blob: 5d063b94b88d09f335f861e1b9362bdaa1f3ca71 [file] [log] [blame]
/* Copyright (c) 2014 The Chromium OS Authors. All rights reserved.
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*
* Misc functions which need access to vb2_context but are not public APIs
*/
#include "2sysincludes.h"
#include "2api.h"
#include "2common.h"
#include "2misc.h"
#include "2nvstorage.h"
#include "2secdata.h"
#include "2sha.h"
#include "2rsa.h"
int vb2_validate_gbb_signature(uint8_t *sig) {
const static uint8_t sig_xor[VB2_GBB_SIGNATURE_SIZE] =
VB2_GBB_XOR_SIGNATURE;
int i;
for (i = 0; i < VB2_GBB_SIGNATURE_SIZE; i++) {
if (sig[i] != (sig_xor[i] ^ VB2_GBB_XOR_CHARS[i]))
return VB2_ERROR_GBB_MAGIC;
}
return VB2_SUCCESS;
}
void vb2_workbuf_from_ctx(struct vb2_context *ctx, struct vb2_workbuf *wb)
{
vb2_workbuf_init(wb, ctx->workbuf + ctx->workbuf_used,
ctx->workbuf_size - ctx->workbuf_used);
}
int vb2_read_gbb_header(struct vb2_context *ctx, struct vb2_gbb_header *gbb)
{
int rv;
/* Read the entire header */
rv = vb2ex_read_resource(ctx, VB2_RES_GBB, 0, gbb, sizeof(*gbb));
if (rv)
return rv;
/* Make sure it's really a GBB */
rv = vb2_validate_gbb_signature(gbb->signature);
if (rv)
return rv;
/* Check for compatible version */
if (gbb->major_version != VB2_GBB_MAJOR_VER)
return VB2_ERROR_GBB_VERSION;
/* Current code is not backwards-compatible to 1.0 headers */
if (gbb->minor_version < VB2_GBB_MINOR_VER)
return VB2_ERROR_GBB_TOO_OLD;
/*
* Header size should be at least as big as we expect. It could be
* bigger, if the header has grown.
*/
if (gbb->header_size < sizeof(*gbb))
return VB2_ERROR_GBB_HEADER_SIZE;
return VB2_SUCCESS;
}
void vb2_fail(struct vb2_context *ctx, uint8_t reason, uint8_t subcode)
{
struct vb2_shared_data *sd = vb2_get_sd(ctx);
/* If NV data hasn't been initialized, initialize it now */
if (!(sd->status & VB2_SD_STATUS_NV_INIT))
vb2_nv_init(ctx);
/* See if we were far enough in the boot process to choose a slot */
if (sd->status & VB2_SD_STATUS_CHOSE_SLOT) {
/* Boot failed */
vb2_nv_set(ctx, VB2_NV_FW_RESULT, VB2_FW_RESULT_FAILURE);
/* Use up remaining tries */
vb2_nv_set(ctx, VB2_NV_TRY_COUNT, 0);
/*
* Try the other slot next time. We'll alternate
* between slots, which may help if one or both slots is
* flaky.
*/
vb2_nv_set(ctx, VB2_NV_TRY_NEXT, 1 - sd->fw_slot);
/*
* If we didn't try the other slot last boot, or we tried it
* and it didn't fail, try it next boot.
*/
if (sd->last_fw_slot != 1 - sd->fw_slot ||
sd->last_fw_result != VB2_FW_RESULT_FAILURE)
return;
}
/*
* If we're still here, we failed before choosing a slot, or both
* this slot and the other slot failed in successive boots. So we
* need to go to recovery.
*
* Set a recovery reason and subcode only if they're not already set.
* If recovery is already requested, it's a more specific error code
* than later code is providing and we shouldn't overwrite it.
*/
VB2_DEBUG("Both slots are bad. Need recovery\n");
if (!vb2_nv_get(ctx, VB2_NV_RECOVERY_REQUEST)) {
vb2_nv_set(ctx, VB2_NV_RECOVERY_REQUEST, reason);
vb2_nv_set(ctx, VB2_NV_RECOVERY_SUBCODE, subcode);
}
}
int vb2_init_context(struct vb2_context *ctx)
{
struct vb2_shared_data *sd = vb2_get_sd(ctx);
/* Don't do anything if the context has already been initialized */
if (ctx->workbuf_used)
return VB2_SUCCESS;
/*
* Workbuf had better be big enough for our shared data struct and
* aligned. Not much we can do if it isn't; we'll die before we can
* store a recovery reason.
*/
if (ctx->workbuf_size < sizeof(*sd))
return VB2_ERROR_INITCTX_WORKBUF_SMALL;
if (!vb_aligned(ctx->workbuf, VB2_WORKBUF_ALIGN))
return VB2_ERROR_INITCTX_WORKBUF_ALIGN;
/* Initialize the shared data at the start of the work buffer */
memset(sd, 0, sizeof(*sd));
ctx->workbuf_used = sizeof(*sd);
return VB2_SUCCESS;
}
void vb2_check_recovery(struct vb2_context *ctx)
{
struct vb2_shared_data *sd = vb2_get_sd(ctx);
/*
* Read the current recovery request, unless there's already been a
* failure earlier in the boot process.
*/
if (!sd->recovery_reason)
sd->recovery_reason = vb2_nv_get(ctx, VB2_NV_RECOVERY_REQUEST);
/* Clear the recovery request so we don't get stuck in recovery mode */
if (sd->recovery_reason) {
vb2_nv_set(ctx, VB2_NV_RECOVERY_REQUEST,
VB2_RECOVERY_NOT_REQUESTED);
/*
* Note that we ignore failures clearing the request. We only
* hit this code path if recovery mode has already been
* requested, so what more can we do? Don't want to obscure
* the original reason for going into recovery mode.
*/
}
/* If forcing recovery, override recovery reason */
if (ctx->flags & VB2_CONTEXT_FORCE_RECOVERY_MODE) {
sd->recovery_reason = VB2_RECOVERY_RO_MANUAL;
sd->flags = VB2_SD_FLAG_MANUAL_RECOVERY;
}
/* If recovery reason is non-zero, tell caller we need recovery mode */
if (sd->recovery_reason)
ctx->flags |= VB2_CONTEXT_RECOVERY_MODE;
}
int vb2_fw_parse_gbb(struct vb2_context *ctx)
{
struct vb2_shared_data *sd = vb2_get_sd(ctx);
struct vb2_gbb_header *gbb;
struct vb2_workbuf wb;
int rv;
vb2_workbuf_from_ctx(ctx, &wb);
/* Read GBB into next chunk of work buffer */
gbb = vb2_workbuf_alloc(&wb, sizeof(*gbb));
if (!gbb)
return VB2_ERROR_GBB_WORKBUF;
rv = vb2_read_gbb_header(ctx, gbb);
if (rv)
return rv;
/* Extract the only things we care about at firmware time */
sd->gbb_flags = gbb->flags;
sd->gbb_rootkey_offset = gbb->rootkey_offset;
sd->gbb_rootkey_size = gbb->rootkey_size;
return VB2_SUCCESS;
}
int vb2_check_dev_switch(struct vb2_context *ctx)
{
struct vb2_shared_data *sd = vb2_get_sd(ctx);
uint32_t flags;
uint32_t old_flags;
int is_dev = 0;
int rv;
/* Read secure flags */
rv = vb2_secdata_get(ctx, VB2_SECDATA_FLAGS, &flags);
if (rv)
return rv;
old_flags = flags;
/* Handle dev disable request */
if (vb2_nv_get(ctx, VB2_NV_DISABLE_DEV_REQUEST)) {
flags &= ~VB2_SECDATA_FLAG_DEV_MODE;
/* Clear the request */
vb2_nv_set(ctx, VB2_NV_DISABLE_DEV_REQUEST, 0);
}
/* Check virtual dev switch */
if (flags & VB2_SECDATA_FLAG_DEV_MODE)
is_dev = 1;
/* Handle forcing dev mode via physical switch */
if (ctx->flags & VB2_CONTEXT_FORCE_DEVELOPER_MODE)
is_dev = 1;
/* Check if GBB is forcing dev mode */
if (sd->gbb_flags & VB2_GBB_FLAG_FORCE_DEV_SWITCH_ON)
is_dev = 1;
/* Handle whichever mode we end up in */
if (is_dev) {
/* Developer mode */
sd->flags |= VB2_SD_DEV_MODE_ENABLED;
ctx->flags |= VB2_CONTEXT_DEVELOPER_MODE;
flags |= VB2_SECDATA_FLAG_LAST_BOOT_DEVELOPER;
} else {
/* Normal mode */
flags &= ~VB2_SECDATA_FLAG_LAST_BOOT_DEVELOPER;
/*
* Disable dev_boot_* flags. This ensures they will be
* initially disabled if the user later transitions back into
* developer mode.
*/
vb2_nv_set(ctx, VB2_NV_DEV_BOOT_USB, 0);
vb2_nv_set(ctx, VB2_NV_DEV_BOOT_LEGACY, 0);
vb2_nv_set(ctx, VB2_NV_DEV_BOOT_SIGNED_ONLY, 0);
}
if (flags != old_flags) {
/*
* Just changed dev mode state. Clear TPM owner. This must be
* done here instead of simply passing a flag to
* vb2_check_tpm_clear(), because we don't want to update
* last_boot_developer and then fail to clear the TPM owner.
*/
rv = vb2ex_tpm_clear_owner(ctx);
if (rv) {
/*
* Note that this truncates rv to 8 bit. Which is not
* as useful as the full error code, but we don't have
* NVRAM space to store the full 32-bit code.
*/
vb2_fail(ctx, VB2_RECOVERY_TPM_CLEAR_OWNER, rv);
return rv;
}
/* Save new flags */
rv = vb2_secdata_set(ctx, VB2_SECDATA_FLAGS, flags);
if (rv)
return rv;
}
return VB2_SUCCESS;
}
int vb2_check_tpm_clear(struct vb2_context *ctx)
{
int rv;
/* Check if we've been asked to clear the owner */
if (!vb2_nv_get(ctx, VB2_NV_CLEAR_TPM_OWNER_REQUEST))
return VB2_SUCCESS; /* No need to clear */
/* Request applies one time only */
vb2_nv_set(ctx, VB2_NV_CLEAR_TPM_OWNER_REQUEST, 0);
/* Try clearing */
rv = vb2ex_tpm_clear_owner(ctx);
if (rv) {
/*
* Note that this truncates rv to 8 bit. Which is not as
* useful as the full error code, but we don't have NVRAM space
* to store the full 32-bit code.
*/
vb2_fail(ctx, VB2_RECOVERY_TPM_CLEAR_OWNER, rv);
return rv;
}
/* Clear successful */
vb2_nv_set(ctx, VB2_NV_CLEAR_TPM_OWNER_DONE, 1);
return VB2_SUCCESS;
}
int vb2_select_fw_slot(struct vb2_context *ctx)
{
struct vb2_shared_data *sd = vb2_get_sd(ctx);
uint32_t tries;
/* Get result of last boot */
sd->last_fw_slot = vb2_nv_get(ctx, VB2_NV_FW_TRIED);
sd->last_fw_result = vb2_nv_get(ctx, VB2_NV_FW_RESULT);
/* Clear result, since we don't know what will happen this boot */
vb2_nv_set(ctx, VB2_NV_FW_RESULT, VB2_FW_RESULT_UNKNOWN);
/* Get slot to try */
sd->fw_slot = vb2_nv_get(ctx, VB2_NV_TRY_NEXT);
/* Check try count */
tries = vb2_nv_get(ctx, VB2_NV_TRY_COUNT);
if (sd->last_fw_result == VB2_FW_RESULT_TRYING &&
sd->last_fw_slot == sd->fw_slot &&
tries == 0) {
/*
* We used up our last try on the previous boot, so fall back
* to the other slot this boot.
*/
sd->fw_slot = 1 - sd->fw_slot;
vb2_nv_set(ctx, VB2_NV_TRY_NEXT, sd->fw_slot);
}
if (tries > 0) {
/* Still trying this firmware */
vb2_nv_set(ctx, VB2_NV_FW_RESULT, VB2_FW_RESULT_TRYING);
/* Decrement non-zero try count */
vb2_nv_set(ctx, VB2_NV_TRY_COUNT, tries - 1);
}
/* Set context flag if we're using slot B */
if (sd->fw_slot)
ctx->flags |= VB2_CONTEXT_FW_SLOT_B;
/* Set status flag */
sd->status |= VB2_SD_STATUS_CHOSE_SLOT;
return VB2_SUCCESS;
}
int vb2_verify_fw_keyblock(struct vb2_context *ctx)
{
struct vb2_shared_data *sd = vb2_get_sd(ctx);
struct vb2_workbuf wb;
uint8_t *key_data;
uint32_t key_size;
struct vb2_packed_key *packed_key;
struct vb2_public_key root_key;
struct vb2_keyblock *kb;
uint32_t block_size;
uint32_t sec_version;
int rv;
vb2_workbuf_from_ctx(ctx, &wb);
/* Read the root key */
key_size = sd->gbb_rootkey_size;
key_data = vb2_workbuf_alloc(&wb, key_size);
if (!key_data)
return VB2_ERROR_FW_KEYBLOCK_WORKBUF_ROOT_KEY;
rv = vb2ex_read_resource(ctx, VB2_RES_GBB, sd->gbb_rootkey_offset,
key_data, key_size);
if (rv)
return rv;
/* Unpack the root key */
rv = vb2_unpack_key(&root_key, key_data, key_size);
if (rv)
return rv;
/* Load the firmware keyblock header after the root key */
kb = vb2_workbuf_alloc(&wb, sizeof(*kb));
if (!kb)
return VB2_ERROR_FW_KEYBLOCK_WORKBUF_HEADER;
rv = vb2ex_read_resource(ctx, VB2_RES_FW_VBLOCK, 0, kb, sizeof(*kb));
if (rv)
return rv;
block_size = kb->keyblock_size;
/*
* Load the entire keyblock, now that we know how big it is. Note that
* we're loading the entire keyblock instead of just the piece after
* the header. That means we re-read the header. But that's a tiny
* amount of data, and it makes the code much more straightforward.
*/
kb = vb2_workbuf_realloc(&wb, sizeof(*kb), block_size);
if (!kb)
return VB2_ERROR_FW_KEYBLOCK_WORKBUF;
rv = vb2ex_read_resource(ctx, VB2_RES_FW_VBLOCK, 0, kb, block_size);
if (rv)
return rv;
/* Verify the keyblock */
rv = vb2_verify_keyblock(kb, block_size, &root_key, &wb);
if (rv)
return rv;
/* Read the secure key version */
rv = vb2_secdata_get(ctx, VB2_SECDATA_VERSIONS, &sec_version);
if (rv)
return rv;
/* Key version is the upper 16 bits of the composite firmware version */
if (kb->data_key.key_version > 0xffff)
return VB2_ERROR_FW_KEYBLOCK_VERSION_RANGE;
if (kb->data_key.key_version < (sec_version >> 16))
return VB2_ERROR_FW_KEYBLOCK_VERSION_ROLLBACK;
sd->fw_version = kb->data_key.key_version << 16;
/*
* Save the data key in the work buffer. This overwrites the root key
* we read above. That's ok, because now that we have the data key we
* no longer need the root key.
*/
packed_key = (struct vb2_packed_key *)key_data;
packed_key->algorithm = kb->data_key.algorithm;
packed_key->key_version = kb->data_key.key_version;
packed_key->key_size = kb->data_key.key_size;
/*
* Use memmove() instead of memcpy(). In theory, the destination will
* never overlap because with the source because the root key is likely
* to be at least as large as the data key, but there's no harm here in
* being paranoid.
*/
memmove(key_data + packed_key->key_offset,
(uint8_t*)&kb->data_key + kb->data_key.key_offset,
packed_key->key_size);
/* Save the packed key offset and size */
sd->workbuf_data_key_offset = vb2_offset_of(ctx->workbuf, key_data);
sd->workbuf_data_key_size =
packed_key->key_offset + packed_key->key_size;
/* Preamble follows the keyblock in the vblock */
sd->vblock_preamble_offset = kb->keyblock_size;
/* Data key will persist in the workbuf after we return */
ctx->workbuf_used = sd->workbuf_data_key_offset +
sd->workbuf_data_key_size;
return VB2_SUCCESS;
}
// TODO: Terrible that this and the low-level verification want to have the
// same function name. Pick a better name...
int vb2_verify_fw_preamble2(struct vb2_context *ctx)
{
struct vb2_shared_data *sd = vb2_get_sd(ctx);
struct vb2_workbuf wb;
uint8_t *key_data = ctx->workbuf + sd->workbuf_data_key_offset;
uint32_t key_size = sd->workbuf_data_key_size;
struct vb2_public_key data_key;
/* Preamble goes in the next unused chunk of work buffer */
struct vb2_fw_preamble *pre;
uint32_t pre_size;
uint32_t sec_version;
int rv;
vb2_workbuf_from_ctx(ctx, &wb);
/* Unpack the firmware data key */
if (!sd->workbuf_data_key_size)
return VB2_ERROR_FW_PREAMBLE2_DATA_KEY;
rv = vb2_unpack_key(&data_key, key_data, key_size);
if (rv)
return rv;
/* Load the firmware preamble header */
pre = vb2_workbuf_alloc(&wb, sizeof(*pre));
if (!pre)
return VB2_ERROR_FW_PREAMBLE2_WORKBUF_HEADER;
rv = vb2ex_read_resource(ctx, VB2_RES_FW_VBLOCK,
sd->vblock_preamble_offset,
pre, sizeof(*pre));
if (rv)
return rv;
pre_size = pre->preamble_size;
/* Load the entire firmware preamble, now that we know how big it is */
pre = vb2_workbuf_realloc(&wb, sizeof(*pre), pre_size);
if (!pre)
return VB2_ERROR_FW_PREAMBLE2_WORKBUF;
rv = vb2ex_read_resource(ctx, VB2_RES_FW_VBLOCK,
sd->vblock_preamble_offset,
pre, pre_size);
if (rv)
return rv;
/* Work buffer now contains the data subkey data and the preamble */
/* Verify the preamble */
rv = vb2_verify_fw_preamble(pre, pre_size, &data_key, &wb);
if (rv)
return rv;
/* Read the secure key version */
rv = vb2_secdata_get(ctx, VB2_SECDATA_VERSIONS, &sec_version);
if (rv)
return rv;
/*
* Firmware version is the lower 16 bits of the composite firmware
* version.
*/
if (pre->firmware_version > 0xffff)
return VB2_ERROR_FW_PREAMBLE2_VERSION_RANGE;
/* Combine with the key version from vb2_verify_fw_keyblock() */
sd->fw_version |= pre->firmware_version;
if (sd->fw_version < sec_version)
return VB2_ERROR_FW_PREAMBLE2_VERSION_ROLLBACK;
/*
* If this is a newer version than in secure storage, and we
* successfully booted the same slot last boot, roll forward the
* version in secure storage.
*/
if (sd->fw_version > sec_version &&
sd->last_fw_slot == sd->fw_slot &&
sd->last_fw_result == VB2_FW_RESULT_SUCCESS) {
rv = vb2_secdata_set(ctx, VB2_SECDATA_VERSIONS, sd->fw_version);
if (rv)
return rv;
}
/* Keep track of where we put the preamble */
sd->workbuf_preamble_offset = vb2_offset_of(ctx->workbuf, pre);
sd->workbuf_preamble_size = pre_size;
/* Preamble will persist in work buffer after we return */
ctx->workbuf_used = sd->workbuf_preamble_offset + pre_size;
return VB2_SUCCESS;
}