| # Copyright 2002-2019 Gentoo Authors |
| # Distributed under the terms of the GNU General Public License v2 |
| |
| # @ECLASS: toolchain-funcs.eclass |
| # @MAINTAINER: |
| # Toolchain Ninjas <toolchain@gentoo.org> |
| # @BLURB: functions to query common info about the toolchain |
| # @DESCRIPTION: |
| # The toolchain-funcs aims to provide a complete suite of functions |
| # for gleaning useful information about the toolchain and to simplify |
| # ugly things like cross-compiling and multilib. All of this is done |
| # in such a way that you can rely on the function always returning |
| # something sane. |
| |
| if [[ -z ${_TOOLCHAIN_FUNCS_ECLASS} ]]; then |
| _TOOLCHAIN_FUNCS_ECLASS=1 |
| |
| inherit multilib flag-o-matic |
| |
| # tc-getPROG <VAR [search vars]> <default> [tuple] |
| _tc-getPROG() { |
| local tuple=$1 |
| local v var vars=$2 |
| local prog=( $3 ) |
| |
| var=${vars%% *} |
| for v in ${vars} ; do |
| if [[ -n ${!v} ]] ; then |
| export ${var}="${!v}" |
| echo "${!v}" |
| return 0 |
| fi |
| done |
| |
| local search= |
| [[ -n $4 ]] && search=$(type -p $4-${prog[0]}) |
| [[ -z ${search} && -n ${!tuple} ]] && search=$(type -p ${!tuple}-${prog[0]}) |
| [[ -n ${search} ]] && prog[0]=${search##*/} |
| |
| export ${var}="${prog[*]}" |
| echo "${!var}" |
| } |
| tc-getBUILD_PROG() { |
| local vars="BUILD_$1 $1_FOR_BUILD HOST$1" |
| # respect host vars if not cross-compiling |
| # https://bugs.gentoo.org/630282 |
| tc-is-cross-compiler || vars+=" $1" |
| _tc-getPROG CBUILD "${vars}" "${@:2}" |
| } |
| tc-getPROG() { _tc-getPROG CHOST "$@"; } |
| |
| # @FUNCTION: tc-getAR |
| # @USAGE: [toolchain prefix] |
| # @RETURN: name of the archiver |
| tc-getAR() { tc-getPROG AR ar "$@"; } |
| # @FUNCTION: tc-getAS |
| # @USAGE: [toolchain prefix] |
| # @RETURN: name of the assembler |
| tc-getAS() { tc-getPROG AS as "$@"; } |
| # @FUNCTION: tc-getCC |
| # @USAGE: [toolchain prefix] |
| # @RETURN: name of the C compiler |
| tc-getCC() { tc-getPROG CC gcc "$@"; } |
| # @FUNCTION: tc-getCPP |
| # @USAGE: [toolchain prefix] |
| # @RETURN: name of the C preprocessor |
| tc-getCPP() { tc-getPROG CPP "${CC:-gcc} -E" "$@"; } |
| # @FUNCTION: tc-getCXX |
| # @USAGE: [toolchain prefix] |
| # @RETURN: name of the C++ compiler |
| tc-getCXX() { tc-getPROG CXX g++ "$@"; } |
| # @FUNCTION: tc-getLD |
| # @USAGE: [toolchain prefix] |
| # @RETURN: name of the linker |
| tc-getLD() { tc-getPROG LD ld "$@"; } |
| # @FUNCTION: tc-getSTRINGS |
| # @USAGE: [toolchain prefix] |
| # @RETURN: name of the strings program |
| tc-getSTRINGS() { tc-getPROG STRINGS strings "$@"; } |
| # @FUNCTION: tc-getSTRIP |
| # @USAGE: [toolchain prefix] |
| # @RETURN: name of the strip program |
| tc-getSTRIP() { tc-getPROG STRIP strip "$@"; } |
| # @FUNCTION: tc-getNM |
| # @USAGE: [toolchain prefix] |
| # @RETURN: name of the symbol/object thingy |
| tc-getNM() { tc-getPROG NM nm "$@"; } |
| # @FUNCTION: tc-getRANLIB |
| # @USAGE: [toolchain prefix] |
| # @RETURN: name of the archive indexer |
| tc-getRANLIB() { tc-getPROG RANLIB ranlib "$@"; } |
| # @FUNCTION: tc-getREADELF |
| # @USAGE: [toolchain prefix] |
| # @RETURN: name of the ELF reader |
| tc-getREADELF() { tc-getPROG READELF readelf "$@"; } |
| # @FUNCTION: tc-getOBJCOPY |
| # @USAGE: [toolchain prefix] |
| # @RETURN: name of the object copier |
| tc-getOBJCOPY() { tc-getPROG OBJCOPY objcopy "$@"; } |
| # @FUNCTION: tc-getOBJDUMP |
| # @USAGE: [toolchain prefix] |
| # @RETURN: name of the object dumper |
| tc-getOBJDUMP() { tc-getPROG OBJDUMP objdump "$@"; } |
| # @FUNCTION: tc-getF77 |
| # @USAGE: [toolchain prefix] |
| # @RETURN: name of the Fortran 77 compiler |
| tc-getF77() { tc-getPROG F77 gfortran "$@"; } |
| # @FUNCTION: tc-getFC |
| # @USAGE: [toolchain prefix] |
| # @RETURN: name of the Fortran 90 compiler |
| tc-getFC() { tc-getPROG FC gfortran "$@"; } |
| # @FUNCTION: tc-getGCJ |
| # @USAGE: [toolchain prefix] |
| # @RETURN: name of the java compiler |
| tc-getGCJ() { tc-getPROG GCJ gcj "$@"; } |
| # @FUNCTION: tc-getGO |
| # @USAGE: [toolchain prefix] |
| # @RETURN: name of the Go compiler |
| tc-getGO() { tc-getPROG GO go "$@"; } |
| # @FUNCTION: tc-getPKG_CONFIG |
| # @USAGE: [toolchain prefix] |
| # @RETURN: name of the pkg-config tool |
| tc-getPKG_CONFIG() { tc-getPROG PKG_CONFIG pkg-config "$@"; } |
| # @FUNCTION: tc-getRC |
| # @USAGE: [toolchain prefix] |
| # @RETURN: name of the Windows resource compiler |
| tc-getRC() { tc-getPROG RC windres "$@"; } |
| # @FUNCTION: tc-getDLLWRAP |
| # @USAGE: [toolchain prefix] |
| # @RETURN: name of the Windows dllwrap utility |
| tc-getDLLWRAP() { tc-getPROG DLLWRAP dllwrap "$@"; } |
| |
| # @FUNCTION: tc-getBUILD_AR |
| # @USAGE: [toolchain prefix] |
| # @RETURN: name of the archiver for building binaries to run on the build machine |
| tc-getBUILD_AR() { tc-getBUILD_PROG AR ar "$@"; } |
| # @FUNCTION: tc-getBUILD_AS |
| # @USAGE: [toolchain prefix] |
| # @RETURN: name of the assembler for building binaries to run on the build machine |
| tc-getBUILD_AS() { tc-getBUILD_PROG AS as "$@"; } |
| # @FUNCTION: tc-getBUILD_CC |
| # @USAGE: [toolchain prefix] |
| # @RETURN: name of the C compiler for building binaries to run on the build machine |
| tc-getBUILD_CC() { tc-getBUILD_PROG CC gcc "$@"; } |
| # @FUNCTION: tc-getBUILD_CPP |
| # @USAGE: [toolchain prefix] |
| # @RETURN: name of the C preprocessor for building binaries to run on the build machine |
| tc-getBUILD_CPP() { tc-getBUILD_PROG CPP "$(tc-getBUILD_CC) -E" "$@"; } |
| # @FUNCTION: tc-getBUILD_CXX |
| # @USAGE: [toolchain prefix] |
| # @RETURN: name of the C++ compiler for building binaries to run on the build machine |
| tc-getBUILD_CXX() { tc-getBUILD_PROG CXX g++ "$@"; } |
| # @FUNCTION: tc-getBUILD_LD |
| # @USAGE: [toolchain prefix] |
| # @RETURN: name of the linker for building binaries to run on the build machine |
| tc-getBUILD_LD() { tc-getBUILD_PROG LD ld "$@"; } |
| # @FUNCTION: tc-getBUILD_STRINGS |
| # @USAGE: [toolchain prefix] |
| # @RETURN: name of the strings program for building binaries to run on the build machine |
| tc-getBUILD_STRINGS() { tc-getBUILD_PROG STRINGS strings "$@"; } |
| # @FUNCTION: tc-getBUILD_STRIP |
| # @USAGE: [toolchain prefix] |
| # @RETURN: name of the strip program for building binaries to run on the build machine |
| tc-getBUILD_STRIP() { tc-getBUILD_PROG STRIP strip "$@"; } |
| # @FUNCTION: tc-getBUILD_NM |
| # @USAGE: [toolchain prefix] |
| # @RETURN: name of the symbol/object thingy for building binaries to run on the build machine |
| tc-getBUILD_NM() { tc-getBUILD_PROG NM nm "$@"; } |
| # @FUNCTION: tc-getBUILD_RANLIB |
| # @USAGE: [toolchain prefix] |
| # @RETURN: name of the archive indexer for building binaries to run on the build machine |
| tc-getBUILD_RANLIB() { tc-getBUILD_PROG RANLIB ranlib "$@"; } |
| # @FUNCTION: tc-getBUILD_READELF |
| # @USAGE: [toolchain prefix] |
| # @RETURN: name of the ELF reader for building binaries to run on the build machine |
| tc-getBUILD_READELF() { tc-getBUILD_PROG READELF readelf "$@"; } |
| # @FUNCTION: tc-getBUILD_OBJCOPY |
| # @USAGE: [toolchain prefix] |
| # @RETURN: name of the object copier for building binaries to run on the build machine |
| tc-getBUILD_OBJCOPY() { tc-getBUILD_PROG OBJCOPY objcopy "$@"; } |
| # @FUNCTION: tc-getBUILD_PKG_CONFIG |
| # @USAGE: [toolchain prefix] |
| # @RETURN: name of the pkg-config tool for building binaries to run on the build machine |
| tc-getBUILD_PKG_CONFIG() { tc-getBUILD_PROG PKG_CONFIG pkg-config "$@"; } |
| |
| # @FUNCTION: tc-getTARGET_CPP |
| # @USAGE: [toolchain prefix] |
| # @RETURN: name of the C preprocessor for the toolchain being built (or used) |
| tc-getTARGET_CPP() { |
| if [[ -n ${CTARGET} ]]; then |
| _tc-getPROG CTARGET TARGET_CPP "gcc -E" "$@" |
| else |
| tc-getCPP "$@" |
| fi |
| } |
| |
| # @FUNCTION: tc-export |
| # @USAGE: <list of toolchain variables> |
| # @DESCRIPTION: |
| # Quick way to export a bunch of compiler vars at once. |
| tc-export() { |
| local var |
| for var in "$@" ; do |
| [[ $(type -t "tc-get${var}") != "function" ]] && die "tc-export: invalid export variable '${var}'" |
| "tc-get${var}" > /dev/null |
| done |
| } |
| |
| # @FUNCTION: tc-is-cross-compiler |
| # @RETURN: Shell true if we are using a cross-compiler, shell false otherwise |
| tc-is-cross-compiler() { |
| [[ ${CBUILD:-${CHOST}} != ${CHOST} ]] |
| } |
| |
| # @FUNCTION: tc-cpp-is-true |
| # @USAGE: <condition> [cpp flags] |
| # @RETURN: Shell true if the condition is true, shell false otherwise. |
| # @DESCRIPTION: |
| # Evaluate the given condition using the C preprocessor for CTARGET, if |
| # defined, or CHOST. Additional arguments are passed through to the cpp |
| # command. A typical condition would be in the form defined(__FOO__). |
| tc-cpp-is-true() { |
| local CONDITION=${1} |
| shift |
| |
| $(tc-getTARGET_CPP) "${@}" -P - <<-EOF >/dev/null 2>&1 |
| #if ${CONDITION} |
| true |
| #else |
| #error false |
| #endif |
| EOF |
| } |
| |
| # @FUNCTION: tc-detect-is-softfloat |
| # @RETURN: Shell true if detection was possible, shell false otherwise |
| # @DESCRIPTION: |
| # Detect whether the CTARGET (or CHOST) toolchain is a softfloat based |
| # one by examining the toolchain's output, if possible. Outputs a value |
| # alike tc-is-softfloat if detection was possible. |
| tc-detect-is-softfloat() { |
| # If fetching CPP falls back to the default (gcc -E) then fail |
| # detection as this may not be the correct toolchain. |
| [[ $(tc-getTARGET_CPP) == "gcc -E" ]] && return 1 |
| |
| case ${CTARGET:-${CHOST}} in |
| # Avoid autodetection for bare-metal targets. bug #666896 |
| *-newlib|*-elf|*-eabi) |
| return 1 ;; |
| |
| # arm-unknown-linux-gnueabi is ambiguous. We used to treat it as |
| # hardfloat but we now treat it as softfloat like most everyone |
| # else. Check existing toolchains to respect existing systems. |
| arm*) |
| if tc-cpp-is-true "defined(__ARM_PCS_VFP)"; then |
| echo "no" |
| else |
| # Confusingly __SOFTFP__ is defined only when |
| # -mfloat-abi is soft, not softfp. |
| if tc-cpp-is-true "defined(__SOFTFP__)"; then |
| echo "yes" |
| else |
| echo "softfp" |
| fi |
| fi |
| |
| return 0 ;; |
| *) |
| return 1 ;; |
| esac |
| } |
| |
| # @FUNCTION: tc-tuple-is-softfloat |
| # @RETURN: See tc-is-softfloat for the possible values. |
| # @DESCRIPTION: |
| # Determine whether the CTARGET (or CHOST) toolchain is a softfloat |
| # based one solely from the tuple. |
| tc-tuple-is-softfloat() { |
| local CTARGET=${CTARGET:-${CHOST}} |
| case ${CTARGET//_/-} in |
| bfin*|h8300*) |
| echo "only" ;; |
| *-softfloat-*) |
| echo "yes" ;; |
| *-softfp-*) |
| echo "softfp" ;; |
| arm*-hardfloat-*|arm*eabihf) |
| echo "no" ;; |
| # bare-metal targets have their defaults. bug #666896 |
| *-newlib|*-elf|*-eabi) |
| echo "no" ;; |
| arm*) |
| echo "yes" ;; |
| *) |
| echo "no" ;; |
| esac |
| } |
| |
| # @FUNCTION: tc-is-softfloat |
| # @DESCRIPTION: |
| # See if this toolchain is a softfloat based one. |
| # @CODE |
| # The possible return values: |
| # - only: the target is always softfloat (never had fpu) |
| # - yes: the target should support softfloat |
| # - softfp: (arm specific) the target should use hardfloat insns, but softfloat calling convention |
| # - no: the target doesn't support softfloat |
| # @CODE |
| # This allows us to react differently where packages accept |
| # softfloat flags in the case where support is optional, but |
| # rejects softfloat flags where the target always lacks an fpu. |
| tc-is-softfloat() { |
| tc-detect-is-softfloat || tc-tuple-is-softfloat |
| } |
| |
| # @FUNCTION: tc-is-static-only |
| # @DESCRIPTION: |
| # Return shell true if the target does not support shared libs, shell false |
| # otherwise. |
| tc-is-static-only() { |
| local host=${CTARGET:-${CHOST}} |
| |
| # *MiNT doesn't have shared libraries, only platform so far |
| [[ ${host} == *-mint* ]] |
| } |
| |
| # @FUNCTION: tc-stack-grows-down |
| # @DESCRIPTION: |
| # Return shell true if the stack grows down. This is the default behavior |
| # for the vast majority of systems out there and usually projects shouldn't |
| # care about such internal details. |
| tc-stack-grows-down() { |
| # List the few that grow up. |
| case ${ARCH} in |
| hppa|metag) return 1 ;; |
| esac |
| |
| # Assume all others grow down. |
| return 0 |
| } |
| |
| # @FUNCTION: tc-export_build_env |
| # @USAGE: [compiler variables] |
| # @DESCRIPTION: |
| # Export common build related compiler settings. |
| tc-export_build_env() { |
| tc-export "$@" |
| if tc-is-cross-compiler; then |
| # Some build envs will initialize vars like: |
| # : ${BUILD_LDFLAGS:-${LDFLAGS}} |
| # So make sure all variables are non-empty. #526734 |
| : ${BUILD_CFLAGS:=-O1 -pipe} |
| : ${BUILD_CXXFLAGS:=-O1 -pipe} |
| : ${BUILD_CPPFLAGS:= } |
| : ${BUILD_LDFLAGS:= } |
| else |
| # https://bugs.gentoo.org/654424 |
| : ${BUILD_CFLAGS:=${CFLAGS}} |
| : ${BUILD_CXXFLAGS:=${CXXFLAGS}} |
| : ${BUILD_CPPFLAGS:=${CPPFLAGS}} |
| : ${BUILD_LDFLAGS:=${LDFLAGS}} |
| fi |
| export BUILD_{C,CXX,CPP,LD}FLAGS |
| |
| # Some packages use XXX_FOR_BUILD. |
| local v |
| for v in BUILD_{C,CXX,CPP,LD}FLAGS ; do |
| export ${v#BUILD_}_FOR_BUILD="${!v}" |
| done |
| } |
| |
| # @FUNCTION: tc-env_build |
| # @USAGE: <command> [command args] |
| # @INTERNAL |
| # @DESCRIPTION: |
| # Setup the compile environment to the build tools and then execute the |
| # specified command. We use tc-getBUILD_XX here so that we work with |
| # all of the semi-[non-]standard env vars like $BUILD_CC which often |
| # the target build system does not check. |
| tc-env_build() { |
| tc-export_build_env |
| CFLAGS=${BUILD_CFLAGS} \ |
| CXXFLAGS=${BUILD_CXXFLAGS} \ |
| CPPFLAGS=${BUILD_CPPFLAGS} \ |
| LDFLAGS=${BUILD_LDFLAGS} \ |
| AR=$(tc-getBUILD_AR) \ |
| AS=$(tc-getBUILD_AS) \ |
| CC=$(tc-getBUILD_CC) \ |
| CPP=$(tc-getBUILD_CPP) \ |
| CXX=$(tc-getBUILD_CXX) \ |
| LD=$(tc-getBUILD_LD) \ |
| NM=$(tc-getBUILD_NM) \ |
| PKG_CONFIG=$(tc-getBUILD_PKG_CONFIG) \ |
| RANLIB=$(tc-getBUILD_RANLIB) \ |
| READELF=$(tc-getBUILD_READELF) \ |
| "$@" |
| } |
| |
| # @FUNCTION: econf_build |
| # @USAGE: [econf flags] |
| # @DESCRIPTION: |
| # Sometimes we need to locally build up some tools to run on CBUILD because |
| # the package has helper utils which are compiled+executed when compiling. |
| # This won't work when cross-compiling as the CHOST is set to a target which |
| # we cannot natively execute. |
| # |
| # For example, the python package will build up a local python binary using |
| # a portable build system (configure+make), but then use that binary to run |
| # local python scripts to build up other components of the overall python. |
| # We cannot rely on the python binary in $PATH as that often times will be |
| # a different version, or not even installed in the first place. Instead, |
| # we compile the code in a different directory to run on CBUILD, and then |
| # use that binary when compiling the main package to run on CHOST. |
| # |
| # For example, with newer EAPIs, you'd do something like: |
| # @CODE |
| # src_configure() { |
| # ECONF_SOURCE=${S} |
| # if tc-is-cross-compiler ; then |
| # mkdir "${WORKDIR}"/${CBUILD} |
| # pushd "${WORKDIR}"/${CBUILD} >/dev/null |
| # econf_build --disable-some-unused-stuff |
| # popd >/dev/null |
| # fi |
| # ... normal build paths ... |
| # } |
| # src_compile() { |
| # if tc-is-cross-compiler ; then |
| # pushd "${WORKDIR}"/${CBUILD} >/dev/null |
| # emake one-or-two-build-tools |
| # ln/mv build-tools to normal build paths in ${S}/ |
| # popd >/dev/null |
| # fi |
| # ... normal build paths ... |
| # } |
| # @CODE |
| econf_build() { |
| local CBUILD=${CBUILD:-${CHOST}} |
| tc-env_build econf --build=${CBUILD} --host=${CBUILD} "$@" |
| } |
| |
| # @FUNCTION: tc-ld-is-gold |
| # @USAGE: [toolchain prefix] |
| # @DESCRIPTION: |
| # Return true if the current linker is set to gold. |
| tc-ld-is-gold() { |
| local out |
| |
| # First check the linker directly. |
| out=$($(tc-getLD "$@") --version 2>&1) |
| if [[ ${out} == *"GNU gold"* ]] ; then |
| return 0 |
| fi |
| |
| # Then see if they're selecting gold via compiler flags. |
| # Note: We're assuming they're using LDFLAGS to hold the |
| # options and not CFLAGS/CXXFLAGS. |
| local base="${T}/test-tc-gold" |
| cat <<-EOF > "${base}.c" |
| int main() { return 0; } |
| EOF |
| out=$($(tc-getCC "$@") ${CFLAGS} ${CPPFLAGS} ${LDFLAGS} -Wl,--version "${base}.c" -o "${base}" 2>&1) |
| rm -f "${base}"* |
| if [[ ${out} == *"GNU gold"* ]] ; then |
| return 0 |
| fi |
| |
| # No gold here! |
| return 1 |
| } |
| |
| # @FUNCTION: tc-ld-is-lld |
| # @USAGE: [toolchain prefix] |
| # @DESCRIPTION: |
| # Return true if the current linker is set to lld. |
| tc-ld-is-lld() { |
| local out |
| |
| # First check the linker directly. |
| out=$($(tc-getLD "$@") --version 2>&1) |
| if [[ ${out} == *"LLD"* ]] ; then |
| return 0 |
| fi |
| |
| # Then see if they're selecting lld via compiler flags. |
| # Note: We're assuming they're using LDFLAGS to hold the |
| # options and not CFLAGS/CXXFLAGS. |
| local base="${T}/test-tc-lld" |
| cat <<-EOF > "${base}.c" |
| int main() { return 0; } |
| EOF |
| out=$($(tc-getCC "$@") ${CFLAGS} ${CPPFLAGS} ${LDFLAGS} -Wl,--version "${base}.c" -o "${base}" 2>&1) |
| rm -f "${base}"* |
| if [[ ${out} == *"LLD"* ]] ; then |
| return 0 |
| fi |
| |
| # No lld here! |
| return 1 |
| } |
| |
| # @FUNCTION: tc-ld-disable-gold |
| # @USAGE: [toolchain prefix] |
| # @DESCRIPTION: |
| # If the gold linker is currently selected, configure the compilation |
| # settings so that we use the older bfd linker instead. |
| tc-ld-disable-gold() { |
| if ! tc-ld-is-gold "$@" ; then |
| # They aren't using gold, so nothing to do! |
| return |
| fi |
| |
| ewarn "Forcing usage of the BFD linker instead of GOLD" |
| |
| # Set up LD to point directly to bfd if it's available. |
| # We need to extract the first word in case there are flags appended |
| # to its value (like multilib). #545218 |
| local ld=$(tc-getLD "$@") |
| local bfd_ld="${ld%% *}.bfd" |
| local path_ld=$(which "${bfd_ld}" 2>/dev/null) |
| [[ -e ${path_ld} ]] && export LD=${bfd_ld} |
| |
| # Set up LDFLAGS to select gold based on the gcc / clang version. |
| local fallback="true" |
| if tc-is-gcc; then |
| local major=$(gcc-major-version "$@") |
| local minor=$(gcc-minor-version "$@") |
| if [[ ${major} -gt 4 ]] || [[ ${major} -eq 4 && ${minor} -ge 8 ]]; then |
| # gcc-4.8+ supports -fuse-ld directly. |
| export LDFLAGS="${LDFLAGS} -fuse-ld=bfd" |
| fallback="false" |
| fi |
| elif tc-is-clang; then |
| local major=$(clang-major-version "$@") |
| local minor=$(clang-minor-version "$@") |
| if [[ ${major} -gt 3 ]] || [[ ${major} -eq 3 && ${minor} -ge 5 ]]; then |
| # clang-3.5+ supports -fuse-ld directly. |
| export LDFLAGS="${LDFLAGS} -fuse-ld=bfd" |
| fallback="false" |
| fi |
| fi |
| if [[ ${fallback} == "true" ]] ; then |
| # <=gcc-4.7 and <=clang-3.4 require some coercion. |
| # Only works if bfd exists. |
| if [[ -e ${path_ld} ]] ; then |
| local d="${T}/bfd-linker" |
| mkdir -p "${d}" |
| ln -sf "${path_ld}" "${d}"/ld |
| export LDFLAGS="${LDFLAGS} -B${d}" |
| else |
| die "unable to locate a BFD linker to bypass gold" |
| fi |
| fi |
| } |
| |
| # @FUNCTION: tc-has-openmp |
| # @USAGE: [toolchain prefix] |
| # @DESCRIPTION: |
| # See if the toolchain supports OpenMP. |
| tc-has-openmp() { |
| local base="${T}/test-tc-openmp" |
| cat <<-EOF > "${base}.c" |
| #include <omp.h> |
| int main() { |
| int nthreads, tid, ret = 0; |
| #pragma omp parallel private(nthreads, tid) |
| { |
| tid = omp_get_thread_num(); |
| nthreads = omp_get_num_threads(); ret += tid + nthreads; |
| } |
| return ret; |
| } |
| EOF |
| $(tc-getCC "$@") -fopenmp "${base}.c" -o "${base}" >&/dev/null |
| local ret=$? |
| rm -f "${base}"* |
| return ${ret} |
| } |
| |
| # @FUNCTION: tc-check-openmp |
| # @DESCRIPTION: |
| # Test for OpenMP support with the current compiler and error out with |
| # a clear error message, telling the user how to rectify the missing |
| # OpenMP support that has been requested by the ebuild. Using this function |
| # to test for OpenMP support should be preferred over tc-has-openmp and |
| # printing a custom message, as it presents a uniform interface to the user. |
| tc-check-openmp() { |
| if ! tc-has-openmp; then |
| eerror "Your current compiler does not support OpenMP!" |
| |
| if tc-is-gcc; then |
| eerror "Enable OpenMP support by building sys-devel/gcc with USE=\"openmp\"." |
| elif tc-is-clang; then |
| eerror "OpenMP support in sys-devel/clang is provided by sys-libs/libomp." |
| fi |
| |
| die "Active compiler does not have required support for OpenMP" |
| fi |
| } |
| |
| # @FUNCTION: tc-has-tls |
| # @USAGE: [-s|-c|-l] [toolchain prefix] |
| # @DESCRIPTION: |
| # See if the toolchain supports thread local storage (TLS). Use -s to test the |
| # compiler, -c to also test the assembler, and -l to also test the C library |
| # (the default). |
| tc-has-tls() { |
| local base="${T}/test-tc-tls" |
| cat <<-EOF > "${base}.c" |
| int foo(int *i) { |
| static __thread int j = 0; |
| return *i ? j : *i; |
| } |
| EOF |
| local flags |
| case $1 in |
| -s) flags="-S";; |
| -c) flags="-c";; |
| -l) ;; |
| -*) die "Usage: tc-has-tls [-c|-l] [toolchain prefix]";; |
| esac |
| : ${flags:=-fPIC -shared -Wl,-z,defs} |
| [[ $1 == -* ]] && shift |
| $(tc-getCC "$@") ${flags} "${base}.c" -o "${base}" >&/dev/null |
| local ret=$? |
| rm -f "${base}"* |
| return ${ret} |
| } |
| |
| |
| # Parse information from CBUILD/CHOST/CTARGET rather than |
| # use external variables from the profile. |
| tc-ninja_magic_to_arch() { |
| ninj() { [[ ${type} == "kern" ]] && echo $1 || echo $2 ; } |
| |
| local type=$1 |
| local host=$2 |
| [[ -z ${host} ]] && host=${CTARGET:-${CHOST}} |
| |
| case ${host} in |
| aarch64*) echo arm64;; |
| alpha*) echo alpha;; |
| arm*) echo arm;; |
| avr*) ninj avr32 avr;; |
| bfin*) ninj blackfin bfin;; |
| c6x*) echo c6x;; |
| cris*) echo cris;; |
| frv*) echo frv;; |
| hexagon*) echo hexagon;; |
| hppa*) ninj parisc hppa;; |
| i?86*) |
| # Starting with linux-2.6.24, the 'x86_64' and 'i386' |
| # trees have been unified into 'x86'. |
| # FreeBSD still uses i386 |
| if [[ ${type} == "kern" && ${host} == *freebsd* ]] ; then |
| echo i386 |
| else |
| echo x86 |
| fi |
| ;; |
| ia64*) echo ia64;; |
| m68*) echo m68k;; |
| metag*) echo metag;; |
| microblaze*) echo microblaze;; |
| mips*) echo mips;; |
| nios2*) echo nios2;; |
| nios*) echo nios;; |
| or1k|or32*) echo openrisc;; |
| powerpc*) |
| # Starting with linux-2.6.15, the 'ppc' and 'ppc64' trees |
| # have been unified into simply 'powerpc', but until 2.6.16, |
| # ppc32 is still using ARCH="ppc" as default |
| if [[ ${type} == "kern" ]] ; then |
| echo powerpc |
| elif [[ ${host} == powerpc64* ]] ; then |
| echo ppc64 |
| else |
| echo ppc |
| fi |
| ;; |
| riscv*) echo riscv;; |
| s390*) echo s390;; |
| score*) echo score;; |
| sh64*) ninj sh64 sh;; |
| sh*) echo sh;; |
| sparc64*) ninj sparc64 sparc;; |
| sparc*) [[ ${PROFILE_ARCH} == "sparc64" ]] \ |
| && ninj sparc64 sparc \ |
| || echo sparc |
| ;; |
| tile*) echo tile;; |
| vax*) echo vax;; |
| x86_64*freebsd*) echo amd64;; |
| x86_64*) |
| # Starting with linux-2.6.24, the 'x86_64' and 'i386' |
| # trees have been unified into 'x86'. |
| if [[ ${type} == "kern" ]] ; then |
| echo x86 |
| else |
| echo amd64 |
| fi |
| ;; |
| xtensa*) echo xtensa;; |
| |
| # since our usage of tc-arch is largely concerned with |
| # normalizing inputs for testing ${CTARGET}, let's filter |
| # other cross targets (mingw and such) into the unknown. |
| *) echo unknown;; |
| esac |
| } |
| # @FUNCTION: tc-arch-kernel |
| # @USAGE: [toolchain prefix] |
| # @RETURN: name of the kernel arch according to the compiler target |
| tc-arch-kernel() { |
| tc-ninja_magic_to_arch kern "$@" |
| } |
| # @FUNCTION: tc-arch |
| # @USAGE: [toolchain prefix] |
| # @RETURN: name of the portage arch according to the compiler target |
| tc-arch() { |
| tc-ninja_magic_to_arch portage "$@" |
| } |
| |
| tc-endian() { |
| local host=$1 |
| [[ -z ${host} ]] && host=${CTARGET:-${CHOST}} |
| host=${host%%-*} |
| |
| case ${host} in |
| aarch64*be) echo big;; |
| aarch64) echo little;; |
| alpha*) echo little;; |
| arm*b*) echo big;; |
| arm*) echo little;; |
| cris*) echo little;; |
| hppa*) echo big;; |
| i?86*) echo little;; |
| ia64*) echo little;; |
| m68*) echo big;; |
| mips*l*) echo little;; |
| mips*) echo big;; |
| powerpc*le) echo little;; |
| powerpc*) echo big;; |
| riscv*) echo little;; |
| s390*) echo big;; |
| sh*b*) echo big;; |
| sh*) echo little;; |
| sparc*) echo big;; |
| x86_64*) echo little;; |
| *) echo wtf;; |
| esac |
| } |
| |
| # @FUNCTION: tc-get-compiler-type |
| # @RETURN: keyword identifying the compiler: gcc, clang, pathcc, unknown |
| tc-get-compiler-type() { |
| local code=' |
| #if defined(__PATHSCALE__) |
| HAVE_PATHCC |
| #elif defined(__clang__) |
| HAVE_CLANG |
| #elif defined(__GNUC__) |
| HAVE_GCC |
| #endif |
| ' |
| local res=$($(tc-getCPP "$@") -E -P - <<<"${code}") |
| |
| case ${res} in |
| *HAVE_PATHCC*) echo pathcc;; |
| *HAVE_CLANG*) echo clang;; |
| *HAVE_GCC*) echo gcc;; |
| *) echo unknown;; |
| esac |
| } |
| |
| # @FUNCTION: tc-is-gcc |
| # @RETURN: Shell true if the current compiler is GCC, false otherwise. |
| tc-is-gcc() { |
| [[ $(tc-get-compiler-type) == gcc ]] |
| } |
| |
| # @FUNCTION: tc-is-clang |
| # @RETURN: Shell true if the current compiler is clang, false otherwise. |
| tc-is-clang() { |
| [[ $(tc-get-compiler-type) == clang ]] |
| } |
| |
| # Internal func. The first argument is the version info to expand. |
| # Query the preprocessor to improve compatibility across different |
| # compilers rather than maintaining a --version flag matrix. #335943 |
| _gcc_fullversion() { |
| local ver="$1"; shift |
| set -- $($(tc-getCPP "$@") -E -P - <<<"__GNUC__ __GNUC_MINOR__ __GNUC_PATCHLEVEL__") |
| eval echo "$ver" |
| } |
| |
| # @FUNCTION: gcc-fullversion |
| # @RETURN: compiler version (major.minor.micro: [3.4.6]) |
| gcc-fullversion() { |
| _gcc_fullversion '$1.$2.$3' "$@" |
| } |
| # @FUNCTION: gcc-version |
| # @RETURN: compiler version (major.minor: [3.4].6) |
| gcc-version() { |
| _gcc_fullversion '$1.$2' "$@" |
| } |
| # @FUNCTION: gcc-major-version |
| # @RETURN: major compiler version (major: [3].4.6) |
| gcc-major-version() { |
| _gcc_fullversion '$1' "$@" |
| } |
| # @FUNCTION: gcc-minor-version |
| # @RETURN: minor compiler version (minor: 3.[4].6) |
| gcc-minor-version() { |
| _gcc_fullversion '$2' "$@" |
| } |
| # @FUNCTION: gcc-micro-version |
| # @RETURN: micro compiler version (micro: 3.4.[6]) |
| gcc-micro-version() { |
| _gcc_fullversion '$3' "$@" |
| } |
| |
| # Internal func. Based on _gcc_fullversion() above. |
| _clang_fullversion() { |
| local ver="$1"; shift |
| set -- $($(tc-getCPP "$@") -E -P - <<<"__clang_major__ __clang_minor__ __clang_patchlevel__") |
| eval echo "$ver" |
| } |
| |
| # @FUNCTION: clang-fullversion |
| # @RETURN: compiler version (major.minor.micro: [3.4.6]) |
| clang-fullversion() { |
| _clang_fullversion '$1.$2.$3' "$@" |
| } |
| # @FUNCTION: clang-version |
| # @RETURN: compiler version (major.minor: [3.4].6) |
| clang-version() { |
| _clang_fullversion '$1.$2' "$@" |
| } |
| # @FUNCTION: clang-major-version |
| # @RETURN: major compiler version (major: [3].4.6) |
| clang-major-version() { |
| _clang_fullversion '$1' "$@" |
| } |
| # @FUNCTION: clang-minor-version |
| # @RETURN: minor compiler version (minor: 3.[4].6) |
| clang-minor-version() { |
| _clang_fullversion '$2' "$@" |
| } |
| # @FUNCTION: clang-micro-version |
| # @RETURN: micro compiler version (micro: 3.4.[6]) |
| clang-micro-version() { |
| _clang_fullversion '$3' "$@" |
| } |
| |
| # Returns the installation directory - internal toolchain |
| # function for use by _gcc-specs-exists (for flag-o-matic). |
| _gcc-install-dir() { |
| echo "$(LC_ALL=C $(tc-getCC) -print-search-dirs 2> /dev/null |\ |
| awk '$1=="install:" {print $2}')" |
| } |
| # Returns true if the indicated specs file exists - internal toolchain |
| # function for use by flag-o-matic. |
| _gcc-specs-exists() { |
| [[ -f $(_gcc-install-dir)/$1 ]] |
| } |
| |
| # Returns requested gcc specs directive unprocessed - for used by |
| # gcc-specs-directive() |
| # Note; later specs normally overwrite earlier ones; however if a later |
| # spec starts with '+' then it appends. |
| # gcc -dumpspecs is parsed first, followed by files listed by "gcc -v" |
| # as "Reading <file>", in order. Strictly speaking, if there's a |
| # $(gcc_install_dir)/specs, the built-in specs aren't read, however by |
| # the same token anything from 'gcc -dumpspecs' is overridden by |
| # the contents of $(gcc_install_dir)/specs so the result is the |
| # same either way. |
| _gcc-specs-directive_raw() { |
| local cc=$(tc-getCC) |
| local specfiles=$(LC_ALL=C ${cc} -v 2>&1 | awk '$1=="Reading" {print $NF}') |
| ${cc} -dumpspecs 2> /dev/null | cat - ${specfiles} | awk -v directive=$1 \ |
| 'BEGIN { pspec=""; spec=""; outside=1 } |
| $1=="*"directive":" { pspec=spec; spec=""; outside=0; next } |
| outside || NF==0 || ( substr($1,1,1)=="*" && substr($1,length($1),1)==":" ) { outside=1; next } |
| spec=="" && substr($0,1,1)=="+" { spec=pspec " " substr($0,2); next } |
| { spec=spec $0 } |
| END { print spec }' |
| return 0 |
| } |
| |
| # Return the requested gcc specs directive, with all included |
| # specs expanded. |
| # Note, it does not check for inclusion loops, which cause it |
| # to never finish - but such loops are invalid for gcc and we're |
| # assuming gcc is operational. |
| gcc-specs-directive() { |
| local directive subdname subdirective |
| directive="$(_gcc-specs-directive_raw $1)" |
| while [[ ${directive} == *%\(*\)* ]]; do |
| subdname=${directive/*%\(} |
| subdname=${subdname/\)*} |
| subdirective="$(_gcc-specs-directive_raw ${subdname})" |
| directive="${directive//\%(${subdname})/${subdirective}}" |
| done |
| echo "${directive}" |
| return 0 |
| } |
| |
| # Returns true if gcc sets relro |
| gcc-specs-relro() { |
| local directive |
| directive=$(gcc-specs-directive link_command) |
| [[ "${directive/\{!norelro:}" != "${directive}" ]] |
| } |
| # Returns true if gcc sets now |
| gcc-specs-now() { |
| local directive |
| directive=$(gcc-specs-directive link_command) |
| [[ "${directive/\{!nonow:}" != "${directive}" ]] |
| } |
| # Returns true if gcc builds PIEs |
| gcc-specs-pie() { |
| local directive |
| directive=$(gcc-specs-directive cc1) |
| [[ "${directive/\{!nopie:}" != "${directive}" ]] |
| } |
| # Returns true if gcc builds with the stack protector |
| gcc-specs-ssp() { |
| local directive |
| directive=$(gcc-specs-directive cc1) |
| [[ "${directive/\{!fno-stack-protector:}" != "${directive}" ]] |
| } |
| # Returns true if gcc upgrades fstack-protector to fstack-protector-all |
| gcc-specs-ssp-to-all() { |
| local directive |
| directive=$(gcc-specs-directive cc1) |
| [[ "${directive/\{!fno-stack-protector-all:}" != "${directive}" ]] |
| } |
| # Returns true if gcc builds with fno-strict-overflow |
| gcc-specs-nostrict() { |
| local directive |
| directive=$(gcc-specs-directive cc1) |
| [[ "${directive/\{!fstrict-overflow:}" != "${directive}" ]] |
| } |
| # Returns true if gcc builds with fstack-check |
| gcc-specs-stack-check() { |
| local directive |
| directive=$(gcc-specs-directive cc1) |
| [[ "${directive/\{!fno-stack-check:}" != "${directive}" ]] |
| } |
| |
| |
| # @FUNCTION: tc-enables-pie |
| # @RETURN: Truth if the current compiler generates position-independent code (PIC) which can be linked into executables |
| # @DESCRIPTION: |
| # Return truth if the current compiler generates position-independent code (PIC) |
| # which can be linked into executables. |
| tc-enables-pie() { |
| tc-cpp-is-true "defined(__PIE__)" ${CPPFLAGS} ${CFLAGS} |
| } |
| |
| # @FUNCTION: tc-enables-ssp |
| # @RETURN: Truth if the current compiler enables stack smashing protection (SSP) on at least minimal level |
| # @DESCRIPTION: |
| # Return truth if the current compiler enables stack smashing protection (SSP) |
| # on level corresponding to any of the following options: |
| # -fstack-protector |
| # -fstack-protector-strong |
| # -fstack-protector-all |
| tc-enables-ssp() { |
| tc-cpp-is-true "defined(__SSP__) || defined(__SSP_STRONG__) || defined(__SSP_ALL__)" ${CPPFLAGS} ${CFLAGS} |
| } |
| |
| # @FUNCTION: tc-enables-ssp-strong |
| # @RETURN: Truth if the current compiler enables stack smashing protection (SSP) on at least middle level |
| # @DESCRIPTION: |
| # Return truth if the current compiler enables stack smashing protection (SSP) |
| # on level corresponding to any of the following options: |
| # -fstack-protector-strong |
| # -fstack-protector-all |
| tc-enables-ssp-strong() { |
| tc-cpp-is-true "defined(__SSP_STRONG__) || defined(__SSP_ALL__)" ${CPPFLAGS} ${CFLAGS} |
| } |
| |
| # @FUNCTION: tc-enables-ssp-all |
| # @RETURN: Truth if the current compiler enables stack smashing protection (SSP) on maximal level |
| # @DESCRIPTION: |
| # Return truth if the current compiler enables stack smashing protection (SSP) |
| # on level corresponding to any of the following options: |
| # -fstack-protector-all |
| tc-enables-ssp-all() { |
| tc-cpp-is-true "defined(__SSP_ALL__)" ${CPPFLAGS} ${CFLAGS} |
| } |
| |
| |
| # @FUNCTION: gen_usr_ldscript |
| # @USAGE: [-a] <list of libs to create linker scripts for> |
| # @DESCRIPTION: |
| # This function is deprecated. Use the version from |
| # usr-ldscript.eclass instead. |
| gen_usr_ldscript() { |
| ewarn "${FUNCNAME}: Please migrate to usr-ldscript.eclass" |
| |
| local lib libdir=$(get_libdir) output_format="" auto=false suffix=$(get_libname) |
| [[ -z ${ED+set} ]] && local ED=${D%/}${EPREFIX}/ |
| |
| tc-is-static-only && return |
| |
| # We only care about stuffing / for the native ABI. #479448 |
| if [[ $(type -t multilib_is_native_abi) == "function" ]] ; then |
| multilib_is_native_abi || return 0 |
| fi |
| |
| # Eventually we'd like to get rid of this func completely #417451 |
| case ${CTARGET:-${CHOST}} in |
| *-darwin*) ;; |
| *-android*) return 0 ;; |
| *linux*|*-freebsd*|*-openbsd*|*-netbsd*) |
| use prefix && return 0 ;; |
| *) return 0 ;; |
| esac |
| |
| # Just make sure it exists |
| dodir /usr/${libdir} |
| |
| if [[ $1 == "-a" ]] ; then |
| auto=true |
| shift |
| dodir /${libdir} |
| fi |
| |
| # OUTPUT_FORMAT gives hints to the linker as to what binary format |
| # is referenced ... makes multilib saner |
| local flags=( ${CFLAGS} ${LDFLAGS} -Wl,--verbose ) |
| if $(tc-getLD) --version | grep -q 'GNU gold' ; then |
| # If they're using gold, manually invoke the old bfd. #487696 |
| local d="${T}/bfd-linker" |
| mkdir -p "${d}" |
| ln -sf $(which ${CHOST}-ld.bfd) "${d}"/ld |
| flags+=( -B"${d}" ) |
| fi |
| output_format=$($(tc-getCC) "${flags[@]}" 2>&1 | sed -n 's/^OUTPUT_FORMAT("\([^"]*\)",.*/\1/p') |
| [[ -n ${output_format} ]] && output_format="OUTPUT_FORMAT ( ${output_format} )" |
| |
| for lib in "$@" ; do |
| local tlib |
| if ${auto} ; then |
| lib="lib${lib}${suffix}" |
| else |
| # Ensure /lib/${lib} exists to avoid dangling scripts/symlinks. |
| # This especially is for AIX where $(get_libname) can return ".a", |
| # so /lib/${lib} might be moved to /usr/lib/${lib} (by accident). |
| [[ -r ${ED}/${libdir}/${lib} ]] || continue |
| #TODO: better die here? |
| fi |
| |
| case ${CTARGET:-${CHOST}} in |
| *-darwin*) |
| if ${auto} ; then |
| tlib=$(scanmacho -qF'%S#F' "${ED}"/usr/${libdir}/${lib}) |
| else |
| tlib=$(scanmacho -qF'%S#F' "${ED}"/${libdir}/${lib}) |
| fi |
| [[ -z ${tlib} ]] && die "unable to read install_name from ${lib}" |
| tlib=${tlib##*/} |
| |
| if ${auto} ; then |
| mv "${ED}"/usr/${libdir}/${lib%${suffix}}.*${suffix#.} "${ED}"/${libdir}/ || die |
| # some install_names are funky: they encode a version |
| if [[ ${tlib} != ${lib%${suffix}}.*${suffix#.} ]] ; then |
| mv "${ED}"/usr/${libdir}/${tlib%${suffix}}.*${suffix#.} "${ED}"/${libdir}/ || die |
| fi |
| rm -f "${ED}"/${libdir}/${lib} |
| fi |
| |
| # Mach-O files have an id, which is like a soname, it tells how |
| # another object linking against this lib should reference it. |
| # Since we moved the lib from usr/lib into lib this reference is |
| # wrong. Hence, we update it here. We don't configure with |
| # libdir=/lib because that messes up libtool files. |
| # Make sure we don't lose the specific version, so just modify the |
| # existing install_name |
| if [[ ! -w "${ED}/${libdir}/${tlib}" ]] ; then |
| chmod u+w "${ED}${libdir}/${tlib}" # needed to write to it |
| local nowrite=yes |
| fi |
| install_name_tool \ |
| -id "${EPREFIX}"/${libdir}/${tlib} \ |
| "${ED}"/${libdir}/${tlib} || die "install_name_tool failed" |
| [[ -n ${nowrite} ]] && chmod u-w "${ED}${libdir}/${tlib}" |
| # Now as we don't use GNU binutils and our linker doesn't |
| # understand linker scripts, just create a symlink. |
| pushd "${ED}/usr/${libdir}" > /dev/null |
| ln -snf "../../${libdir}/${tlib}" "${lib}" |
| popd > /dev/null |
| ;; |
| *) |
| if ${auto} ; then |
| tlib=$(scanelf -qF'%S#F' "${ED}"/usr/${libdir}/${lib}) |
| [[ -z ${tlib} ]] && die "unable to read SONAME from ${lib}" |
| mv "${ED}"/usr/${libdir}/${lib}* "${ED}"/${libdir}/ || die |
| # some SONAMEs are funky: they encode a version before the .so |
| if [[ ${tlib} != ${lib}* ]] ; then |
| mv "${ED}"/usr/${libdir}/${tlib}* "${ED}"/${libdir}/ || die |
| fi |
| rm -f "${ED}"/${libdir}/${lib} |
| else |
| tlib=${lib} |
| fi |
| cat > "${ED}/usr/${libdir}/${lib}" <<-END_LDSCRIPT |
| /* GNU ld script |
| Since Gentoo has critical dynamic libraries in /lib, and the static versions |
| in /usr/lib, we need to have a "fake" dynamic lib in /usr/lib, otherwise we |
| run into linking problems. This "fake" dynamic lib is a linker script that |
| redirects the linker to the real lib. And yes, this works in the cross- |
| compiling scenario as the sysroot-ed linker will prepend the real path. |
| |
| See bug https://bugs.gentoo.org/4411 for more info. |
| */ |
| ${output_format} |
| GROUP ( ${EPREFIX}/${libdir}/${tlib} ) |
| END_LDSCRIPT |
| ;; |
| esac |
| fperms a+x "/usr/${libdir}/${lib}" || die "could not change perms on ${lib}" |
| done |
| } |
| |
| # |
| # ChromiumOS extensions below here. |
| # |
| |
| # @FUNCTION: tc-get-BUILD_compiler-type |
| # @RETURN: keyword identifying the compiler for the build machine: gcc, clang, pathcc, unknown |
| tc-get-BUILD_compiler-type() { |
| local code=' |
| #if defined(__PATHSCALE__) |
| HAVE_PATHCC |
| #elif defined(__clang__) |
| HAVE_CLANG |
| #elif defined(__GNUC__) |
| HAVE_GCC |
| #endif |
| ' |
| local res=$($(tc-getBUILD_CPP "$@") -E -P - <<<"${code}") |
| |
| case ${res} in |
| *HAVE_PATHCC*) echo pathcc;; |
| *HAVE_CLANG*) echo clang;; |
| *HAVE_GCC*) echo gcc;; |
| *) echo unknown;; |
| esac |
| } |
| |
| # @FUNCTION: tc-getDWP |
| # @USAGE: [toolchain prefix] |
| # @RETURN: name of the DWARF package builder |
| tc-getDWP() { tc-getPROG DWP dwp "$@"; } |
| |
| # @FUNCTION: tc-getGCOV |
| # @USAGE: [toolchain prefix] |
| # @RETURN: name of the test coverage program |
| tc-getGCOV() { tc-getPROG GCOV gcov "$@"; } |
| |
| # @FUNCTION: tc-getBUILD_DWP |
| # @USAGE: [toolchain prefix] |
| # @RETURN: name of the DWARF package builder to run on the build machine |
| tc-getBUILD_DWP() { tc-getBUILD_PROG DWP dwp "$@"; } |
| |
| # @FUNCTION: tc-getBUILD_GCOV |
| # @USAGE: [toolchain prefix] |
| # @RETURN: name of the test coverage program to run on the build machine |
| tc-getBUILD_GCOV() { tc-getBUILD_PROG GCOV gcov "$@"; } |
| |
| # @FUNCTION: tc-getBUILD_OBJDUMP |
| # @USAGE: [toolchain prefix] |
| # @RETURN: name of the object dumper to run on the build machine |
| tc-getBUILD_OBJDUMP() { tc-getBUILD_PROG OBJDUMP objdump "$@"; } |
| |
| # @FUNCTION: tc-getBUILD_GO |
| # @USAGE: [toolchain prefix] |
| # @RETURN: name of the Go compiler for building binaries to run on the build machine |
| tc-getBUILD_GO() { tc-getBUILD_PROG GO go "$@"; } |
| |
| tc-getTARGET_PROG() { |
| local CTARGET="${CTARGET:-${CHOST}}" |
| _tc-getPROG CTARGET "TARGET_$1 $1_FOR_TARGET" "${2#${CHOST}-}" "${@:3}" |
| } |
| |
| # @FUNCTION: tc-getTARGET_CC |
| # @USAGE: [toolchain prefix] |
| # @RETURN: name of the C compiler for building binaries to run on the target machine |
| tc-getTARGET_CC() { tc-getTARGET_PROG CC "$(tc-getCC)" "$@"; } |
| # @FUNCTION: tc-getTARGET_CXX |
| # @USAGE: [toolchain prefix] |
| # @RETURN: name of the C++ compiler for building binaries to run on the target machine |
| tc-getTARGET_CXX() { tc-getTARGET_PROG CXX "$(tc-getCXX)" "$@"; } |
| |
| # Returns true if gcc builds PIEs |
| # For ARM, readelf -h | grep Type always has REL instead of EXEC. |
| # That is why we have to read the flags one by one and check them instead |
| # of test-compiling a small program. |
| gcc-pie() { |
| for flag in $(echo "void f(){char a[100];}" | \ |
| ${CTARGET}-gcc -v -xc -c -o /dev/null - 2>&1 | \ |
| grep cc1 | \ |
| tr " " "\n" | \ |
| tac) |
| do |
| if [[ $flag == "-fPIE" || $flag == "-fPIC" ]] |
| then |
| return 0 |
| elif [[ $flag == "-fno-PIE" || $flag == "-fno-PIC" ]] |
| then |
| return 1 |
| fi |
| done |
| return 1 |
| } |
| |
| # Returns true if gcc builds with the stack protector |
| gcc-ssp() { |
| local obj=$(mktemp) |
| echo "void f(){char a[100];}" | ${CTARGET}-gcc -xc -c -o ${obj} - |
| return $(${CTARGET}-readelf -sW ${obj} | grep -q stack_chk_fail) |
| } |
| |
| # Sets up environment variables required to build with Clang |
| # This should be replaced with a sysroot wrapper ala GCC if/when |
| # we get serious about building with Clang. |
| clang-setup-env() { |
| use clang || return 0 |
| # There is no wrapper for host clang. |
| if [[ "${CHOST}" == "x86_64-pc-linux-gnu" ]] ; then |
| return 0 |
| fi |
| case ${ARCH} in |
| amd64|x86|arm|arm64) |
| export CC="${CHOST}-clang" CXX="${CHOST}-clang++" |
| ;; |
| *) die "Clang is not yet supported for ${ARCH}" |
| esac |
| |
| if use asan; then |
| local asan_flags=( |
| -fsanitize=address |
| -fsanitize=alignment |
| -fsanitize=shift |
| ) |
| append-flags "${asan_flags[@]}" |
| append-ldflags "${asan_flags[@]}" |
| fi |
| } |
| |
| fi |