blob: ee3c87f18365adb6592d6d04a762057e2a4ed707 [file] [log] [blame]
/* Copyright (c) 2010 The Chromium OS Authors. All rights reserved.
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "cgptlib.h"
#include "cgptlib_internal.h"
#include "crc32.h"
#include "gpt.h"
#include "utility.h"
int CheckParameters(GptData *gpt) {
/* Currently, we only support 512-byte sector. In the future, we may support
* larger sector. */
if (gpt->sector_bytes != 512)
return GPT_ERROR_INVALID_SECTOR_SIZE;
/* The sector number of a drive should be reasonable. If the given value is
* too small to contain basic GPT structure (PMBR + Headers + Entries),
* the value is wrong. */
if (gpt->drive_sectors < (1 + 2 * (1 + GPT_ENTRIES_SECTORS)))
return GPT_ERROR_INVALID_SECTOR_NUMBER;
return GPT_SUCCESS;
}
uint32_t HeaderCrc(GptHeader* h) {
uint32_t crc32, original_crc32;
/* Original CRC is calculated with the CRC field 0. */
original_crc32 = h->header_crc32;
h->header_crc32 = 0;
crc32 = Crc32((const uint8_t *)h, h->size);
h->header_crc32 = original_crc32;
return crc32;
}
int CheckHeader(GptHeader *h, int is_secondary, uint64_t drive_sectors) {
if (!h)
return 1;
/* Make sure we're looking at a header of reasonable size before
* attempting to calculate CRC. */
if (Memcmp(h->signature, GPT_HEADER_SIGNATURE, GPT_HEADER_SIGNATURE_SIZE))
return 1;
if (h->revision != GPT_HEADER_REVISION)
return 1;
if (h->size < MIN_SIZE_OF_HEADER || h->size > MAX_SIZE_OF_HEADER)
return 1;
/* Check CRC before looking at remaining fields */
if (HeaderCrc(h) != h->header_crc32)
return 1;
/* Reserved fields must be zero. */
if (h->reserved_zero)
return 1;
/* Could check that padding is zero, but that doesn't matter to us. */
/* If entry size is different than our struct, we won't be able to
* parse it. Technically, any size 2^N where N>=7 is valid. */
if (h->size_of_entry != sizeof(GptEntry))
return 1;
if ((h->number_of_entries < MIN_NUMBER_OF_ENTRIES) ||
(h->number_of_entries > MAX_NUMBER_OF_ENTRIES) ||
(h->number_of_entries * h->size_of_entry != TOTAL_ENTRIES_SIZE))
return 1;
/* Check locations for the header and its entries. The primary
* immediately follows the PMBR, and is followed by its entries.
* The secondary is at the end of the drive, preceded by its
* entries. */
if (is_secondary) {
if (h->my_lba != drive_sectors - 1)
return 1;
if (h->entries_lba != h->my_lba - GPT_ENTRIES_SECTORS)
return 1;
} else {
if (h->my_lba != 1)
return 1;
if (h->entries_lba != h->my_lba + 1)
return 1;
}
/* FirstUsableLBA must be after the end of the primary GPT table
* array. LastUsableLBA must be before the start of the secondary
* GPT table array. FirstUsableLBA <= LastUsableLBA. */
if (h->first_usable_lba < 2 + GPT_ENTRIES_SECTORS)
return 1;
if (h->last_usable_lba >= drive_sectors - 1 - GPT_ENTRIES_SECTORS)
return 1;
if (h->first_usable_lba > h->last_usable_lba)
return 1;
/* Success */
return 0;
}
/* Return non-zero if the entry is unused, 0 if it is used. */
int IsUnusedEntry(const GptEntry* e) {
static Guid zero = {{{0, 0, 0, 0, 0, {0, 0, 0, 0, 0, 0}}}};
return !Memcmp(&zero, (const uint8_t*)(&e->type), sizeof(zero));
}
/* Returns non-zero if the entry is a Chrome OS kernel partition, else 0. */
int IsKernelEntry(const GptEntry* e) {
static Guid chromeos_kernel = GPT_ENT_TYPE_CHROMEOS_KERNEL;
return !Memcmp(&e->type, &chromeos_kernel, sizeof(Guid));
}
int CheckEntries(GptEntry* entries, GptHeader* h) {
GptEntry* entry;
uint32_t crc32;
uint32_t i;
/* Check CRC before examining entries. */
crc32 = Crc32((const uint8_t *)entries,
h->size_of_entry * h->number_of_entries);
if (crc32 != h->entries_crc32)
return 1;
/* Check all entries. */
for (i = 0, entry = entries; i < h->number_of_entries; i++, entry++) {
GptEntry* e2;
uint32_t i2;
if (IsUnusedEntry(entry))
continue;
/* Entry must be in valid region. */
if ((entry->starting_lba < h->first_usable_lba) ||
(entry->ending_lba > h->last_usable_lba) ||
(entry->ending_lba < entry->starting_lba))
return 1;
/* Entry must not overlap other entries. */
for (i2 = 0, e2 = entries; i2 < h->number_of_entries; i2++, e2++) {
if (i2 == i || IsUnusedEntry(e2))
continue;
if ((entry->starting_lba >= e2->starting_lba) &&
(entry->starting_lba <= e2->ending_lba))
return 1;
if ((entry->ending_lba >= e2->starting_lba) &&
(entry->ending_lba <= e2->ending_lba))
return 1;
/* UniqueGuid field must be unique. */
if (0 == Memcmp(&entry->unique, &e2->unique, sizeof(Guid)))
return 1;
}
}
/* Success */
return 0;
}
/* Returns 0 if the GptHeaders are the same for all fields which don't
* differ between the primary and secondary headers - that is, all
* fields other than:
*
* my_lba
* alternate_lba
* entries_lba */
int HeaderFieldsSame(GptHeader *h1, GptHeader *h2) {
if (Memcmp(h1->signature, h2->signature, sizeof(h1->signature)))
return 1;
if (h1->revision != h2->revision)
return 1;
if (h1->size != h2->size)
return 1;
if (h1->reserved_zero != h2->reserved_zero)
return 1;
if (h1->first_usable_lba != h2->first_usable_lba)
return 1;
if (h1->last_usable_lba != h2->last_usable_lba)
return 1;
if (Memcmp(&h1->disk_uuid, &h2->disk_uuid, sizeof(Guid)))
return 1;
if (h1->number_of_entries != h2->number_of_entries)
return 1;
if (h1->size_of_entry != h2->size_of_entry)
return 1;
if (h1->entries_crc32 != h2->entries_crc32)
return 1;
return 0;
}
int GptSanityCheck(GptData *gpt) {
int retval;
GptHeader* header1 = (GptHeader*)(gpt->primary_header);
GptHeader* header2 = (GptHeader*)(gpt->secondary_header);
GptEntry* entries1 = (GptEntry*)(gpt->primary_entries);
GptEntry* entries2 = (GptEntry*)(gpt->secondary_entries);
GptHeader* goodhdr = NULL;
gpt->valid_headers = 0;
gpt->valid_entries = 0;
retval = CheckParameters(gpt);
if (retval != GPT_SUCCESS)
return retval;
/* Check both headers; we need at least one valid header. */
if (0 == CheckHeader(header1, 0, gpt->drive_sectors)) {
gpt->valid_headers |= MASK_PRIMARY;
goodhdr = header1;
}
if (0 == CheckHeader(header2, 1, gpt->drive_sectors)) {
gpt->valid_headers |= MASK_SECONDARY;
if (!goodhdr)
goodhdr = header2;
}
if (!gpt->valid_headers)
return GPT_ERROR_INVALID_HEADERS;
/* Checks if entries are valid.
*
* Note that we use the same header in both checks. This way we'll
* catch the case where (header1,entries1) and (header2,entries2)
* are both valid, but (entries1 != entries2). */
if (0 == CheckEntries(entries1, goodhdr))
gpt->valid_entries |= MASK_PRIMARY;
if (0 == CheckEntries(entries2, goodhdr))
gpt->valid_entries |= MASK_SECONDARY;
/* If both headers are good but neither entries were good, check the
* entries with the secondary header. */
if (MASK_BOTH == gpt->valid_headers && !gpt->valid_entries) {
if (0 == CheckEntries(entries1, header2))
gpt->valid_entries |= MASK_PRIMARY;
if (0 == CheckEntries(entries2, header2))
gpt->valid_entries |= MASK_SECONDARY;
if (gpt->valid_entries) {
/* Sure enough, header2 had a good CRC for one of the entries. Mark
* header1 invalid, so we'll update its entries CRC. */
gpt->valid_headers &= ~MASK_PRIMARY;
goodhdr = header2;
}
}
if (!gpt->valid_entries)
return GPT_ERROR_INVALID_ENTRIES;
/* Now that we've determined which header contains a good CRC for
* the entries, make sure the headers are otherwise identical. */
if (MASK_BOTH == gpt->valid_headers &&
0 != HeaderFieldsSame(header1, header2))
gpt->valid_headers &= ~MASK_SECONDARY;
return GPT_SUCCESS;
}
void GptRepair(GptData *gpt) {
GptHeader* header1 = (GptHeader*)(gpt->primary_header);
GptHeader* header2 = (GptHeader*)(gpt->secondary_header);
GptEntry* entries1 = (GptEntry*)(gpt->primary_entries);
GptEntry* entries2 = (GptEntry*)(gpt->secondary_entries);
int entries_size;
/* Need at least one good header and one good set of entries. */
if (MASK_NONE == gpt->valid_headers || MASK_NONE == gpt->valid_entries)
return;
/* Repair headers if necessary */
if (MASK_PRIMARY == gpt->valid_headers) {
/* Primary is good, secondary is bad */
Memcpy(header2, header1, sizeof(GptHeader));
header2->my_lba = gpt->drive_sectors - 1;
header2->alternate_lba = 1;
header2->entries_lba = header2->my_lba - GPT_ENTRIES_SECTORS;
header2->header_crc32 = HeaderCrc(header2);
gpt->modified |= GPT_MODIFIED_HEADER2;
}
else if (MASK_SECONDARY == gpt->valid_headers) {
/* Secondary is good, primary is bad */
Memcpy(header1, header2, sizeof(GptHeader));
header1->my_lba = 1;
header1->alternate_lba = gpt->drive_sectors - 1;
header1->entries_lba = header1->my_lba + 1;
header1->header_crc32 = HeaderCrc(header1);
gpt->modified |= GPT_MODIFIED_HEADER1;
}
gpt->valid_headers = MASK_BOTH;
/* Repair entries if necessary */
entries_size = header1->size_of_entry * header1->number_of_entries;
if (MASK_PRIMARY == gpt->valid_entries) {
/* Primary is good, secondary is bad */
Memcpy(entries2, entries1, entries_size);
gpt->modified |= GPT_MODIFIED_ENTRIES2;
}
else if (MASK_SECONDARY == gpt->valid_entries) {
/* Secondary is good, primary is bad */
Memcpy(entries1, entries2, entries_size);
gpt->modified |= GPT_MODIFIED_ENTRIES1;
}
gpt->valid_entries = MASK_BOTH;
}
int GetEntrySuccessful(const GptEntry* e) {
return (e->attrs.fields.gpt_att & CGPT_ATTRIBUTE_SUCCESSFUL_MASK) >>
CGPT_ATTRIBUTE_SUCCESSFUL_OFFSET;
}
int GetEntryPriority(const GptEntry* e) {
return (e->attrs.fields.gpt_att & CGPT_ATTRIBUTE_PRIORITY_MASK) >>
CGPT_ATTRIBUTE_PRIORITY_OFFSET;
}
int GetEntryTries(const GptEntry* e) {
return (e->attrs.fields.gpt_att & CGPT_ATTRIBUTE_TRIES_MASK) >>
CGPT_ATTRIBUTE_TRIES_OFFSET;
}
void SetEntrySuccessful(GptEntry* e, int successful) {
if (successful)
e->attrs.fields.gpt_att |= CGPT_ATTRIBUTE_SUCCESSFUL_MASK;
else
e->attrs.fields.gpt_att &= ~CGPT_ATTRIBUTE_SUCCESSFUL_MASK;
}
void SetEntryPriority(GptEntry* e, int priority) {
e->attrs.fields.gpt_att &= ~CGPT_ATTRIBUTE_PRIORITY_MASK;
e->attrs.fields.gpt_att |= (priority << CGPT_ATTRIBUTE_PRIORITY_OFFSET) &
CGPT_ATTRIBUTE_PRIORITY_MASK;
}
void SetEntryTries(GptEntry* e, int tries) {
e->attrs.fields.gpt_att &= ~CGPT_ATTRIBUTE_TRIES_MASK;
e->attrs.fields.gpt_att |= (tries << CGPT_ATTRIBUTE_TRIES_OFFSET) &
CGPT_ATTRIBUTE_TRIES_MASK;
}
void GetCurrentKernelUniqueGuid(GptData *gpt, void *dest) {
GptEntry* entries = (GptEntry*)gpt->primary_entries;
GptEntry* e = entries + gpt->current_kernel;
Memcpy(dest, &e->unique, sizeof(Guid));
}