware::neuralnetworks::V1_0::OperandType::UINT32) {
return "UINT32";
}
if (o == ::android::hardware::neuralnetworks::V1_0::OperandType::TENSOR_FLOAT32) {
return "TENSOR_FLOAT32";
}
if (o == ::android::hardware::neuralnetworks::V1_0::OperandType::TENSOR_INT32) {
return "TENSOR_INT32";
}
if (o == ::android::hardware::neuralnetworks::V1_0::OperandType::TENSOR_QUANT8_ASYMM) {
return "TENSOR_QUANT8_ASYMM";
}
if (o == ::android::hardware::neuralnetworks::V1_0::OperandType::OEM) {
return "OEM";
}
if (o == ::android::hardware::neuralnetworks::V1_0::OperandType::TENSOR_OEM_BYTE) {
return "TENSOR_OEM_BYTE";
}
std::string os;
os += toHexString(static_cast<int32_t>(o));
return os;
}
static inline void PrintTo(::android::hardware::neuralnetworks::V1_0::OperandType o, ::std::ostream* os) {
*os << toString(o);
}
template<>
inline std::string toString<::android::hardware::neuralnetworks::V1_0::OperationType>(int32_t o) {
using ::android::hardware::details::toHexString;
std::string os;
::android::hardware::hidl_bitfield<::android::hardware::neuralnetworks::V1_0::OperationType> flipped = 0;
bool first = true;
if ((o & ::android::hardware::neuralnetworks::V1_0::OperationType::ADD) == static_cast<int32_t>(::android::hardware::neuralnetworks::V1_0::OperationType::ADD)) {
os += (first ? "" : " | ");
os += "ADD";
first = false;
flipped |= ::android::hardware::neuralnetworks::V1_0::OperationType::ADD;
}
if ((o & ::android::hardware::neuralnetworks::V1_0::OperationType::AVERAGE_POOL_2D) == static_cast<int32_t>(::android::hardware::neuralnetworks::V1_0::OperationType::AVERAGE_POOL_2D)) {
os += (first ? "" : " | ");
os += "AVERAGE_POOL_2D";
first = false;
flipped |= ::android::hardware::neuralnetworks::V1_0::OperationType::AVERAGE_POOL_2D;
}
if ((o & ::android::hardware::neuralnetworks::V1_0::OperationType::CONCATENATION) == static_cast<int32_t>(::android::hardware::neuralnetworks::V1_0::OperationType::CONCATENATION)) {
os += (first ? "" : " | ");
os += "CONCATENATION";
first = false;
flipped |= ::android::hardware::neuralnetworks::V1_0::OperationType::CONCATENATION;
}
if ((o & ::android::hardware::neuralnetworks::V1_0::OperationType::CONV_2D) == static_cast<int32_t>(::android::hardware::neuralnetworks::V1_0::OperationType::CONV_2D)) {
os += (first ? "" : " | ");
os += "CONV_2D";
first = false;
flipped |= ::android::hardware::neuralnetworks::V1_0::OperationType::CONV_2D;
}
if ((o & ::android::hardware::neuralnetworks::V1_0::OperationType::DEPTHWISE_CONV_2D) == static_cast<int32_t>(::android::hardware::neuralnetworks::V1_0::OperationType::DEPTHWISE_CONV_2D)) {
os += (first ? "" : " | ");
os += "DEPTHWISE_CONV_2D";
first = false;
flipped |= ::android::hardware::neuralnetworks::V1_0::OperationType::DEPTHWISE_CONV_2D;
}
if ((o & ::android::hardware::neuralnetworks::V1_0::OperationType::DEPTH_TO_SPACE) == static_cast<int32_t>(::android::hardware::neuralnetworks::V1_0::OperationType::DEPTH_TO_SPACE)) {
os += (first ? "" : " | ");
os += "DEPTH_TO_SPACE";
first = false;
flipped |= ::android::hardware::neuralnetworks::V1_0::OperationType::DEPTH_TO_SPACE;
}
if ((o & ::android::hardware::neuralnetworks::V1_0::OperationType::DEQUANTIZE) == static_cast<int32_t>(::android::hardware::neuralnetworks::V1_0::OperationType::DEQUANTIZE)) {
os += (first ? "" : " | ");
os += "DEQUANTIZE";
first = false;
flipped |= ::android::hardware::neuralnetworks::V1_0::OperationType::DEQUANTIZE;
}
if ((o & ::android::hardware::neuralnetworks::V1_0::OperationType::EMBEDDING_LOOKUP) == static_cast<int32_t>(::android::hardware::neuralnetworks::V1_0::OperationType::EMBEDDING_LOOKUP)) {
os += (first ? "" : " | ");
os += "EMBEDDING_LOOKUP";
first = false;
flipped |= ::android::hardware::neuralnetworks::V1_0::OperationType::EMBEDDING_LOOKUP;
}
if ((o & ::android::hardware::neuralnetworks::V1_0::OperationType::FLOOR) == static_cast<int32_t>(::android::hardware::neuralnetworks::V1_0::OperationType::FLOOR)) {
os += (first ? "" : " | ");
os += "FLOOR";
first = false;
flipped |= ::android::hardware::neuralnetworks::V1_0::OperationType::FLOOR;
}
if ((o & ::android::hardware::neuralnetworks::V1_0::OperationType::FULLY_CONNECTED) == static_cast<int32_t>(::android::hardware::neuralnetworks::V1_0::OperationType::FULLY_CONNECTED)) {
os += (first ? "" : " | ");
os += "FULLY_CONNECTED";
first = false;
flipped |= ::android::hardware::neuralnetworks::V1_0::OperationType::FULLY_CONNECTED;
}
if ((o & ::android::hardware::neuralnetworks::V1_0::OperationType::HASHTABLE_LOOKUP) == static_cast<int32_t>(::android::hardware::neuralnetworks::V1_0::OperationType::HASHTABLE_LOOKUP)) {
os += (first ? "" : " | ");
os += "HASHTABLE_LOOKUP";
first = false;
flipped |= ::android::hardware::neuralnetworks::V1_0::OperationType::HASHTABLE_LOOKUP;
}
if ((o & ::android::hardware::neuralnetworks::V1_0::OperationType::L2_NORMALIZATION) == static_cast<int32_t>(::android::hardware::neuralnetworks::V1_0::OperationType::L2_NORMALIZATION)) {
os += (first ? "" : " | ");
os += "L2_NORMALIZATION";
first = false;
flipped |= ::android::hardware::neuralnetworks::V1_0::OperationType::L2_NORMALIZATION;
}
if ((o & ::android::hardware::neuralnetworks::V1_0::OperationType::L2_POOL_2D) == static_cast<int32_t>(::android::hardware::neuralnetworks::V1_0::OperationType::L2_POOL_2D)) {
os += (first ? "" : " | ");
os += "L2_POOL_2D";
first = false;
flipped |= ::android::hardware::neuralnetworks::V1_0::OperationType::L2_POOL_2D;
}
if ((o & ::android::hardware::neuralnetworks::V1_0::OperationType::LOCAL_RESPONSE_NORMALIZATION) == static_cast<int32_t>(::android::hardware::neuralnetworks::V1_0::OperationType::LOCAL_RESPONSE_NORMALIZATION)) {
os += (first ? "" : " | ");
os += "LOCAL_RESPONSE_NORMALIZATION";
first = false;
flipped |= ::android::hardware::neuralnetworks::V1_0::OperationType::LOCAL_RESPONSE_NORMALIZATION;
}
if ((o & ::android::hardware::neuralnetworks::V1_0::OperationType::LOGISTIC) == static_cast<int32_t>(::android::hardware::neuralnetworks::V1_0::OperationType::LOGISTIC)) {
os += (first ? "" : " | ");
os += "LOGISTIC";
first = false;
flipped |= ::android::hardware::neuralnetworks::V1_0::OperationType::LOGISTIC;
}
if ((o & ::android::hardware::neuralnetworks::V1_0::OperationType::LSH_PROJECTION) == static_cast<int32_t>(::android::hardware::neuralnetworks::V1_0::OperationType::LSH_PROJECTION)) {
os += (first ? "" : " | ");
os += "LSH_PROJECTION";
first = false;
flipped |= ::android::hardware::neuralnetworks::V1_0::OperationType::LSH_PROJECTION;
}
if ((o & ::android::hardware::neuralnetworks::V1_0::OperationType::LSTM) == static_cast<int32_t>(::android::hardware::neuralnetworks::V1_0::OperationType::LSTM)) {
os += (first ? "" : " | ");
os += "LSTM";
first = false;
flipped |= ::android::hardware::neuralnetworks::V1_0::OperationType::LSTM;
}
if ((o & ::android::hardware::neuralnetworks::V1_0::OperationType::MAX_POOL_2D) == static_cast<int32_t>(::android::hardware::neuralnetworks::V1_0::OperationType::MAX_POOL_2D)) {
os += (first ? "" : " | ");
os += "MAX_POOL_2D";
first = false;
flipped |= ::android::hardware::neuralnetworks::V1_0::OperationType::MAX_POOL_2D;
}
if ((o & ::android::hardware::neuralnetworks::V1_0::OperationType::MUL) == static_cast<int32_t>(::android::hardware::neuralnetworks::V1_0::OperationType::MUL)) {
os += (first ? "" : " | ");
os += "MUL";
first = false;
flipped |= ::android::hardware::neuralnetworks::V1_0::OperationType::MUL;
}
if ((o & ::android::hardware::neuralnetworks::V1_0::OperationType::RELU) == static_cast<int32_t>(::android::hardware::neuralnetworks::V1_0::OperationType::RELU)) {
os += (first ? "" : " | ");
os += "RELU";
first = false;
flipped |= ::android::hardware::neuralnetworks::V1_0::OperationType::RELU;
}
if ((o & ::android::hardware::neuralnetworks::V1_0::OperationType::RELU1) == static_cast<int32_t>(::android::hardware::neuralnetworks::V1_0::OperationType::RELU1)) {
os += (first ? "" : " | ");
os += "RELU1";
first = false;
flipped |= ::android::hardware::neuralnetworks::V1_0::OperationType::RELU1;
}
if ((o & ::android::hardware::neuralnetworks::V1_0::OperationType::RELU6) == static_cast<int32_t>(::android::hardware::neuralnetworks::V1_0::OperationType::RELU6)) {
os += (first ? "" : " | ");
os += "RELU6";
first = false;
flipped |= ::android::hardware::neuralnetworks::V1_0::OperationType::RELU6;
}
if ((o & ::android::hardware::neuralnetworks::V1_0::OperationType::RESHAPE) == static_cast<int32_t>(::android::hardware::neuralnetworks::V1_0::OperationType::RESHAPE)) {
os += (first ? "" : " | ");
os += "RESHAPE";
first = false;
flipped |= ::android::hardware::neuralnetworks::V1_0::OperationType::RESHAPE;
}
if ((o & ::android::hardware::neuralnetworks::V1_0::OperationType::RESIZE_BILINEAR) == static_cast<int32_t>(::android::hardware::neuralnetworks::V1_0::OperationType::RESIZE_BILINEAR)) {
os += (first ? "" : " | ");
os += "RESIZE_BILINEAR";
first = false;
flipped |= ::android::hardware::neuralnetworks::V1_0::OperationType::RESIZE_BILINEAR;
}
if ((o & ::android::hardware::neuralnetworks::V1_0::OperationType::RNN) == static_cast<int32_t>(::android::hardware::neuralnetworks::V1_0::OperationType::RNN)) {
os += (first ? "" : " | ");
os += "RNN";
first = false;
flipped |= ::android::hardware::neuralnetworks::V1_0::OperationType::RNN;
}
if ((o & ::android::hardware::neuralnetworks::V1_0::OperationType::SOFTMAX) == static_cast<int32_t>(::android::hardware::neuralnetworks::V1_0::OperationType::SOFTMAX)) {
os += (first ? "" : " | ");
os += "SOFTMAX";
first = false;
flipped |= ::android::hardware::neuralnetworks::V1_0::OperationType::SOFTMAX;
}
if ((o & ::android::hardware::neuralnetworks::V1_0::OperationType::SPACE_TO_DEPTH) == static_cast<int32_t>(::android::hardware::neuralnetworks::V1_0::OperationType::SPACE_TO_DEPTH)) {
os += (first ? "" : " | ");
os += "SPACE_TO_DEPTH";
first = false;
flipped |= ::android::hardware::neuralnetworks::V1_0::OperationType::SPACE_TO_DEPTH;
}
if ((o & ::android::hardware::neuralnetworks::V1_0::OperationType::SVDF) == static_cast<int32_t>(::android::hardware::neuralnetworks::V1_0::OperationType::SVDF)) {
os += (first ? "" : " | ");
os += "SVDF";
first = false;
flipped |= ::android::hardware::neuralnetworks::V1_0::OperationType::SVDF;
}
if ((o & ::android::hardware::neuralnetworks::V1_0::OperationType::TANH) == static_cast<int32_t>(::android::hardware::neuralnetworks::V1_0::OperationType::TANH)) {
os += (first ? "" : " | ");
os += "TANH";
first = false;
flipped |= ::android::hardware::neuralnetworks::V1_0::OperationType::TANH;
}
if ((o & ::android::hardware::neuralnetworks::V1_0::OperationType::OEM_OPERATION) == static_cast<int32_t>(::android::hardware::neuralnetworks::V1_0::OperationType::OEM_OPERATION)) {
os += (first ? "" : " | ");
os += "OEM_OPERATION";
first = false;
flipped |= ::android::hardware::neuralnetworks::V1_0::OperationType::OEM_OPERATION;
}
if (o != flipped) {
os += (first ? "" : " | ");
os += toHexString(o & (~flipped));
}os += " (";
os += toHexString(o);
os += ")";
return os;
}
static inline std::string toString(::android::hardware::neuralnetworks::V1_0::OperationType o) {
using ::android::hardware::details::toHexString;
if (o == ::android::hardware::neuralnetworks::V1_0::OperationType::ADD) {
return "ADD";
}
if (o == ::android::hardware::neuralnetworks::V1_0::OperationType::AVERAGE_POOL_2D) {
return "AVERAGE_POOL_2D";
}
if (o == ::android::hardware::neuralnetworks::V1_0::OperationType::CONCATENATION) {
return "CONCATENATION";
}
if (o == ::android::hardware::neuralnetworks::V1_0::OperationType::CONV_2D) {
return "CONV_2D";
}
if (o == ::android::hardware::neuralnetworks::V1_0::OperationType::DEPTHWISE_CONV_2D) {
return "DEPTHWISE_CONV_2D";
}
if (o == ::android::hardware::neuralnetworks::V1_0::OperationType::DEPTH_TO_SPACE) {
return "DEPTH_TO_SPACE";
}
if (o == ::android::hardware::neuralnetworks::V1_0::OperationType::DEQUANTIZE) {
return "DEQUANTIZE";
}
if (o == ::android::hardware::neuralnetworks::V1_0::OperationType::EMBEDDING_LOOKUP) {
return "EMBEDDING_LOOKUP";
}
if (o == ::android::hardware::neuralnetworks::V1_0::OperationType::FLOOR) {
return "FLOOR";
}
if (o == ::android::hardware::neuralnetworks::V1_0::OperationType::FULLY_CONNECTED) {
return "FULLY_CONNECTED";
}
if (o == ::android::hardware::neuralnetworks::V1_0::OperationType::HASHTABLE_LOOKUP) {
return "HASHTABLE_LOOKUP";
}
if (o == ::android::hardware::neuralnetworks::V1_0::OperationType::L2_NORMALIZATION) {
return "L2_NORMALIZATION";
}
if (o == ::android::hardware::neuralnetworks::V1_0::OperationType::L2_POOL_2D) {
return "L2_POOL_2D";
}
if (o == ::android::hardware::neuralnetworks::V1_0::OperationType::LOCAL_RESPONSE_NORMALIZATION) {
return "LOCAL_RESPONSE_NORMALIZATION";
}
if (o == ::android::hardware::neuralnetworks::V1_0::OperationType::LOGISTIC) {
return "LOGISTIC";
}
if (o == ::android::hardware::neuralnetworks::V1_0::OperationType::LSH_PROJECTION) {
return "LSH_PROJECTION";
}
if (o == ::android::hardware::neuralnetworks::V1_0::OperationType::LSTM) {
return "LSTM";
}
if (o == ::android::hardware::neuralnetworks::V1_0::OperationType::MAX_POOL_2D) {
return "MAX_POOL_2D";
}
if (o == ::android::hardware::neuralnetworks::V1_0::OperationType::MUL) {
return "MUL";
}
if (o == ::android::hardware::neuralnetworks::V1_0::OperationType::RELU) {
return "RELU";
}
if (o == ::android::hardware::neuralnetworks::V1_0::OperationType::RELU1) {
return "RELU1";
}
if (o == ::android::hardware::neuralnetworks::V1_0::OperationType::RELU6) {
return "RELU6";
}
if (o == ::android::hardware::neuralnetworks::V1_0::OperationType::RESHAPE) {
return "RESHAPE";
}
if (o == ::android::hardware::neuralnetworks::V1_0::OperationType::RESIZE_BILINEAR) {
return "RESIZE_BILINEAR";
}
if (o == ::android::hardware::neuralnetworks::V1_0::OperationType::RNN) {
return "RNN";
}
if (o == ::android::hardware::neuralnetworks::V1_0::OperationType::SOFTMAX) {
return "SOFTMAX";
}
if (o == ::android::hardware::neuralnetworks::V1_0::OperationType::SPACE_TO_DEPTH) {
return "SPACE_TO_DEPTH";
}
if (o == ::android::hardware::neuralnetworks::V1_0::OperationType::SVDF) {
return "SVDF";
}
if (o == ::android::hardware::neuralnetworks::V1_0::OperationType::TANH) {
return "TANH";
}
if (o == ::android::hardware::neuralnetworks::V1_0::OperationType::OEM_OPERATION) {
return "OEM_OPERATION";
}
std::string os;
os += toHexString(static_cast<int32_t>(o));
return os;
}
static inline void PrintTo(::android::hardware::neuralnetworks::V1_0::OperationType o, ::std::ostream* os) {
*os << toString(o);
}
template<>
inline std::string toString<::android::hardware::neuralnetworks::V1_0::FusedActivationFunc>(int32_t o) {
using ::android::hardware::details::toHexString;
std::string os;
::android::hardware::hidl_bitfield<::android::hardware::neuralnetworks::V1_0::FusedActivationFunc> flipped = 0;
bool first = true;
if ((o & ::android::hardware::neuralnetworks::V1_0::FusedActivationFunc::NONE) == static_cast<int32_t>(::android::hardware::neuralnetworks::V1_0::FusedActivationFunc::NONE)) {
os += (first ? "" : " | ");
os += "NONE";
first = false;
flipped |= ::android::hardware::neuralnetworks::V1_0::FusedActivationFunc::NONE;
}
if ((o & ::android::hardware::neuralnetworks::V1_0::FusedActivationFunc::RELU) == static_cast<int32_t>(::android::hardware::neuralnetworks::V1_0::FusedActivationFunc::RELU)) {
os += (first ? "" : " | ");
os += "RELU";
first = false;
flipped |= ::android::hardware::neuralnetworks::V1_0::FusedActivationFunc::RELU;
}
if ((o & ::android::hardware::neuralnetworks::V1_0::FusedActivationFunc::RELU1) == static_cast<int32_t>(::android::hardware::neuralnetworks::V1_0::FusedActivationFunc::RELU1)) {
os += (first ? "" : " | ");
os += "RELU1";
first = false;
flipped |= ::android::hardware::neuralnetworks::V1_0::FusedActivationFunc::RELU1;
}
if ((o & ::android::hardware::neuralnetworks::V1_0::FusedActivationFunc::RELU6) == static_cast<int32_t>(::android::hardware::neuralnetworks::V1_0::FusedActivationFunc::RELU6)) {
os += (first ? "" : " | ");
os += "RELU6";
first = false;
flipped |= ::android::hardware::neuralnetworks::V1_0::FusedActivationFunc::RELU6;
}
if (o != flipped) {
os += (first ? "" : " | ");
os += toHexString(o & (~flipped));
}os += " (";
os += toHexString(o);
os += ")";
return os;
}
static inline std::string toString(::android::hardware::neuralnetworks::V1_0::FusedActivationFunc o) {
using ::android::hardware::details::toHexString;
if (o == ::android::hardware::neuralnetworks::V1_0::FusedActivationFunc::NONE) {
return "NONE";
}
if (o == ::android::hardware::neuralnetworks::V1_0::FusedActivationFunc::RELU) {
return "RELU";
}
if (o == ::android::hardware::neuralnetworks::V1_0::FusedActivationFunc::RELU1) {
return "RELU1";
}
if (o == ::android::hardware::neuralnetworks::V1_0::FusedActivationFunc::RELU6) {
return "RELU6";
}
std::string os;
os += toHexString(static_cast<int32_t>(o));
return os;
}
static inline void PrintTo(::android::hardware::neuralnetworks::V1_0::FusedActivationFunc o, ::std::ostream* os) {
*os << toString(o);
}
template<>
inline std::string toString<::android::hardware::neuralnetworks::V1_0::OperandLifeTime>(int32_t o) {
using ::android::hardware::details::toHexString;
std::string os;
::android::hardware::hidl_bitfield<::android::hardware::neuralnetworks::V1_0::OperandLifeTime> flipped = 0;
bool first = true;
if ((o & ::android::hardware::neuralnetworks::V1_0::OperandLifeTime::TEMPORARY_VARIABLE) == static_cast<int32_t>(::android::hardware::neuralnetworks::V1_0::OperandLifeTime::TEMPORARY_VARIABLE)) {
os += (first ? "" : " | ");
os += "TEMPORARY_VARIABLE";
first = false;
flipped |= ::android::hardware::neuralnetworks::V1_0::OperandLifeTime::TEMPORARY_VARIABLE;
}
if ((o & ::android::hardware::neuralnetworks::V1_0::OperandLifeTime::MODEL_INPUT) == static_cast<int32_t>(::android::hardware::neuralnetworks::V1_0::OperandLifeTime::MODEL_INPUT)) {
os += (first ? "" : " | ");
os += "MODEL_INPUT";
first = false;
flipped |= ::android::hardware::neuralnetworks::V1_0::OperandLifeTime::MODEL_INPUT;
}
if ((o & ::android::hardware::neuralnetworks::V1_0::OperandLifeTime::MODEL_OUTPUT) == static_cast<int32_t>(::android::hardware::neuralnetworks::V1_0::OperandLifeTime::MODEL_OUTPUT)) {
os += (first ? "" : " | ");
os += "MODEL_OUTPUT";
first = false;
flipped |= ::android::hardware::neuralnetworks::V1_0::OperandLifeTime::MODEL_OUTPUT;
}
if ((o & ::android::hardware::neuralnetworks::V1_0::OperandLifeTime::CONSTANT_COPY) == static_cast<int32_t>(::android::hardware::neuralnetworks::V1_0::OperandLifeTime::CONSTANT_COPY)) {
os += (first ? "" : " | ");
os += "CONSTANT_COPY";
first = false;
flipped |= ::android::hardware::neuralnetworks::V1_0::OperandLifeTime::CONSTANT_COPY;
}
if ((o & ::android::hardware::neuralnetworks::V1_0::OperandLifeTime::CONSTANT_REFERENCE) == static_cast<int32_t>(::android::hardware::neuralnetworks::V1_0::OperandLifeTime::CONSTANT_REFERENCE)) {
os += (first ? "" : " | ");
os += "CONSTANT_REFERENCE";
first = false;
flipped |= ::android::hardware::neuralnetworks::V1_0::OperandLifeTime::CONSTANT_REFERENCE;
}
if ((o & ::android::hardware::neuralnetworks::V1_0::OperandLifeTime::NO_VALUE) == static_cast<int32_t>(::android::hardware::neuralnetworks::V1_0::OperandLifeTime::NO_VALUE)) {
os += (first ? "" : " | ");
os += "NO_VALUE";
first = false;
flipped |= ::android::hardware::neuralnetworks::V1_0::OperandLifeTime::NO_VALUE;
}
if (o != flipped) {
os += (first ? "" : " | ");
os += toHexString(o & (~flipped));
}os += " (";
os += toHexString(o);
os += ")";
return os;
}
static inline std::string toString(::android::hardware::neuralnetworks::V1_0::OperandLifeTime o) {
using ::android::hardware::details::toHexString;
if (o == ::android::hardware::neuralnetworks::V1_0::OperandLifeTime::TEMPORARY_VARIABLE) {
return "TEMPORARY_VARIABLE";
}
if (o == ::android::hardware::neuralnetworks::V1_0::OperandLifeTime::MODEL_INPUT) {
return "MODEL_INPUT";
}
if (o == ::android::hardware::neuralnetworks::V1_0::OperandLifeTime::MODEL_OUTPUT) {
return "MODEL_OUTPUT";
}
if (o == ::android::hardware::neuralnetworks::V1_0::OperandLifeTime::CONSTANT_COPY) {
return "CONSTANT_COPY";
}
if (o == ::android::hardware::neuralnetworks::V1_0::OperandLifeTime::CONSTANT_REFERENCE) {
return "CONSTANT_REFERENCE";
}
if (o == ::android::hardware::neuralnetworks::V1_0::OperandLifeTime::NO_VALUE) {
return "NO_VALUE";
}
std::string os;
os += toHexString(static_cast<int32_t>(o));
return os;
}
static inline void PrintTo(::android::hardware::neuralnetworks::V1_0::OperandLifeTime o, ::std::ostream* os) {
*os << toString(o);
}
template<>
inline std::string toString<::android::hardware::neuralnetworks::V1_0::DeviceStatus>(int32_t o) {
using ::android::hardware::details::toHexString;
std::string os;
::android::hardware::hidl_bitfield<::android::hardware::neuralnetworks::V1_0::DeviceStatus> flipped = 0;
bool first = true;
if ((o & ::android::hardware::neuralnetworks::V1_0::DeviceStatus::AVAILABLE) == static_cast<int32_t>(::android::hardware::neuralnetworks::V1_0::DeviceStatus::AVAILABLE)) {
os += (first ? "" : " | ");
os += "AVAILABLE";
first = false;
flipped |= ::android::hardware::neuralnetworks::V1_0::DeviceStatus::AVAILABLE;
}
if ((o & ::android::hardware::neuralnetworks::V1_0::DeviceStatus::BUSY) == static_cast<int32_t>(::android::hardware::neuralnetworks::V1_0::DeviceStatus::BUSY)) {
os += (first ? "" : " | ");
os += "BUSY";
first = false;
flipped |= ::android::hardware::neuralnetworks::V1_0::DeviceStatus::BUSY;
}
if ((o & ::android::hardware::neuralnetworks::V1_0::DeviceStatus::OFFLINE) == static_cast<int32_t>(::android::hardware::neuralnetworks::V1_0::DeviceStatus::OFFLINE)) {
os += (first ? "" : " | ");
os += "OFFLINE";
first = false;
flipped |= ::android::hardware::neuralnetworks::V1_0::DeviceStatus::OFFLINE;
}
if ((o & ::android::hardware::neuralnetworks::V1_0::DeviceStatus::UNKNOWN) == static_cast<int32_t>(::android::hardware::neuralnetworks::V1_0::DeviceStatus::UNKNOWN)) {
os += (first ? "" : " | ");
os += "UNKNOWN";
first = false;
flipped |= ::android::hardware::neuralnetworks::V1_0::DeviceStatus::UNKNOWN;
}
if (o != flipped) {
os += (first ? "" : " | ");
os += toHexString(o & (~flipped));
}os += " (";
os += toHexString(o);
os += ")";
return os;
}
static inline std::string toString(::android::hardware::neuralnetworks::V1_0::DeviceStatus o) {
using ::android::hardware::details::toHexString;
if (o == ::android::hardware::neuralnetworks::V1_0::DeviceStatus::AVAILABLE) {
return "AVAILABLE";
}
if (o == ::android::hardware::neuralnetworks::V1_0::DeviceStatus::BUSY) {
return "BUSY";
}
if (o == ::android::hardware::neuralnetworks::V1_0::DeviceStatus::OFFLINE) {
return "OFFLINE";
}
if (o == ::android::hardware::neuralnetworks::V1_0::DeviceStatus::UNKNOWN) {
return "UNKNOWN";
}
std::string os;
os += toHexString(static_cast<int32_t>(o));
return os;
}
static inline void PrintTo(::android::hardware::neuralnetworks::V1_0::DeviceStatus o, ::std::ostream* os) {
*os << toString(o);
}
static inline std::string toString(const ::android::hardware::neuralnetworks::V1_0::PerformanceInfo& o) {
using ::android::hardware::toString;
std::string os;
os += "{";
os += ".execTime = ";
os += ::android::hardware::toString(o.execTime);
os += ", .powerUsage = ";
os += ::android::hardware::toString(o.powerUsage);
os += "}"; return os;
}
static inline void PrintTo(const ::android::hardware::neuralnetworks::V1_0::PerformanceInfo& o, ::std::ostream* os) {
*os << toString(o);
}
static inline bool operator==(const ::android::hardware::neuralnetworks::V1_0::PerformanceInfo& lhs, const ::android::hardware::neuralnetworks::V1_0::PerformanceInfo& rhs) {
if (lhs.execTime != rhs.execTime) {
return false;
}
if (lhs.powerUsage != rhs.powerUsage) {
return false;
}
return true;
}
static inline bool operator!=(const ::android::hardware::neuralnetworks::V1_0::PerformanceInfo& lhs, const ::android::hardware::neuralnetworks::V1_0::PerformanceInfo& rhs){
return !(lhs == rhs);
}
static inline std::string toString(const ::android::hardware::neuralnetworks::V1_0::Capabilities& o) {
using ::android::hardware::toString;
std::string os;
os += "{";
os += ".float32Performance = ";
os += ::android::hardware::neuralnetworks::V1_0::toString(o.float32Performance);
os += ", .quantized8Performance = ";
os += ::android::hardware::neuralnetworks::V1_0::toString(o.quantized8Performance);
os += "}"; return os;
}
static inline void PrintTo(const ::android::hardware::neuralnetworks::V1_0::Capabilities& o, ::std::ostream* os) {
*os << toString(o);
}
static inline bool operator==(const ::android::hardware::neuralnetworks::V1_0::Capabilities& lhs, const ::android::hardware::neuralnetworks::V1_0::Capabilities& rhs) {
if (lhs.float32Performance != rhs.float32Performance) {
return false;
}
if (lhs.quantized8Performance != rhs.quantized8Performance) {
return false;
}
return true;
}
static inline bool operator!=(const ::android::hardware::neuralnetworks::V1_0::Capabilities& lhs, const ::android::hardware::neuralnetworks::V1_0::Capabilities& rhs){
return !(lhs == rhs);
}
static inline std::string toString(const ::android::hardware::neuralnetworks::V1_0::DataLocation& o) {
using ::android::hardware::toString;
std::string os;
os += "{";
os += ".poolIndex = ";
os += ::android::hardware::toString(o.poolIndex);
os += ", .offset = ";
os += ::android::hardware::toString(o.offset);
os += ", .length = ";
os += ::android::hardware::toString(o.length);
os += "}"; return os;
}
static inline void PrintTo(const ::android::hardware::neuralnetworks::V1_0::DataLocation& o, ::std::ostream* os) {
*os << toString(o);
}
static inline bool operator==(const ::android::hardware::neuralnetworks::V1_0::DataLocation& lhs, const ::android::hardware::neuralnetworks::V1_0::DataLocation& rhs) {
if (lhs.poolIndex != rhs.poolIndex) {
return false;
}
if (lhs.offset != rhs.offset) {
return false;
}
if (lhs.length != rhs.length) {
return false;
}
return true;
}
static inline bool operator!=(const ::android::hardware::neuralnetworks::V1_0::DataLocation& lhs, const ::android::hardware::neuralnetworks::V1_0::DataLocation& rhs){
return !(lhs == rhs);
}
static inline std::string toString(const ::android::hardware::neuralnetworks::V1_0::Operand& o) {
using ::android::hardware::toString;
std::string os;
os += "{";
os += ".type = ";
os += ::android::hardware::neuralnetworks::V1_0::toString(o.type);
os += ", .dimensions = ";
os += ::android::hardware::toString(o.dimensions);
os += ", .numberOfConsumers = ";
os += ::android::hardware::toString(o.numberOfConsumers);
os += ", .scale = ";
os += ::android::hardware::toString(o.scale);
os += ", .zeroPoint = ";
os += ::android::hardware::toString(o.zeroPoint);
os += ", .lifetime = ";
os += ::android::hardware::neuralnetworks::V1_0::toString(o.lifetime);
os += ", .location = ";
os += ::android::hardware::neuralnetworks::V1_0::toString(o.location);
os += "}"; return os;
}
static inline void PrintTo(const ::android::hardware::neuralnetworks::V1_0::Operand& o, ::std::ostream* os) {
*os << toString(o);
}
static inline bool operator==(const ::android::hardware::neuralnetworks::V1_0::Operand& lhs, const ::android::hardware::neuralnetworks::V1_0::Operand& rhs) {
if (lhs.type != rhs.type) {
return false;
}
if (lhs.dimensions != rhs.dimensions) {
return false;
}
if (lhs.numberOfConsumers != rhs.numberOfConsumers) {
return false;
}
if (lhs.scale != rhs.scale) {
return false;
}
if (lhs.zeroPoint != rhs.zeroPoint) {
return false;
}
if (lhs.lifetime != rhs.lifetime) {
return false;
}
if (lhs.location != rhs.location) {
return false;
}
return true;
}
static inline bool operator!=(const ::android::hardware::neuralnetworks::V1_0::Operand& lhs, const ::android::hardware::neuralnetworks::V1_0::Operand& rhs){
return !(lhs == rhs);
}
static inline std::string toString(const ::android::hardware::neuralnetworks::V1_0::Operation& o) {
using ::android::hardware::toString;
std::string os;
os += "{";
os += ".type = ";
os += ::android::hardware::neuralnetworks::V1_0::toString(o.type);
os += ", .inputs = ";
os += ::android::hardware::toString(o.inputs);
os += ", .outputs = ";
os += ::android::hardware::toString(o.outputs);
os += "}"; return os;
}
static inline void PrintTo(const ::android::hardware::neuralnetworks::V1_0::Operation& o, ::std::ostream* os) {
*os << toString(o);
}
static inline bool operator==(const ::android::hardware::neuralnetworks::V1_0::Operation& lhs, const ::android::hardware::neuralnetworks::V1_0::Operation& rhs) {
if (lhs.type != rhs.type) {
return false;
}
if (lhs.inputs != rhs.inputs) {
return false;
}
if (lhs.outputs != rhs.outputs) {
return false;
}
return true;
}
static inline bool operator!=(const ::android::hardware::neuralnetworks::V1_0::Operation& lhs, const ::android::hardware::neuralnetworks::V1_0::Operation& rhs){
return !(lhs == rhs);
}
static inline std::string toString(const ::android::hardware::neuralnetworks::V1_0::Model& o) {
using ::android::hardware::toString;
std::string os;
os += "{";
os += ".operands = ";
os += ::android::hardware::toString(o.operands);
os += ", .operations = ";
os += ::android::hardware::toString(o.operations);
os += ", .inputIndexes = ";
os += ::android::hardware::toString(o.inputIndexes);
os += ", .outputIndexes = ";
os += ::android::hardware::toString(o.outputIndexes);
os += ", .operandValues = ";
os += ::android::hardware::toString(o.operandValues);
os += ", .pools = ";
os += ::android::hardware::toString(o.pools);
os += "}"; return os;
}
static inline void PrintTo(const ::android::hardware::neuralnetworks::V1_0::Model& o, ::std::ostream* os) {
*os << toString(o);
}
// operator== and operator!= are not generated for Model
static inline std::string toString(const ::android::hardware::neuralnetworks::V1_0::RequestArgument& o) {
using ::android::hardware::toString;
std::string os;
os += "{";
os += ".hasNoValue = ";
os += ::android::hardware::toString(o.hasNoValue);
os += ", .location = ";
os += ::android::hardware::neuralnetworks::V1_0::toString(o.location);
os += ", .dimensions = ";
os += ::android::hardware::toString(o.dimensions);
os += "}"; return os;
}
static inline void PrintTo(const ::android::hardware::neuralnetworks::V1_0::RequestArgument& o, ::std::ostream* os) {
*os << toString(o);
}
static inline bool operator==(const ::android::hardware::neuralnetworks::V1_0::RequestArgument& lhs, const ::android::hardware::neuralnetworks::V1_0::RequestArgument& rhs) {
if (lhs.hasNoValue != rhs.hasNoValue) {
return false;
}
if (lhs.location != rhs.location) {
return false;
}
if (lhs.dimensions != rhs.dimensions) {
return false;
}
return true;
}
static inline bool operator!=(const ::android::hardware::neuralnetworks::V1_0::RequestArgument& lhs, const ::android::hardware::neuralnetworks::V1_0::RequestArgument& rhs){
return !(lhs == rhs);
}
static inline std::string toString(const ::android::hardware::neuralnetworks::V1_0::Request& o) {
using ::android::hardware::toString;
std::string os;
os += "{";
os += ".inputs = ";
os += ::android::hardware::toString(o.inputs);
os += ", .outputs = ";
os += ::android::hardware::toString(o.outputs);
os += ", .pools = ";
os += ::android::hardware::toString(o.pools);
os += "}"; return os;
}
static inline void PrintTo(const ::android::hardware::neuralnetworks::V1_0::Request& o, ::std::ostream* os) {
*os << toString(o);
}
// operator== and operator!= are not generated for Request
template<>
inline std::string toString<::android::hardware::neuralnetworks::V1_0::ErrorStatus>(int32_t o) {
using ::android::hardware::details::toHexString;
std::string os;
::android::hardware::hidl_bitfield<::android::hardware::neuralnetworks::V1_0::ErrorStatus> flipped = 0;
bool first = true;
if ((o & ::android::hardware::neuralnetworks::V1_0::ErrorStatus::NONE) == static_cast<int32_t>(::android::hardware::neuralnetworks::V1_0::ErrorStatus::NONE)) {
os += (first ? "" : " | ");
os += "NONE";
first = false;
flipped |= ::android::hardware::neuralnetworks::V1_0::ErrorStatus::NONE;
}
if ((o & ::android::hardware::neuralnetworks::V1_0::ErrorStatus::DEVICE_UNAVAILABLE) == static_cast<int32_t>(::android::hardware::neuralnetworks::V1_0::ErrorStatus::DEVICE_UNAVAILABLE)) {
os += (first ? "" : " | ");
os += "DEVICE_UNAVAILABLE";
first = false;
flipped |= ::android::hardware::neuralnetworks::V1_0::ErrorStatus::DEVICE_UNAVAILABLE;
}
if ((o & ::android::hardware::neuralnetworks::V1_0::ErrorStatus::GENERAL_FAILURE) == static_cast<int32_t>(::android::hardware::neuralnetworks::V1_0::ErrorStatus::GENERAL_FAILURE)) {
os += (first ? "" : " | ");
os += "GENERAL_FAILURE";
first = false;
flipped |= ::android::hardware::neuralnetworks::V1_0::ErrorStatus::GENERAL_FAILURE;
}
if ((o & ::android::hardware::neuralnetworks::V1_0::ErrorStatus::OUTPUT_INSUFFICIENT_SIZE) == static_cast<int32_t>(::android::hardware::neuralnetworks::V1_0::ErrorStatus::OUTPUT_INSUFFICIENT_SIZE)) {
os += (first ? "" : " | ");
os += "OUTPUT_INSUFFICIENT_SIZE";
first = false;
flipped |= ::android::hardware::neuralnetworks::V1_0::ErrorStatus::OUTPUT_INSUFFICIENT_SIZE;
}
if ((o & ::android::hardware::neuralnetworks::V1_0::ErrorStatus::INVALID_ARGUMENT) == static_cast<int32_t>(::android::hardware::neuralnetworks::V1_0::ErrorStatus::INVALID_ARGUMENT)) {
os += (first ? "" : " | ");
os += "INVALID_ARGUMENT";
first = false;
flipped |= ::android::hardware::neuralnetworks::V1_0::ErrorStatus::INVALID_ARGUMENT;
}
if (o != flipped) {
os += (first ? "" : " | ");
os += toHexString(o & (~flipped));
}os += " (";
os += toHexString(o);
os += ")";
return os;
}
static inline std::string toString(::android::hardware::neuralnetworks::V1_0::ErrorStatus o) {
using ::android::hardware::details::toHexString;
if (o == ::android::hardware::neuralnetworks::V1_0::ErrorStatus::NONE) {
return "NONE";
}
if (o == ::android::hardware::neuralnetworks::V1_0::ErrorStatus::DEVICE_UNAVAILABLE) {
return "DEVICE_UNAVAILABLE";
}
if (o == ::android::hardware::neuralnetworks::V1_0::ErrorStatus::GENERAL_FAILURE) {
return "GENERAL_FAILURE";
}
if (o == ::android::hardware::neuralnetworks::V1_0::ErrorStatus::OUTPUT_INSUFFICIENT_SIZE) {
return "OUTPUT_INSUFFICIENT_SIZE";
}
if (o == ::android::hardware::neuralnetworks::V1_0::ErrorStatus::INVALID_ARGUMENT) {
return "INVALID_ARGUMENT";
}
std::string os;
os += toHexString(static_cast<int32_t>(o));
return os;
}
static inline void PrintTo(::android::hardware::neuralnetworks::V1_0::ErrorStatus o, ::std::ostream* os) {
*os << toString(o);
}
} // namespace V1_0
} // namespace neuralnetworks
} // namespace hardware
} // namespace android
//
// global type declarations for package
//
namespace android {
namespace hardware {
namespace details {
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wc++17-extensions"
template<> inline constexpr std::array<::android::hardware::neuralnetworks::V1_0::OperandType, 8> hidl_enum_values<::android::hardware::neuralnetworks::V1_0::OperandType> = {
::android::hardware::neuralnetworks::V1_0::OperandType::FLOAT32,
::android::hardware::neuralnetworks::V1_0::OperandType::INT32,
::android::hardware::neuralnetworks::V1_0::OperandType::UINT32,
::android::hardware::neuralnetworks::V1_0::OperandType::TENSOR_FLOAT32,
::android::hardware::neuralnetworks::V1_0::OperandType::TENSOR_INT32,
::android::hardware::neuralnetworks::V1_0::OperandType::TENSOR_QUANT8_ASYMM,
::android::hardware::neuralnetworks::V1_0::OperandType::OEM,
::android::hardware::neuralnetworks::V1_0::OperandType::TENSOR_OEM_BYTE,
};
#pragma clang diagnostic pop
} // namespace details
} // namespace hardware
} // namespace android
namespace android {
namespace hardware {
namespace details {
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wc++17-extensions"
template<> inline constexpr std::array<::android::hardware::neuralnetworks::V1_0::OperationType, 30> hidl_enum_values<::android::hardware::neuralnetworks::V1_0::OperationType> = {
::android::hardware::neuralnetworks::V1_0::OperationType::ADD,
::android::hardware::neuralnetworks::V1_0::OperationType::AVERAGE_POOL_2D,
::android::hardware::neuralnetworks::V1_0::OperationType::CONCATENATION,
::android::hardware::neuralnetworks::V1_0::OperationType::CONV_2D,
::android::hardware::neuralnetworks::V1_0::OperationType::DEPTHWISE_CONV_2D,
::android::hardware::neuralnetworks::V1_0::OperationType::DEPTH_TO_SPACE,
::android::hardware::neuralnetworks::V1_0::OperationType::DEQUANTIZE,
::android::hardware::neuralnetworks::V1_0::OperationType::EMBEDDING_LOOKUP,
::android::hardware::neuralnetworks::V1_0::OperationType::FLOOR,
::android::hardware::neuralnetworks::V1_0::OperationType::FULLY_CONNECTED,
::android::hardware::neuralnetworks::V1_0::OperationType::HASHTABLE_LOOKUP,
::android::hardware::neuralnetworks::V1_0::OperationType::L2_NORMALIZATION,
::android::hardware::neuralnetworks::V1_0::OperationType::L2_POOL_2D,
::android::hardware::neuralnetworks::V1_0::OperationType::LOCAL_RESPONSE_NORMALIZATION,
::android::hardware::neuralnetworks::V1_0::OperationType::LOGISTIC,
::android::hardware::neuralnetworks::V1_0::OperationType::LSH_PROJECTION,
::android::hardware::neuralnetworks::V1_0::OperationType::LSTM,
::android::hardware::neuralnetworks::V1_0::OperationType::MAX_POOL_2D,
::android::hardware::neuralnetworks::V1_0::OperationType::MUL,
::android::hardware::neuralnetworks::V1_0::OperationType::RELU,
::android::hardware::neuralnetworks::V1_0::OperationType::RELU1,
::android::hardware::neuralnetworks::V1_0::OperationType::RELU6,
::android::hardware::neuralnetworks::V1_0::OperationType::RESHAPE,
::android::hardware::neuralnetworks::V1_0::OperationType::RESIZE_BILINEAR,
::android::hardware::neuralnetworks::V1_0::OperationType::RNN,
::android::hardware::neuralnetworks::V1_0::OperationType::SOFTMAX,
::android::hardware::neuralnetworks::V1_0::OperationType::SPACE_TO_DEPTH,
::android::hardware::neuralnetworks::V1_0::OperationType::SVDF,
::android::hardware::neuralnetworks::V1_0::OperationType::TANH,
::android::hardware::neuralnetworks::V1_0::OperationType::OEM_OPERATION,
};
#pragma clang diagnostic pop
} // namespace details
} // namespace hardware
} // namespace android
namespace android {
namespace hardware {
namespace details {
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wc++17-extensions"
template<> inline constexpr std::array<::android::hardware::neuralnetworks::V1_0::FusedActivationFunc, 4> hidl_enum_values<::android::hardware::neuralnetworks::V1_0::FusedActivationFunc> = {
::android::hardware::neuralnetworks::V1_0::FusedActivationFunc::NONE,
::android::hardware::neuralnetworks::V1_0::FusedActivationFunc::RELU,
::android::hardware::neuralnetworks::V1_0::FusedActivationFunc::RELU1,
::android::hardware::neuralnetworks::V1_0::FusedActivationFunc::RELU6,
};
#pragma clang diagnostic pop
} // namespace details
} // namespace hardware
} // namespace android
namespace android {
namespace hardware {
namespace details {
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wc++17-extensions"
template<> inline constexpr std::array<::android::hardware::neuralnetworks::V1_0::OperandLifeTime, 6> hidl_enum_values<::android::hardware::neuralnetworks::V1_0::OperandLifeTime> = {
::android::hardware::neuralnetworks::V1_0::OperandLifeTime::TEMPORARY_VARIABLE,
::android::hardware::neuralnetworks::V1_0::OperandLifeTime::MODEL_INPUT,
::android::hardware::neuralnetworks::V1_0::OperandLifeTime::MODEL_OUTPUT,
::android::hardware::neuralnetworks::V1_0::OperandLifeTime::CONSTANT_COPY,
::android::hardware::neuralnetworks::V1_0::OperandLifeTime::CONSTANT_REFERENCE,
::android::hardware::neuralnetworks::V1_0::OperandLifeTime::NO_VALUE,
};
#pragma clang diagnostic pop
} // namespace details
} // namespace hardware
} // namespace android
namespace android {
namespace hardware {
namespace details {
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wc++17-extensions"
template<> inline constexpr std::array<::android::hardware::neuralnetworks::V1_0::DeviceStatus, 4> hidl_enum_values<::android::hardware::neuralnetworks::V1_0::DeviceStatus> = {
::android::hardware::neuralnetworks::V1_0::DeviceStatus::AVAILABLE,
::android::hardware::neuralnetworks::V1_0::DeviceStatus::BUSY,
::android::hardware::neuralnetworks::V1_0::DeviceStatus::OFFLINE,
::android::hardware::neuralnetworks::V1_0::DeviceStatus::UNKNOWN,
};
#pragma clang diagnostic pop
} // namespace details
} // namespace hardware
} // namespace android
namespace android {
namespace hardware {
namespace details {
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wc++17-extensions"
template<> inline constexpr std::array<::android::hardware::neuralnetworks::V1_0::ErrorStatus, 5> hidl_enum_values<::android::hardware::neuralnetworks::V1_0::ErrorStatus> = {
::android::hardware::neuralnetworks::V1_0::ErrorStatus::NONE,
::android::hardware::neuralnetworks::V1_0::ErrorStatus::DEVICE_UNAVAILABLE,
::android::hardware::neuralnetworks::V1_0::ErrorStatus::GENERAL_FAILURE,
::android::hardware::neuralnetworks::V1_0::ErrorStatus::OUTPUT_INSUFFICIENT_SIZE,
::android::hardware::neuralnetworks::V1_0::ErrorStatus::INVALID_ARGUMENT,
};
#pragma clang diagnostic pop
} // namespace details
} // namespace hardware
} // namespace android
#endif // HIDL_GENERATED_ANDROID_HARDWARE_NEURALNETWORKS_V1_0_TYPES_H