blob: 2a1dbf52fc9a5326f08224fbce4c93946f05cbf1 [file] [log] [blame]
// SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause)
/*
* Common eBPF ELF object loading operations.
*
* Copyright (C) 2013-2015 Alexei Starovoitov <ast@kernel.org>
* Copyright (C) 2015 Wang Nan <wangnan0@huawei.com>
* Copyright (C) 2015 Huawei Inc.
* Copyright (C) 2017 Nicira, Inc.
* Copyright (C) 2019 Isovalent, Inc.
*/
#ifndef _GNU_SOURCE
#define _GNU_SOURCE
#endif
#include <stdlib.h>
#include <stdio.h>
#include <stdarg.h>
#include <libgen.h>
#include <inttypes.h>
#include <string.h>
#include <unistd.h>
#include <endian.h>
#include <fcntl.h>
#include <errno.h>
#include <asm/unistd.h>
#include <linux/err.h>
#include <linux/kernel.h>
#include <linux/bpf.h>
#include <linux/btf.h>
#include <linux/filter.h>
#include <linux/list.h>
#include <linux/limits.h>
#include <linux/perf_event.h>
#include <linux/ring_buffer.h>
#include <sys/epoll.h>
#include <sys/ioctl.h>
#include <sys/mman.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <sys/vfs.h>
#include <sys/utsname.h>
#include <tools/libc_compat.h>
#include <libelf.h>
#include <gelf.h>
#include "libbpf.h"
#include "bpf.h"
#include "btf.h"
#include "str_error.h"
#include "libbpf_internal.h"
#include "hashmap.h"
#ifndef EM_BPF
#define EM_BPF 247
#endif
#ifndef BPF_FS_MAGIC
#define BPF_FS_MAGIC 0xcafe4a11
#endif
/* vsprintf() in __base_pr() uses nonliteral format string. It may break
* compilation if user enables corresponding warning. Disable it explicitly.
*/
#pragma GCC diagnostic ignored "-Wformat-nonliteral"
#define __printf(a, b) __attribute__((format(printf, a, b)))
static int __base_pr(enum libbpf_print_level level, const char *format,
va_list args)
{
if (level == LIBBPF_DEBUG)
return 0;
return vfprintf(stderr, format, args);
}
static libbpf_print_fn_t __libbpf_pr = __base_pr;
libbpf_print_fn_t libbpf_set_print(libbpf_print_fn_t fn)
{
libbpf_print_fn_t old_print_fn = __libbpf_pr;
__libbpf_pr = fn;
return old_print_fn;
}
__printf(2, 3)
void libbpf_print(enum libbpf_print_level level, const char *format, ...)
{
va_list args;
if (!__libbpf_pr)
return;
va_start(args, format);
__libbpf_pr(level, format, args);
va_end(args);
}
#define STRERR_BUFSIZE 128
#define CHECK_ERR(action, err, out) do { \
err = action; \
if (err) \
goto out; \
} while(0)
/* Copied from tools/perf/util/util.h */
#ifndef zfree
# define zfree(ptr) ({ free(*ptr); *ptr = NULL; })
#endif
#ifndef zclose
# define zclose(fd) ({ \
int ___err = 0; \
if ((fd) >= 0) \
___err = close((fd)); \
fd = -1; \
___err; })
#endif
#ifdef HAVE_LIBELF_MMAP_SUPPORT
# define LIBBPF_ELF_C_READ_MMAP ELF_C_READ_MMAP
#else
# define LIBBPF_ELF_C_READ_MMAP ELF_C_READ
#endif
static inline __u64 ptr_to_u64(const void *ptr)
{
return (__u64) (unsigned long) ptr;
}
struct bpf_capabilities {
/* v4.14: kernel support for program & map names. */
__u32 name:1;
/* v5.2: kernel support for global data sections. */
__u32 global_data:1;
/* BTF_KIND_FUNC and BTF_KIND_FUNC_PROTO support */
__u32 btf_func:1;
/* BTF_KIND_VAR and BTF_KIND_DATASEC support */
__u32 btf_datasec:1;
};
/*
* bpf_prog should be a better name but it has been used in
* linux/filter.h.
*/
struct bpf_program {
/* Index in elf obj file, for relocation use. */
int idx;
char *name;
int prog_ifindex;
char *section_name;
/* section_name with / replaced by _; makes recursive pinning
* in bpf_object__pin_programs easier
*/
char *pin_name;
struct bpf_insn *insns;
size_t insns_cnt, main_prog_cnt;
enum bpf_prog_type type;
struct reloc_desc {
enum {
RELO_LD64,
RELO_CALL,
RELO_DATA,
} type;
int insn_idx;
union {
int map_idx;
int text_off;
};
} *reloc_desc;
int nr_reloc;
int log_level;
struct {
int nr;
int *fds;
} instances;
bpf_program_prep_t preprocessor;
struct bpf_object *obj;
void *priv;
bpf_program_clear_priv_t clear_priv;
enum bpf_attach_type expected_attach_type;
void *func_info;
__u32 func_info_rec_size;
__u32 func_info_cnt;
struct bpf_capabilities *caps;
void *line_info;
__u32 line_info_rec_size;
__u32 line_info_cnt;
__u32 prog_flags;
};
enum libbpf_map_type {
LIBBPF_MAP_UNSPEC,
LIBBPF_MAP_DATA,
LIBBPF_MAP_BSS,
LIBBPF_MAP_RODATA,
};
static const char * const libbpf_type_to_btf_name[] = {
[LIBBPF_MAP_DATA] = ".data",
[LIBBPF_MAP_BSS] = ".bss",
[LIBBPF_MAP_RODATA] = ".rodata",
};
struct bpf_map {
int fd;
char *name;
int sec_idx;
size_t sec_offset;
int map_ifindex;
int inner_map_fd;
struct bpf_map_def def;
__u32 btf_key_type_id;
__u32 btf_value_type_id;
void *priv;
bpf_map_clear_priv_t clear_priv;
enum libbpf_map_type libbpf_type;
};
struct bpf_secdata {
void *rodata;
void *data;
};
static LIST_HEAD(bpf_objects_list);
struct bpf_object {
char name[BPF_OBJ_NAME_LEN];
char license[64];
__u32 kern_version;
struct bpf_program *programs;
size_t nr_programs;
struct bpf_map *maps;
size_t nr_maps;
size_t maps_cap;
struct bpf_secdata sections;
bool loaded;
bool has_pseudo_calls;
/*
* Information when doing elf related work. Only valid if fd
* is valid.
*/
struct {
int fd;
void *obj_buf;
size_t obj_buf_sz;
Elf *elf;
GElf_Ehdr ehdr;
Elf_Data *symbols;
Elf_Data *data;
Elf_Data *rodata;
Elf_Data *bss;
size_t strtabidx;
struct {
GElf_Shdr shdr;
Elf_Data *data;
} *reloc;
int nr_reloc;
int maps_shndx;
int btf_maps_shndx;
int text_shndx;
int data_shndx;
int rodata_shndx;
int bss_shndx;
} efile;
/*
* All loaded bpf_object is linked in a list, which is
* hidden to caller. bpf_objects__<func> handlers deal with
* all objects.
*/
struct list_head list;
struct btf *btf;
struct btf_ext *btf_ext;
void *priv;
bpf_object_clear_priv_t clear_priv;
struct bpf_capabilities caps;
char path[];
};
#define obj_elf_valid(o) ((o)->efile.elf)
void bpf_program__unload(struct bpf_program *prog)
{
int i;
if (!prog)
return;
/*
* If the object is opened but the program was never loaded,
* it is possible that prog->instances.nr == -1.
*/
if (prog->instances.nr > 0) {
for (i = 0; i < prog->instances.nr; i++)
zclose(prog->instances.fds[i]);
} else if (prog->instances.nr != -1) {
pr_warning("Internal error: instances.nr is %d\n",
prog->instances.nr);
}
prog->instances.nr = -1;
zfree(&prog->instances.fds);
zfree(&prog->func_info);
zfree(&prog->line_info);
}
static void bpf_program__exit(struct bpf_program *prog)
{
if (!prog)
return;
if (prog->clear_priv)
prog->clear_priv(prog, prog->priv);
prog->priv = NULL;
prog->clear_priv = NULL;
bpf_program__unload(prog);
zfree(&prog->name);
zfree(&prog->section_name);
zfree(&prog->pin_name);
zfree(&prog->insns);
zfree(&prog->reloc_desc);
prog->nr_reloc = 0;
prog->insns_cnt = 0;
prog->idx = -1;
}
static char *__bpf_program__pin_name(struct bpf_program *prog)
{
char *name, *p;
name = p = strdup(prog->section_name);
while ((p = strchr(p, '/')))
*p = '_';
return name;
}
static int
bpf_program__init(void *data, size_t size, char *section_name, int idx,
struct bpf_program *prog)
{
const size_t bpf_insn_sz = sizeof(struct bpf_insn);
if (size == 0 || size % bpf_insn_sz) {
pr_warning("corrupted section '%s', size: %zu\n",
section_name, size);
return -EINVAL;
}
memset(prog, 0, sizeof(*prog));
prog->section_name = strdup(section_name);
if (!prog->section_name) {
pr_warning("failed to alloc name for prog under section(%d) %s\n",
idx, section_name);
goto errout;
}
prog->pin_name = __bpf_program__pin_name(prog);
if (!prog->pin_name) {
pr_warning("failed to alloc pin name for prog under section(%d) %s\n",
idx, section_name);
goto errout;
}
prog->insns = malloc(size);
if (!prog->insns) {
pr_warning("failed to alloc insns for prog under section %s\n",
section_name);
goto errout;
}
prog->insns_cnt = size / bpf_insn_sz;
memcpy(prog->insns, data, size);
prog->idx = idx;
prog->instances.fds = NULL;
prog->instances.nr = -1;
prog->type = BPF_PROG_TYPE_UNSPEC;
return 0;
errout:
bpf_program__exit(prog);
return -ENOMEM;
}
static int
bpf_object__add_program(struct bpf_object *obj, void *data, size_t size,
char *section_name, int idx)
{
struct bpf_program prog, *progs;
int nr_progs, err;
err = bpf_program__init(data, size, section_name, idx, &prog);
if (err)
return err;
prog.caps = &obj->caps;
progs = obj->programs;
nr_progs = obj->nr_programs;
progs = reallocarray(progs, nr_progs + 1, sizeof(progs[0]));
if (!progs) {
/*
* In this case the original obj->programs
* is still valid, so don't need special treat for
* bpf_close_object().
*/
pr_warning("failed to alloc a new program under section '%s'\n",
section_name);
bpf_program__exit(&prog);
return -ENOMEM;
}
pr_debug("found program %s\n", prog.section_name);
obj->programs = progs;
obj->nr_programs = nr_progs + 1;
prog.obj = obj;
progs[nr_progs] = prog;
return 0;
}
static int
bpf_object__init_prog_names(struct bpf_object *obj)
{
Elf_Data *symbols = obj->efile.symbols;
struct bpf_program *prog;
size_t pi, si;
for (pi = 0; pi < obj->nr_programs; pi++) {
const char *name = NULL;
prog = &obj->programs[pi];
for (si = 0; si < symbols->d_size / sizeof(GElf_Sym) && !name;
si++) {
GElf_Sym sym;
if (!gelf_getsym(symbols, si, &sym))
continue;
if (sym.st_shndx != prog->idx)
continue;
if (GELF_ST_BIND(sym.st_info) != STB_GLOBAL)
continue;
name = elf_strptr(obj->efile.elf,
obj->efile.strtabidx,
sym.st_name);
if (!name) {
pr_warning("failed to get sym name string for prog %s\n",
prog->section_name);
return -LIBBPF_ERRNO__LIBELF;
}
}
if (!name && prog->idx == obj->efile.text_shndx)
name = ".text";
if (!name) {
pr_warning("failed to find sym for prog %s\n",
prog->section_name);
return -EINVAL;
}
prog->name = strdup(name);
if (!prog->name) {
pr_warning("failed to allocate memory for prog sym %s\n",
name);
return -ENOMEM;
}
}
return 0;
}
static struct bpf_object *bpf_object__new(const char *path,
void *obj_buf,
size_t obj_buf_sz)
{
struct bpf_object *obj;
char *end;
obj = calloc(1, sizeof(struct bpf_object) + strlen(path) + 1);
if (!obj) {
pr_warning("alloc memory failed for %s\n", path);
return ERR_PTR(-ENOMEM);
}
strcpy(obj->path, path);
/* Using basename() GNU version which doesn't modify arg. */
strncpy(obj->name, basename((void *)path), sizeof(obj->name) - 1);
end = strchr(obj->name, '.');
if (end)
*end = 0;
obj->efile.fd = -1;
/*
* Caller of this function should also call
* bpf_object__elf_finish() after data collection to return
* obj_buf to user. If not, we should duplicate the buffer to
* avoid user freeing them before elf finish.
*/
obj->efile.obj_buf = obj_buf;
obj->efile.obj_buf_sz = obj_buf_sz;
obj->efile.maps_shndx = -1;
obj->efile.btf_maps_shndx = -1;
obj->efile.data_shndx = -1;
obj->efile.rodata_shndx = -1;
obj->efile.bss_shndx = -1;
obj->loaded = false;
INIT_LIST_HEAD(&obj->list);
list_add(&obj->list, &bpf_objects_list);
return obj;
}
static void bpf_object__elf_finish(struct bpf_object *obj)
{
if (!obj_elf_valid(obj))
return;
if (obj->efile.elf) {
elf_end(obj->efile.elf);
obj->efile.elf = NULL;
}
obj->efile.symbols = NULL;
obj->efile.data = NULL;
obj->efile.rodata = NULL;
obj->efile.bss = NULL;
zfree(&obj->efile.reloc);
obj->efile.nr_reloc = 0;
zclose(obj->efile.fd);
obj->efile.obj_buf = NULL;
obj->efile.obj_buf_sz = 0;
}
static int bpf_object__elf_init(struct bpf_object *obj)
{
int err = 0;
GElf_Ehdr *ep;
if (obj_elf_valid(obj)) {
pr_warning("elf init: internal error\n");
return -LIBBPF_ERRNO__LIBELF;
}
if (obj->efile.obj_buf_sz > 0) {
/*
* obj_buf should have been validated by
* bpf_object__open_buffer().
*/
obj->efile.elf = elf_memory(obj->efile.obj_buf,
obj->efile.obj_buf_sz);
} else {
obj->efile.fd = open(obj->path, O_RDONLY);
if (obj->efile.fd < 0) {
char errmsg[STRERR_BUFSIZE], *cp;
err = -errno;
cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
pr_warning("failed to open %s: %s\n", obj->path, cp);
return err;
}
obj->efile.elf = elf_begin(obj->efile.fd,
LIBBPF_ELF_C_READ_MMAP, NULL);
}
if (!obj->efile.elf) {
pr_warning("failed to open %s as ELF file\n", obj->path);
err = -LIBBPF_ERRNO__LIBELF;
goto errout;
}
if (!gelf_getehdr(obj->efile.elf, &obj->efile.ehdr)) {
pr_warning("failed to get EHDR from %s\n", obj->path);
err = -LIBBPF_ERRNO__FORMAT;
goto errout;
}
ep = &obj->efile.ehdr;
/* Old LLVM set e_machine to EM_NONE */
if (ep->e_type != ET_REL ||
(ep->e_machine && ep->e_machine != EM_BPF)) {
pr_warning("%s is not an eBPF object file\n", obj->path);
err = -LIBBPF_ERRNO__FORMAT;
goto errout;
}
return 0;
errout:
bpf_object__elf_finish(obj);
return err;
}
static int bpf_object__check_endianness(struct bpf_object *obj)
{
#if __BYTE_ORDER == __LITTLE_ENDIAN
if (obj->efile.ehdr.e_ident[EI_DATA] == ELFDATA2LSB)
return 0;
#elif __BYTE_ORDER == __BIG_ENDIAN
if (obj->efile.ehdr.e_ident[EI_DATA] == ELFDATA2MSB)
return 0;
#else
# error "Unrecognized __BYTE_ORDER__"
#endif
pr_warning("endianness mismatch.\n");
return -LIBBPF_ERRNO__ENDIAN;
}
static int
bpf_object__init_license(struct bpf_object *obj, void *data, size_t size)
{
memcpy(obj->license, data, min(size, sizeof(obj->license) - 1));
pr_debug("license of %s is %s\n", obj->path, obj->license);
return 0;
}
static int
bpf_object__init_kversion(struct bpf_object *obj, void *data, size_t size)
{
__u32 kver;
if (size != sizeof(kver)) {
pr_warning("invalid kver section in %s\n", obj->path);
return -LIBBPF_ERRNO__FORMAT;
}
memcpy(&kver, data, sizeof(kver));
obj->kern_version = kver;
pr_debug("kernel version of %s is %x\n", obj->path, obj->kern_version);
return 0;
}
static int compare_bpf_map(const void *_a, const void *_b)
{
const struct bpf_map *a = _a;
const struct bpf_map *b = _b;
if (a->sec_idx != b->sec_idx)
return a->sec_idx - b->sec_idx;
return a->sec_offset - b->sec_offset;
}
static bool bpf_map_type__is_map_in_map(enum bpf_map_type type)
{
if (type == BPF_MAP_TYPE_ARRAY_OF_MAPS ||
type == BPF_MAP_TYPE_HASH_OF_MAPS)
return true;
return false;
}
static int bpf_object_search_section_size(const struct bpf_object *obj,
const char *name, size_t *d_size)
{
const GElf_Ehdr *ep = &obj->efile.ehdr;
Elf *elf = obj->efile.elf;
Elf_Scn *scn = NULL;
int idx = 0;
while ((scn = elf_nextscn(elf, scn)) != NULL) {
const char *sec_name;
Elf_Data *data;
GElf_Shdr sh;
idx++;
if (gelf_getshdr(scn, &sh) != &sh) {
pr_warning("failed to get section(%d) header from %s\n",
idx, obj->path);
return -EIO;
}
sec_name = elf_strptr(elf, ep->e_shstrndx, sh.sh_name);
if (!sec_name) {
pr_warning("failed to get section(%d) name from %s\n",
idx, obj->path);
return -EIO;
}
if (strcmp(name, sec_name))
continue;
data = elf_getdata(scn, 0);
if (!data) {
pr_warning("failed to get section(%d) data from %s(%s)\n",
idx, name, obj->path);
return -EIO;
}
*d_size = data->d_size;
return 0;
}
return -ENOENT;
}
int bpf_object__section_size(const struct bpf_object *obj, const char *name,
__u32 *size)
{
int ret = -ENOENT;
size_t d_size;
*size = 0;
if (!name) {
return -EINVAL;
} else if (!strcmp(name, ".data")) {
if (obj->efile.data)
*size = obj->efile.data->d_size;
} else if (!strcmp(name, ".bss")) {
if (obj->efile.bss)
*size = obj->efile.bss->d_size;
} else if (!strcmp(name, ".rodata")) {
if (obj->efile.rodata)
*size = obj->efile.rodata->d_size;
} else {
ret = bpf_object_search_section_size(obj, name, &d_size);
if (!ret)
*size = d_size;
}
return *size ? 0 : ret;
}
int bpf_object__variable_offset(const struct bpf_object *obj, const char *name,
__u32 *off)
{
Elf_Data *symbols = obj->efile.symbols;
const char *sname;
size_t si;
if (!name || !off)
return -EINVAL;
for (si = 0; si < symbols->d_size / sizeof(GElf_Sym); si++) {
GElf_Sym sym;
if (!gelf_getsym(symbols, si, &sym))
continue;
if (GELF_ST_BIND(sym.st_info) != STB_GLOBAL ||
GELF_ST_TYPE(sym.st_info) != STT_OBJECT)
continue;
sname = elf_strptr(obj->efile.elf, obj->efile.strtabidx,
sym.st_name);
if (!sname) {
pr_warning("failed to get sym name string for var %s\n",
name);
return -EIO;
}
if (strcmp(name, sname) == 0) {
*off = sym.st_value;
return 0;
}
}
return -ENOENT;
}
static struct bpf_map *bpf_object__add_map(struct bpf_object *obj)
{
struct bpf_map *new_maps;
size_t new_cap;
int i;
if (obj->nr_maps < obj->maps_cap)
return &obj->maps[obj->nr_maps++];
new_cap = max((size_t)4, obj->maps_cap * 3 / 2);
new_maps = realloc(obj->maps, new_cap * sizeof(*obj->maps));
if (!new_maps) {
pr_warning("alloc maps for object failed\n");
return ERR_PTR(-ENOMEM);
}
obj->maps_cap = new_cap;
obj->maps = new_maps;
/* zero out new maps */
memset(obj->maps + obj->nr_maps, 0,
(obj->maps_cap - obj->nr_maps) * sizeof(*obj->maps));
/*
* fill all fd with -1 so won't close incorrect fd (fd=0 is stdin)
* when failure (zclose won't close negative fd)).
*/
for (i = obj->nr_maps; i < obj->maps_cap; i++) {
obj->maps[i].fd = -1;
obj->maps[i].inner_map_fd = -1;
}
return &obj->maps[obj->nr_maps++];
}
static int
bpf_object__init_internal_map(struct bpf_object *obj, enum libbpf_map_type type,
int sec_idx, Elf_Data *data, void **data_buff)
{
char map_name[BPF_OBJ_NAME_LEN];
struct bpf_map_def *def;
struct bpf_map *map;
map = bpf_object__add_map(obj);
if (IS_ERR(map))
return PTR_ERR(map);
map->libbpf_type = type;
map->sec_idx = sec_idx;
map->sec_offset = 0;
snprintf(map_name, sizeof(map_name), "%.8s%.7s", obj->name,
libbpf_type_to_btf_name[type]);
map->name = strdup(map_name);
if (!map->name) {
pr_warning("failed to alloc map name\n");
return -ENOMEM;
}
pr_debug("map '%s' (global data): at sec_idx %d, offset %zu.\n",
map_name, map->sec_idx, map->sec_offset);
def = &map->def;
def->type = BPF_MAP_TYPE_ARRAY;
def->key_size = sizeof(int);
def->value_size = data->d_size;
def->max_entries = 1;
def->map_flags = type == LIBBPF_MAP_RODATA ? BPF_F_RDONLY_PROG : 0;
if (data_buff) {
*data_buff = malloc(data->d_size);
if (!*data_buff) {
zfree(&map->name);
pr_warning("failed to alloc map content buffer\n");
return -ENOMEM;
}
memcpy(*data_buff, data->d_buf, data->d_size);
}
pr_debug("map %td is \"%s\"\n", map - obj->maps, map->name);
return 0;
}
static int bpf_object__init_global_data_maps(struct bpf_object *obj)
{
int err;
if (!obj->caps.global_data)
return 0;
/*
* Populate obj->maps with libbpf internal maps.
*/
if (obj->efile.data_shndx >= 0) {
err = bpf_object__init_internal_map(obj, LIBBPF_MAP_DATA,
obj->efile.data_shndx,
obj->efile.data,
&obj->sections.data);
if (err)
return err;
}
if (obj->efile.rodata_shndx >= 0) {
err = bpf_object__init_internal_map(obj, LIBBPF_MAP_RODATA,
obj->efile.rodata_shndx,
obj->efile.rodata,
&obj->sections.rodata);
if (err)
return err;
}
if (obj->efile.bss_shndx >= 0) {
err = bpf_object__init_internal_map(obj, LIBBPF_MAP_BSS,
obj->efile.bss_shndx,
obj->efile.bss, NULL);
if (err)
return err;
}
return 0;
}
static int bpf_object__init_user_maps(struct bpf_object *obj, bool strict)
{
Elf_Data *symbols = obj->efile.symbols;
int i, map_def_sz = 0, nr_maps = 0, nr_syms;
Elf_Data *data = NULL;
Elf_Scn *scn;
if (obj->efile.maps_shndx < 0)
return 0;
if (!symbols)
return -EINVAL;
scn = elf_getscn(obj->efile.elf, obj->efile.maps_shndx);
if (scn)
data = elf_getdata(scn, NULL);
if (!scn || !data) {
pr_warning("failed to get Elf_Data from map section %d\n",
obj->efile.maps_shndx);
return -EINVAL;
}
/*
* Count number of maps. Each map has a name.
* Array of maps is not supported: only the first element is
* considered.
*
* TODO: Detect array of map and report error.
*/
nr_syms = symbols->d_size / sizeof(GElf_Sym);
for (i = 0; i < nr_syms; i++) {
GElf_Sym sym;
if (!gelf_getsym(symbols, i, &sym))
continue;
if (sym.st_shndx != obj->efile.maps_shndx)
continue;
nr_maps++;
}
/* Assume equally sized map definitions */
pr_debug("maps in %s: %d maps in %zd bytes\n",
obj->path, nr_maps, data->d_size);
map_def_sz = data->d_size / nr_maps;
if (!data->d_size || (data->d_size % nr_maps) != 0) {
pr_warning("unable to determine map definition size "
"section %s, %d maps in %zd bytes\n",
obj->path, nr_maps, data->d_size);
return -EINVAL;
}
/* Fill obj->maps using data in "maps" section. */
for (i = 0; i < nr_syms; i++) {
GElf_Sym sym;
const char *map_name;
struct bpf_map_def *def;
struct bpf_map *map;
if (!gelf_getsym(symbols, i, &sym))
continue;
if (sym.st_shndx != obj->efile.maps_shndx)
continue;
map = bpf_object__add_map(obj);
if (IS_ERR(map))
return PTR_ERR(map);
map_name = elf_strptr(obj->efile.elf, obj->efile.strtabidx,
sym.st_name);
if (!map_name) {
pr_warning("failed to get map #%d name sym string for obj %s\n",
i, obj->path);
return -LIBBPF_ERRNO__FORMAT;
}
map->libbpf_type = LIBBPF_MAP_UNSPEC;
map->sec_idx = sym.st_shndx;
map->sec_offset = sym.st_value;
pr_debug("map '%s' (legacy): at sec_idx %d, offset %zu.\n",
map_name, map->sec_idx, map->sec_offset);
if (sym.st_value + map_def_sz > data->d_size) {
pr_warning("corrupted maps section in %s: last map \"%s\" too small\n",
obj->path, map_name);
return -EINVAL;
}
map->name = strdup(map_name);
if (!map->name) {
pr_warning("failed to alloc map name\n");
return -ENOMEM;
}
pr_debug("map %d is \"%s\"\n", i, map->name);
def = (struct bpf_map_def *)(data->d_buf + sym.st_value);
/*
* If the definition of the map in the object file fits in
* bpf_map_def, copy it. Any extra fields in our version
* of bpf_map_def will default to zero as a result of the
* calloc above.
*/
if (map_def_sz <= sizeof(struct bpf_map_def)) {
memcpy(&map->def, def, map_def_sz);
} else {
/*
* Here the map structure being read is bigger than what
* we expect, truncate if the excess bits are all zero.
* If they are not zero, reject this map as
* incompatible.
*/
char *b;
for (b = ((char *)def) + sizeof(struct bpf_map_def);
b < ((char *)def) + map_def_sz; b++) {
if (*b != 0) {
pr_warning("maps section in %s: \"%s\" "
"has unrecognized, non-zero "
"options\n",
obj->path, map_name);
if (strict)
return -EINVAL;
}
}
memcpy(&map->def, def, sizeof(struct bpf_map_def));
}
}
return 0;
}
static const struct btf_type *
skip_mods_and_typedefs(const struct btf *btf, __u32 id, __u32 *res_id)
{
const struct btf_type *t = btf__type_by_id(btf, id);
if (res_id)
*res_id = id;
while (btf_is_mod(t) || btf_is_typedef(t)) {
if (res_id)
*res_id = t->type;
t = btf__type_by_id(btf, t->type);
}
return t;
}
/*
* Fetch integer attribute of BTF map definition. Such attributes are
* represented using a pointer to an array, in which dimensionality of array
* encodes specified integer value. E.g., int (*type)[BPF_MAP_TYPE_ARRAY];
* encodes `type => BPF_MAP_TYPE_ARRAY` key/value pair completely using BTF
* type definition, while using only sizeof(void *) space in ELF data section.
*/
static bool get_map_field_int(const char *map_name, const struct btf *btf,
const struct btf_type *def,
const struct btf_member *m, __u32 *res) {
const struct btf_type *t = skip_mods_and_typedefs(btf, m->type, NULL);
const char *name = btf__name_by_offset(btf, m->name_off);
const struct btf_array *arr_info;
const struct btf_type *arr_t;
if (!btf_is_ptr(t)) {
pr_warning("map '%s': attr '%s': expected PTR, got %u.\n",
map_name, name, btf_kind(t));
return false;
}
arr_t = btf__type_by_id(btf, t->type);
if (!arr_t) {
pr_warning("map '%s': attr '%s': type [%u] not found.\n",
map_name, name, t->type);
return false;
}
if (!btf_is_array(arr_t)) {
pr_warning("map '%s': attr '%s': expected ARRAY, got %u.\n",
map_name, name, btf_kind(arr_t));
return false;
}
arr_info = btf_array(arr_t);
*res = arr_info->nelems;
return true;
}
static int bpf_object__init_user_btf_map(struct bpf_object *obj,
const struct btf_type *sec,
int var_idx, int sec_idx,
const Elf_Data *data, bool strict)
{
const struct btf_type *var, *def, *t;
const struct btf_var_secinfo *vi;
const struct btf_var *var_extra;
const struct btf_member *m;
const char *map_name;
struct bpf_map *map;
int vlen, i;
vi = btf_var_secinfos(sec) + var_idx;
var = btf__type_by_id(obj->btf, vi->type);
var_extra = btf_var(var);
map_name = btf__name_by_offset(obj->btf, var->name_off);
vlen = btf_vlen(var);
if (map_name == NULL || map_name[0] == '\0') {
pr_warning("map #%d: empty name.\n", var_idx);
return -EINVAL;
}
if ((__u64)vi->offset + vi->size > data->d_size) {
pr_warning("map '%s' BTF data is corrupted.\n", map_name);
return -EINVAL;
}
if (!btf_is_var(var)) {
pr_warning("map '%s': unexpected var kind %u.\n",
map_name, btf_kind(var));
return -EINVAL;
}
if (var_extra->linkage != BTF_VAR_GLOBAL_ALLOCATED &&
var_extra->linkage != BTF_VAR_STATIC) {
pr_warning("map '%s': unsupported var linkage %u.\n",
map_name, var_extra->linkage);
return -EOPNOTSUPP;
}
def = skip_mods_and_typedefs(obj->btf, var->type, NULL);
if (!btf_is_struct(def)) {
pr_warning("map '%s': unexpected def kind %u.\n",
map_name, btf_kind(var));
return -EINVAL;
}
if (def->size > vi->size) {
pr_warning("map '%s': invalid def size.\n", map_name);
return -EINVAL;
}
map = bpf_object__add_map(obj);
if (IS_ERR(map))
return PTR_ERR(map);
map->name = strdup(map_name);
if (!map->name) {
pr_warning("map '%s': failed to alloc map name.\n", map_name);
return -ENOMEM;
}
map->libbpf_type = LIBBPF_MAP_UNSPEC;
map->def.type = BPF_MAP_TYPE_UNSPEC;
map->sec_idx = sec_idx;
map->sec_offset = vi->offset;
pr_debug("map '%s': at sec_idx %d, offset %zu.\n",
map_name, map->sec_idx, map->sec_offset);
vlen = btf_vlen(def);
m = btf_members(def);
for (i = 0; i < vlen; i++, m++) {
const char *name = btf__name_by_offset(obj->btf, m->name_off);
if (!name) {
pr_warning("map '%s': invalid field #%d.\n",
map_name, i);
return -EINVAL;
}
if (strcmp(name, "type") == 0) {
if (!get_map_field_int(map_name, obj->btf, def, m,
&map->def.type))
return -EINVAL;
pr_debug("map '%s': found type = %u.\n",
map_name, map->def.type);
} else if (strcmp(name, "max_entries") == 0) {
if (!get_map_field_int(map_name, obj->btf, def, m,
&map->def.max_entries))
return -EINVAL;
pr_debug("map '%s': found max_entries = %u.\n",
map_name, map->def.max_entries);
} else if (strcmp(name, "map_flags") == 0) {
if (!get_map_field_int(map_name, obj->btf, def, m,
&map->def.map_flags))
return -EINVAL;
pr_debug("map '%s': found map_flags = %u.\n",
map_name, map->def.map_flags);
} else if (strcmp(name, "key_size") == 0) {
__u32 sz;
if (!get_map_field_int(map_name, obj->btf, def, m,
&sz))
return -EINVAL;
pr_debug("map '%s': found key_size = %u.\n",
map_name, sz);
if (map->def.key_size && map->def.key_size != sz) {
pr_warning("map '%s': conflicting key size %u != %u.\n",
map_name, map->def.key_size, sz);
return -EINVAL;
}
map->def.key_size = sz;
} else if (strcmp(name, "key") == 0) {
__s64 sz;
t = btf__type_by_id(obj->btf, m->type);
if (!t) {
pr_warning("map '%s': key type [%d] not found.\n",
map_name, m->type);
return -EINVAL;
}
if (!btf_is_ptr(t)) {
pr_warning("map '%s': key spec is not PTR: %u.\n",
map_name, btf_kind(t));
return -EINVAL;
}
sz = btf__resolve_size(obj->btf, t->type);
if (sz < 0) {
pr_warning("map '%s': can't determine key size for type [%u]: %lld.\n",
map_name, t->type, sz);
return sz;
}
pr_debug("map '%s': found key [%u], sz = %lld.\n",
map_name, t->type, sz);
if (map->def.key_size && map->def.key_size != sz) {
pr_warning("map '%s': conflicting key size %u != %lld.\n",
map_name, map->def.key_size, sz);
return -EINVAL;
}
map->def.key_size = sz;
map->btf_key_type_id = t->type;
} else if (strcmp(name, "value_size") == 0) {
__u32 sz;
if (!get_map_field_int(map_name, obj->btf, def, m,
&sz))
return -EINVAL;
pr_debug("map '%s': found value_size = %u.\n",
map_name, sz);
if (map->def.value_size && map->def.value_size != sz) {
pr_warning("map '%s': conflicting value size %u != %u.\n",
map_name, map->def.value_size, sz);
return -EINVAL;
}
map->def.value_size = sz;
} else if (strcmp(name, "value") == 0) {
__s64 sz;
t = btf__type_by_id(obj->btf, m->type);
if (!t) {
pr_warning("map '%s': value type [%d] not found.\n",
map_name, m->type);
return -EINVAL;
}
if (!btf_is_ptr(t)) {
pr_warning("map '%s': value spec is not PTR: %u.\n",
map_name, btf_kind(t));
return -EINVAL;
}
sz = btf__resolve_size(obj->btf, t->type);
if (sz < 0) {
pr_warning("map '%s': can't determine value size for type [%u]: %lld.\n",
map_name, t->type, sz);
return sz;
}
pr_debug("map '%s': found value [%u], sz = %lld.\n",
map_name, t->type, sz);
if (map->def.value_size && map->def.value_size != sz) {
pr_warning("map '%s': conflicting value size %u != %lld.\n",
map_name, map->def.value_size, sz);
return -EINVAL;
}
map->def.value_size = sz;
map->btf_value_type_id = t->type;
} else {
if (strict) {
pr_warning("map '%s': unknown field '%s'.\n",
map_name, name);
return -ENOTSUP;
}
pr_debug("map '%s': ignoring unknown field '%s'.\n",
map_name, name);
}
}
if (map->def.type == BPF_MAP_TYPE_UNSPEC) {
pr_warning("map '%s': map type isn't specified.\n", map_name);
return -EINVAL;
}
return 0;
}
static int bpf_object__init_user_btf_maps(struct bpf_object *obj, bool strict)
{
const struct btf_type *sec = NULL;
int nr_types, i, vlen, err;
const struct btf_type *t;
const char *name;
Elf_Data *data;
Elf_Scn *scn;
if (obj->efile.btf_maps_shndx < 0)
return 0;
scn = elf_getscn(obj->efile.elf, obj->efile.btf_maps_shndx);
if (scn)
data = elf_getdata(scn, NULL);
if (!scn || !data) {
pr_warning("failed to get Elf_Data from map section %d (%s)\n",
obj->efile.maps_shndx, MAPS_ELF_SEC);
return -EINVAL;
}
nr_types = btf__get_nr_types(obj->btf);
for (i = 1; i <= nr_types; i++) {
t = btf__type_by_id(obj->btf, i);
if (!btf_is_datasec(t))
continue;
name = btf__name_by_offset(obj->btf, t->name_off);
if (strcmp(name, MAPS_ELF_SEC) == 0) {
sec = t;
break;
}
}
if (!sec) {
pr_warning("DATASEC '%s' not found.\n", MAPS_ELF_SEC);
return -ENOENT;
}
vlen = btf_vlen(sec);
for (i = 0; i < vlen; i++) {
err = bpf_object__init_user_btf_map(obj, sec, i,
obj->efile.btf_maps_shndx,
data, strict);
if (err)
return err;
}
return 0;
}
static int bpf_object__init_maps(struct bpf_object *obj, int flags)
{
bool strict = !(flags & MAPS_RELAX_COMPAT);
int err;
err = bpf_object__init_user_maps(obj, strict);
if (err)
return err;
err = bpf_object__init_user_btf_maps(obj, strict);
if (err)
return err;
err = bpf_object__init_global_data_maps(obj);
if (err)
return err;
if (obj->nr_maps) {
qsort(obj->maps, obj->nr_maps, sizeof(obj->maps[0]),
compare_bpf_map);
}
return 0;
}
static bool section_have_execinstr(struct bpf_object *obj, int idx)
{
Elf_Scn *scn;
GElf_Shdr sh;
scn = elf_getscn(obj->efile.elf, idx);
if (!scn)
return false;
if (gelf_getshdr(scn, &sh) != &sh)
return false;
if (sh.sh_flags & SHF_EXECINSTR)
return true;
return false;
}
static void bpf_object__sanitize_btf(struct bpf_object *obj)
{
bool has_datasec = obj->caps.btf_datasec;
bool has_func = obj->caps.btf_func;
struct btf *btf = obj->btf;
struct btf_type *t;
int i, j, vlen;
if (!obj->btf || (has_func && has_datasec))
return;
for (i = 1; i <= btf__get_nr_types(btf); i++) {
t = (struct btf_type *)btf__type_by_id(btf, i);
if (!has_datasec && btf_is_var(t)) {
/* replace VAR with INT */
t->info = BTF_INFO_ENC(BTF_KIND_INT, 0, 0);
/*
* using size = 1 is the safest choice, 4 will be too
* big and cause kernel BTF validation failure if
* original variable took less than 4 bytes
*/
t->size = 1;
*(int *)(t + 1) = BTF_INT_ENC(0, 0, 8);
} else if (!has_datasec && btf_is_datasec(t)) {
/* replace DATASEC with STRUCT */
const struct btf_var_secinfo *v = btf_var_secinfos(t);
struct btf_member *m = btf_members(t);
struct btf_type *vt;
char *name;
name = (char *)btf__name_by_offset(btf, t->name_off);
while (*name) {
if (*name == '.')
*name = '_';
name++;
}
vlen = btf_vlen(t);
t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, vlen);
for (j = 0; j < vlen; j++, v++, m++) {
/* order of field assignments is important */
m->offset = v->offset * 8;
m->type = v->type;
/* preserve variable name as member name */
vt = (void *)btf__type_by_id(btf, v->type);
m->name_off = vt->name_off;
}
} else if (!has_func && btf_is_func_proto(t)) {
/* replace FUNC_PROTO with ENUM */
vlen = btf_vlen(t);
t->info = BTF_INFO_ENC(BTF_KIND_ENUM, 0, vlen);
t->size = sizeof(__u32); /* kernel enforced */
} else if (!has_func && btf_is_func(t)) {
/* replace FUNC with TYPEDEF */
t->info = BTF_INFO_ENC(BTF_KIND_TYPEDEF, 0, 0);
}
}
}
static void bpf_object__sanitize_btf_ext(struct bpf_object *obj)
{
if (!obj->btf_ext)
return;
if (!obj->caps.btf_func) {
btf_ext__free(obj->btf_ext);
obj->btf_ext = NULL;
}
}
static bool bpf_object__is_btf_mandatory(const struct bpf_object *obj)
{
return obj->efile.btf_maps_shndx >= 0;
}
static int bpf_object__init_btf(struct bpf_object *obj,
Elf_Data *btf_data,
Elf_Data *btf_ext_data)
{
bool btf_required = bpf_object__is_btf_mandatory(obj);
int err = 0;
if (btf_data) {
obj->btf = btf__new(btf_data->d_buf, btf_data->d_size);
if (IS_ERR(obj->btf)) {
pr_warning("Error loading ELF section %s: %d.\n",
BTF_ELF_SEC, err);
goto out;
}
err = btf__finalize_data(obj, obj->btf);
if (err) {
pr_warning("Error finalizing %s: %d.\n",
BTF_ELF_SEC, err);
goto out;
}
}
if (btf_ext_data) {
if (!obj->btf) {
pr_debug("Ignore ELF section %s because its depending ELF section %s is not found.\n",
BTF_EXT_ELF_SEC, BTF_ELF_SEC);
goto out;
}
obj->btf_ext = btf_ext__new(btf_ext_data->d_buf,
btf_ext_data->d_size);
if (IS_ERR(obj->btf_ext)) {
pr_warning("Error loading ELF section %s: %ld. Ignored and continue.\n",
BTF_EXT_ELF_SEC, PTR_ERR(obj->btf_ext));
obj->btf_ext = NULL;
goto out;
}
}
out:
if (err || IS_ERR(obj->btf)) {
if (btf_required)
err = err ? : PTR_ERR(obj->btf);
else
err = 0;
if (!IS_ERR_OR_NULL(obj->btf))
btf__free(obj->btf);
obj->btf = NULL;
}
if (btf_required && !obj->btf) {
pr_warning("BTF is required, but is missing or corrupted.\n");
return err == 0 ? -ENOENT : err;
}
return 0;
}
static int bpf_object__sanitize_and_load_btf(struct bpf_object *obj)
{
int err = 0;
if (!obj->btf)
return 0;
bpf_object__sanitize_btf(obj);
bpf_object__sanitize_btf_ext(obj);
err = btf__load(obj->btf);
if (err) {
pr_warning("Error loading %s into kernel: %d.\n",
BTF_ELF_SEC, err);
btf__free(obj->btf);
obj->btf = NULL;
/* btf_ext can't exist without btf, so free it as well */
if (obj->btf_ext) {
btf_ext__free(obj->btf_ext);
obj->btf_ext = NULL;
}
if (bpf_object__is_btf_mandatory(obj))
return err;
}
return 0;
}
static int bpf_object__elf_collect(struct bpf_object *obj, int flags)
{
Elf *elf = obj->efile.elf;
GElf_Ehdr *ep = &obj->efile.ehdr;
Elf_Data *btf_ext_data = NULL;
Elf_Data *btf_data = NULL;
Elf_Scn *scn = NULL;
int idx = 0, err = 0;
/* Elf is corrupted/truncated, avoid calling elf_strptr. */
if (!elf_rawdata(elf_getscn(elf, ep->e_shstrndx), NULL)) {
pr_warning("failed to get e_shstrndx from %s\n", obj->path);
return -LIBBPF_ERRNO__FORMAT;
}
while ((scn = elf_nextscn(elf, scn)) != NULL) {
char *name;
GElf_Shdr sh;
Elf_Data *data;
idx++;
if (gelf_getshdr(scn, &sh) != &sh) {
pr_warning("failed to get section(%d) header from %s\n",
idx, obj->path);
return -LIBBPF_ERRNO__FORMAT;
}
name = elf_strptr(elf, ep->e_shstrndx, sh.sh_name);
if (!name) {
pr_warning("failed to get section(%d) name from %s\n",
idx, obj->path);
return -LIBBPF_ERRNO__FORMAT;
}
data = elf_getdata(scn, 0);
if (!data) {
pr_warning("failed to get section(%d) data from %s(%s)\n",
idx, name, obj->path);
return -LIBBPF_ERRNO__FORMAT;
}
pr_debug("section(%d) %s, size %ld, link %d, flags %lx, type=%d\n",
idx, name, (unsigned long)data->d_size,
(int)sh.sh_link, (unsigned long)sh.sh_flags,
(int)sh.sh_type);
if (strcmp(name, "license") == 0) {
err = bpf_object__init_license(obj,
data->d_buf,
data->d_size);
if (err)
return err;
} else if (strcmp(name, "version") == 0) {
err = bpf_object__init_kversion(obj,
data->d_buf,
data->d_size);
if (err)
return err;
} else if (strcmp(name, "maps") == 0) {
obj->efile.maps_shndx = idx;
} else if (strcmp(name, MAPS_ELF_SEC) == 0) {
obj->efile.btf_maps_shndx = idx;
} else if (strcmp(name, BTF_ELF_SEC) == 0) {
btf_data = data;
} else if (strcmp(name, BTF_EXT_ELF_SEC) == 0) {
btf_ext_data = data;
} else if (sh.sh_type == SHT_SYMTAB) {
if (obj->efile.symbols) {
pr_warning("bpf: multiple SYMTAB in %s\n",
obj->path);
return -LIBBPF_ERRNO__FORMAT;
}
obj->efile.symbols = data;
obj->efile.strtabidx = sh.sh_link;
} else if (sh.sh_type == SHT_PROGBITS && data->d_size > 0) {
if (sh.sh_flags & SHF_EXECINSTR) {
if (strcmp(name, ".text") == 0)
obj->efile.text_shndx = idx;
err = bpf_object__add_program(obj, data->d_buf,
data->d_size, name, idx);
if (err) {
char errmsg[STRERR_BUFSIZE];
char *cp = libbpf_strerror_r(-err, errmsg,
sizeof(errmsg));
pr_warning("failed to alloc program %s (%s): %s",
name, obj->path, cp);
return err;
}
} else if (strcmp(name, ".data") == 0) {
obj->efile.data = data;
obj->efile.data_shndx = idx;
} else if (strcmp(name, ".rodata") == 0) {
obj->efile.rodata = data;
obj->efile.rodata_shndx = idx;
} else {
pr_debug("skip section(%d) %s\n", idx, name);
}
} else if (sh.sh_type == SHT_REL) {
int nr_reloc = obj->efile.nr_reloc;
void *reloc = obj->efile.reloc;
int sec = sh.sh_info; /* points to other section */
/* Only do relo for section with exec instructions */
if (!section_have_execinstr(obj, sec)) {
pr_debug("skip relo %s(%d) for section(%d)\n",
name, idx, sec);
continue;
}
reloc = reallocarray(reloc, nr_reloc + 1,
sizeof(*obj->efile.reloc));
if (!reloc) {
pr_warning("realloc failed\n");
return -ENOMEM;
}
obj->efile.reloc = reloc;
obj->efile.nr_reloc++;
obj->efile.reloc[nr_reloc].shdr = sh;
obj->efile.reloc[nr_reloc].data = data;
} else if (sh.sh_type == SHT_NOBITS && strcmp(name, ".bss") == 0) {
obj->efile.bss = data;
obj->efile.bss_shndx = idx;
} else {
pr_debug("skip section(%d) %s\n", idx, name);
}
}
if (!obj->efile.strtabidx || obj->efile.strtabidx >= idx) {
pr_warning("Corrupted ELF file: index of strtab invalid\n");
return -LIBBPF_ERRNO__FORMAT;
}
err = bpf_object__init_btf(obj, btf_data, btf_ext_data);
if (!err)
err = bpf_object__init_maps(obj, flags);
if (!err)
err = bpf_object__sanitize_and_load_btf(obj);
if (!err)
err = bpf_object__init_prog_names(obj);
return err;
}
static struct bpf_program *
bpf_object__find_prog_by_idx(struct bpf_object *obj, int idx)
{
struct bpf_program *prog;
size_t i;
for (i = 0; i < obj->nr_programs; i++) {
prog = &obj->programs[i];
if (prog->idx == idx)
return prog;
}
return NULL;
}
struct bpf_program *
bpf_object__find_program_by_title(const struct bpf_object *obj,
const char *title)
{
struct bpf_program *pos;
bpf_object__for_each_program(pos, obj) {
if (pos->section_name && !strcmp(pos->section_name, title))
return pos;
}
return NULL;
}
static bool bpf_object__shndx_is_data(const struct bpf_object *obj,
int shndx)
{
return shndx == obj->efile.data_shndx ||
shndx == obj->efile.bss_shndx ||
shndx == obj->efile.rodata_shndx;
}
static bool bpf_object__shndx_is_maps(const struct bpf_object *obj,
int shndx)
{
return shndx == obj->efile.maps_shndx ||
shndx == obj->efile.btf_maps_shndx;
}
static bool bpf_object__relo_in_known_section(const struct bpf_object *obj,
int shndx)
{
return shndx == obj->efile.text_shndx ||
bpf_object__shndx_is_maps(obj, shndx) ||
bpf_object__shndx_is_data(obj, shndx);
}
static enum libbpf_map_type
bpf_object__section_to_libbpf_map_type(const struct bpf_object *obj, int shndx)
{
if (shndx == obj->efile.data_shndx)
return LIBBPF_MAP_DATA;
else if (shndx == obj->efile.bss_shndx)
return LIBBPF_MAP_BSS;
else if (shndx == obj->efile.rodata_shndx)
return LIBBPF_MAP_RODATA;
else
return LIBBPF_MAP_UNSPEC;
}
static int
bpf_program__collect_reloc(struct bpf_program *prog, GElf_Shdr *shdr,
Elf_Data *data, struct bpf_object *obj)
{
Elf_Data *symbols = obj->efile.symbols;
struct bpf_map *maps = obj->maps;
size_t nr_maps = obj->nr_maps;
int i, nrels;
pr_debug("collecting relocating info for: '%s'\n", prog->section_name);
nrels = shdr->sh_size / shdr->sh_entsize;
prog->reloc_desc = malloc(sizeof(*prog->reloc_desc) * nrels);
if (!prog->reloc_desc) {
pr_warning("failed to alloc memory in relocation\n");
return -ENOMEM;
}
prog->nr_reloc = nrels;
for (i = 0; i < nrels; i++) {
struct bpf_insn *insns = prog->insns;
enum libbpf_map_type type;
unsigned int insn_idx;
unsigned int shdr_idx;
const char *name;
size_t map_idx;
GElf_Sym sym;
GElf_Rel rel;
if (!gelf_getrel(data, i, &rel)) {
pr_warning("relocation: failed to get %d reloc\n", i);
return -LIBBPF_ERRNO__FORMAT;
}
if (!gelf_getsym(symbols, GELF_R_SYM(rel.r_info), &sym)) {
pr_warning("relocation: symbol %"PRIx64" not found\n",
GELF_R_SYM(rel.r_info));
return -LIBBPF_ERRNO__FORMAT;
}
name = elf_strptr(obj->efile.elf, obj->efile.strtabidx,
sym.st_name) ? : "<?>";
pr_debug("relo for %lld value %lld name %d (\'%s\')\n",
(long long) (rel.r_info >> 32),
(long long) sym.st_value, sym.st_name, name);
shdr_idx = sym.st_shndx;
insn_idx = rel.r_offset / sizeof(struct bpf_insn);
pr_debug("relocation: insn_idx=%u, shdr_idx=%u\n",
insn_idx, shdr_idx);
if (shdr_idx >= SHN_LORESERVE) {
pr_warning("relocation: not yet supported relo for non-static global \'%s\' variable in special section (0x%x) found in insns[%d].code 0x%x\n",
name, shdr_idx, insn_idx,
insns[insn_idx].code);
return -LIBBPF_ERRNO__RELOC;
}
if (!bpf_object__relo_in_known_section(obj, shdr_idx)) {
pr_warning("Program '%s' contains unrecognized relo data pointing to section %u\n",
prog->section_name, shdr_idx);
return -LIBBPF_ERRNO__RELOC;
}
if (insns[insn_idx].code == (BPF_JMP | BPF_CALL)) {
if (insns[insn_idx].src_reg != BPF_PSEUDO_CALL) {
pr_warning("incorrect bpf_call opcode\n");
return -LIBBPF_ERRNO__RELOC;
}
prog->reloc_desc[i].type = RELO_CALL;
prog->reloc_desc[i].insn_idx = insn_idx;
prog->reloc_desc[i].text_off = sym.st_value;
obj->has_pseudo_calls = true;
continue;
}
if (insns[insn_idx].code != (BPF_LD | BPF_IMM | BPF_DW)) {
pr_warning("bpf: relocation: invalid relo for insns[%d].code 0x%x\n",
insn_idx, insns[insn_idx].code);
return -LIBBPF_ERRNO__RELOC;
}
if (bpf_object__shndx_is_maps(obj, shdr_idx) ||
bpf_object__shndx_is_data(obj, shdr_idx)) {
type = bpf_object__section_to_libbpf_map_type(obj, shdr_idx);
if (type != LIBBPF_MAP_UNSPEC) {
if (GELF_ST_BIND(sym.st_info) == STB_GLOBAL) {
pr_warning("bpf: relocation: not yet supported relo for non-static global \'%s\' variable found in insns[%d].code 0x%x\n",
name, insn_idx, insns[insn_idx].code);
return -LIBBPF_ERRNO__RELOC;
}
if (!obj->caps.global_data) {
pr_warning("bpf: relocation: kernel does not support global \'%s\' variable access in insns[%d]\n",
name, insn_idx);
return -LIBBPF_ERRNO__RELOC;
}
}
for (map_idx = 0; map_idx < nr_maps; map_idx++) {
if (maps[map_idx].libbpf_type != type)
continue;
if (type != LIBBPF_MAP_UNSPEC ||
(maps[map_idx].sec_idx == sym.st_shndx &&
maps[map_idx].sec_offset == sym.st_value)) {
pr_debug("relocation: found map %zd (%s, sec_idx %d, offset %zu) for insn %u\n",
map_idx, maps[map_idx].name,
maps[map_idx].sec_idx,
maps[map_idx].sec_offset,
insn_idx);
break;
}
}
if (map_idx >= nr_maps) {
pr_warning("bpf relocation: map_idx %d larger than %d\n",
(int)map_idx, (int)nr_maps - 1);
return -LIBBPF_ERRNO__RELOC;
}
prog->reloc_desc[i].type = type != LIBBPF_MAP_UNSPEC ?
RELO_DATA : RELO_LD64;
prog->reloc_desc[i].insn_idx = insn_idx;
prog->reloc_desc[i].map_idx = map_idx;
}
}
return 0;
}
static int bpf_map_find_btf_info(struct bpf_object *obj, struct bpf_map *map)
{
struct bpf_map_def *def = &map->def;
__u32 key_type_id = 0, value_type_id = 0;
int ret;
/* if it's BTF-defined map, we don't need to search for type IDs */
if (map->sec_idx == obj->efile.btf_maps_shndx)
return 0;
if (!bpf_map__is_internal(map)) {
ret = btf__get_map_kv_tids(obj->btf, map->name, def->key_size,
def->value_size, &key_type_id,
&value_type_id);
} else {
/*
* LLVM annotates global data differently in BTF, that is,
* only as '.data', '.bss' or '.rodata'.
*/
ret = btf__find_by_name(obj->btf,
libbpf_type_to_btf_name[map->libbpf_type]);
}
if (ret < 0)
return ret;
map->btf_key_type_id = key_type_id;
map->btf_value_type_id = bpf_map__is_internal(map) ?
ret : value_type_id;
return 0;
}
int bpf_map__reuse_fd(struct bpf_map *map, int fd)
{
struct bpf_map_info info = {};
__u32 len = sizeof(info);
int new_fd, err;
char *new_name;
err = bpf_obj_get_info_by_fd(fd, &info, &len);
if (err)
return err;
new_name = strdup(info.name);
if (!new_name)
return -errno;
new_fd = open("/", O_RDONLY | O_CLOEXEC);
if (new_fd < 0) {
err = -errno;
goto err_free_new_name;
}
new_fd = dup3(fd, new_fd, O_CLOEXEC);
if (new_fd < 0) {
err = -errno;
goto err_close_new_fd;
}
err = zclose(map->fd);
if (err) {
err = -errno;
goto err_close_new_fd;
}
free(map->name);
map->fd = new_fd;
map->name = new_name;
map->def.type = info.type;
map->def.key_size = info.key_size;
map->def.value_size = info.value_size;
map->def.max_entries = info.max_entries;
map->def.map_flags = info.map_flags;
map->btf_key_type_id = info.btf_key_type_id;
map->btf_value_type_id = info.btf_value_type_id;
return 0;
err_close_new_fd:
close(new_fd);
err_free_new_name:
free(new_name);
return err;
}
int bpf_map__resize(struct bpf_map *map, __u32 max_entries)
{
if (!map || !max_entries)
return -EINVAL;
/* If map already created, its attributes can't be changed. */
if (map->fd >= 0)
return -EBUSY;
map->def.max_entries = max_entries;
return 0;
}
static int
bpf_object__probe_name(struct bpf_object *obj)
{
struct bpf_load_program_attr attr;
char *cp, errmsg[STRERR_BUFSIZE];
struct bpf_insn insns[] = {
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
};
int ret;
/* make sure basic loading works */
memset(&attr, 0, sizeof(attr));
attr.prog_type = BPF_PROG_TYPE_SOCKET_FILTER;
attr.insns = insns;
attr.insns_cnt = ARRAY_SIZE(insns);
attr.license = "GPL";
ret = bpf_load_program_xattr(&attr, NULL, 0);
if (ret < 0) {
cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg));
pr_warning("Error in %s():%s(%d). Couldn't load basic 'r0 = 0' BPF program.\n",
__func__, cp, errno);
return -errno;
}
close(ret);
/* now try the same program, but with the name */
attr.name = "test";
ret = bpf_load_program_xattr(&attr, NULL, 0);
if (ret >= 0) {
obj->caps.name = 1;
close(ret);
}
return 0;
}
static int
bpf_object__probe_global_data(struct bpf_object *obj)
{
struct bpf_load_program_attr prg_attr;
struct bpf_create_map_attr map_attr;
char *cp, errmsg[STRERR_BUFSIZE];
struct bpf_insn insns[] = {
BPF_LD_MAP_VALUE(BPF_REG_1, 0, 16),
BPF_ST_MEM(BPF_DW, BPF_REG_1, 0, 42),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),
};
int ret, map;
memset(&map_attr, 0, sizeof(map_attr));
map_attr.map_type = BPF_MAP_TYPE_ARRAY;
map_attr.key_size = sizeof(int);
map_attr.value_size = 32;
map_attr.max_entries = 1;
map = bpf_create_map_xattr(&map_attr);
if (map < 0) {
cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg));
pr_warning("Error in %s():%s(%d). Couldn't create simple array map.\n",
__func__, cp, errno);
return -errno;
}
insns[0].imm = map;
memset(&prg_attr, 0, sizeof(prg_attr));
prg_attr.prog_type = BPF_PROG_TYPE_SOCKET_FILTER;
prg_attr.insns = insns;
prg_attr.insns_cnt = ARRAY_SIZE(insns);
prg_attr.license = "GPL";
ret = bpf_load_program_xattr(&prg_attr, NULL, 0);
if (ret >= 0) {
obj->caps.global_data = 1;
close(ret);
}
close(map);
return 0;
}
static int bpf_object__probe_btf_func(struct bpf_object *obj)
{
const char strs[] = "\0int\0x\0a";
/* void x(int a) {} */
__u32 types[] = {
/* int */
BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), /* [1] */
/* FUNC_PROTO */ /* [2] */
BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_FUNC_PROTO, 0, 1), 0),
BTF_PARAM_ENC(7, 1),
/* FUNC x */ /* [3] */
BTF_TYPE_ENC(5, BTF_INFO_ENC(BTF_KIND_FUNC, 0, 0), 2),
};
int btf_fd;
btf_fd = libbpf__load_raw_btf((char *)types, sizeof(types),
strs, sizeof(strs));
if (btf_fd >= 0) {
obj->caps.btf_func = 1;
close(btf_fd);
return 1;
}
return 0;
}
static int bpf_object__probe_btf_datasec(struct bpf_object *obj)
{
const char strs[] = "\0x\0.data";
/* static int a; */
__u32 types[] = {
/* int */
BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4), /* [1] */
/* VAR x */ /* [2] */
BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_VAR, 0, 0), 1),
BTF_VAR_STATIC,
/* DATASEC val */ /* [3] */
BTF_TYPE_ENC(3, BTF_INFO_ENC(BTF_KIND_DATASEC, 0, 1), 4),
BTF_VAR_SECINFO_ENC(2, 0, 4),
};
int btf_fd;
btf_fd = libbpf__load_raw_btf((char *)types, sizeof(types),
strs, sizeof(strs));
if (btf_fd >= 0) {
obj->caps.btf_datasec = 1;
close(btf_fd);
return 1;
}
return 0;
}
static int
bpf_object__probe_caps(struct bpf_object *obj)
{
int (*probe_fn[])(struct bpf_object *obj) = {
bpf_object__probe_name,
bpf_object__probe_global_data,
bpf_object__probe_btf_func,
bpf_object__probe_btf_datasec,
};
int i, ret;
for (i = 0; i < ARRAY_SIZE(probe_fn); i++) {
ret = probe_fn[i](obj);
if (ret < 0)
pr_debug("Probe #%d failed with %d.\n", i, ret);
}
return 0;
}
static int
bpf_object__populate_internal_map(struct bpf_object *obj, struct bpf_map *map)
{
char *cp, errmsg[STRERR_BUFSIZE];
int err, zero = 0;
__u8 *data;
/* Nothing to do here since kernel already zero-initializes .bss map. */
if (map->libbpf_type == LIBBPF_MAP_BSS)
return 0;
data = map->libbpf_type == LIBBPF_MAP_DATA ?
obj->sections.data : obj->sections.rodata;
err = bpf_map_update_elem(map->fd, &zero, data, 0);
/* Freeze .rodata map as read-only from syscall side. */
if (!err && map->libbpf_type == LIBBPF_MAP_RODATA) {
err = bpf_map_freeze(map->fd);
if (err) {
cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg));
pr_warning("Error freezing map(%s) as read-only: %s\n",
map->name, cp);
err = 0;
}
}
return err;
}
static int
bpf_object__create_maps(struct bpf_object *obj)
{
struct bpf_create_map_attr create_attr = {};
int nr_cpus = 0;
unsigned int i;
int err;
for (i = 0; i < obj->nr_maps; i++) {
struct bpf_map *map = &obj->maps[i];
struct bpf_map_def *def = &map->def;
char *cp, errmsg[STRERR_BUFSIZE];
int *pfd = &map->fd;
if (map->fd >= 0) {
pr_debug("skip map create (preset) %s: fd=%d\n",
map->name, map->fd);
continue;
}
if (obj->caps.name)
create_attr.name = map->name;
create_attr.map_ifindex = map->map_ifindex;
create_attr.map_type = def->type;
create_attr.map_flags = def->map_flags;
create_attr.key_size = def->key_size;
create_attr.value_size = def->value_size;
if (def->type == BPF_MAP_TYPE_PERF_EVENT_ARRAY &&
!def->max_entries) {
if (!nr_cpus)
nr_cpus = libbpf_num_possible_cpus();
if (nr_cpus < 0) {
pr_warning("failed to determine number of system CPUs: %d\n",
nr_cpus);
err = nr_cpus;
goto err_out;
}
pr_debug("map '%s': setting size to %d\n",
map->name, nr_cpus);
create_attr.max_entries = nr_cpus;
} else {
create_attr.max_entries = def->max_entries;
}
create_attr.btf_fd = 0;
create_attr.btf_key_type_id = 0;
create_attr.btf_value_type_id = 0;
if (bpf_map_type__is_map_in_map(def->type) &&
map->inner_map_fd >= 0)
create_attr.inner_map_fd = map->inner_map_fd;
if (obj->btf && !bpf_map_find_btf_info(obj, map)) {
create_attr.btf_fd = btf__fd(obj->btf);
create_attr.btf_key_type_id = map->btf_key_type_id;
create_attr.btf_value_type_id = map->btf_value_type_id;
}
*pfd = bpf_create_map_xattr(&create_attr);
if (*pfd < 0 && (create_attr.btf_key_type_id ||
create_attr.btf_value_type_id)) {
err = -errno;
cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
pr_warning("Error in bpf_create_map_xattr(%s):%s(%d). Retrying without BTF.\n",
map->name, cp, err);
create_attr.btf_fd = 0;
create_attr.btf_key_type_id = 0;
create_attr.btf_value_type_id = 0;
map->btf_key_type_id = 0;
map->btf_value_type_id = 0;
*pfd = bpf_create_map_xattr(&create_attr);
}
if (*pfd < 0) {
size_t j;
err = -errno;
err_out:
cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
pr_warning("failed to create map (name: '%s'): %s(%d)\n",
map->name, cp, err);
for (j = 0; j < i; j++)
zclose(obj->maps[j].fd);
return err;
}
if (bpf_map__is_internal(map)) {
err = bpf_object__populate_internal_map(obj, map);
if (err < 0) {
zclose(*pfd);
goto err_out;
}
}
pr_debug("created map %s: fd=%d\n", map->name, *pfd);
}
return 0;
}
static int
check_btf_ext_reloc_err(struct bpf_program *prog, int err,
void *btf_prog_info, const char *info_name)
{
if (err != -ENOENT) {
pr_warning("Error in loading %s for sec %s.\n",
info_name, prog->section_name);
return err;
}
/* err == -ENOENT (i.e. prog->section_name not found in btf_ext) */
if (btf_prog_info) {
/*
* Some info has already been found but has problem
* in the last btf_ext reloc. Must have to error out.
*/
pr_warning("Error in relocating %s for sec %s.\n",
info_name, prog->section_name);
return err;
}
/* Have problem loading the very first info. Ignore the rest. */
pr_warning("Cannot find %s for main program sec %s. Ignore all %s.\n",
info_name, prog->section_name, info_name);
return 0;
}
static int
bpf_program_reloc_btf_ext(struct bpf_program *prog, struct bpf_object *obj,
const char *section_name, __u32 insn_offset)
{
int err;
if (!insn_offset || prog->func_info) {
/*
* !insn_offset => main program
*
* For sub prog, the main program's func_info has to
* be loaded first (i.e. prog->func_info != NULL)
*/
err = btf_ext__reloc_func_info(obj->btf, obj->btf_ext,
section_name, insn_offset,
&prog->func_info,
&prog->func_info_cnt);
if (err)
return check_btf_ext_reloc_err(prog, err,
prog->func_info,
"bpf_func_info");
prog->func_info_rec_size = btf_ext__func_info_rec_size(obj->btf_ext);
}
if (!insn_offset || prog->line_info) {
err = btf_ext__reloc_line_info(obj->btf, obj->btf_ext,
section_name, insn_offset,
&prog->line_info,
&prog->line_info_cnt);
if (err)
return check_btf_ext_reloc_err(prog, err,
prog->line_info,
"bpf_line_info");
prog->line_info_rec_size = btf_ext__line_info_rec_size(obj->btf_ext);
}
return 0;
}
#define BPF_CORE_SPEC_MAX_LEN 64
/* represents BPF CO-RE field or array element accessor */
struct bpf_core_accessor {
__u32 type_id; /* struct/union type or array element type */
__u32 idx; /* field index or array index */
const char *name; /* field name or NULL for array accessor */
};
struct bpf_core_spec {
const struct btf *btf;
/* high-level spec: named fields and array indices only */
struct bpf_core_accessor spec[BPF_CORE_SPEC_MAX_LEN];
/* high-level spec length */
int len;
/* raw, low-level spec: 1-to-1 with accessor spec string */
int raw_spec[BPF_CORE_SPEC_MAX_LEN];
/* raw spec length */
int raw_len;
/* field byte offset represented by spec */
__u32 offset;
};
static bool str_is_empty(const char *s)
{
return !s || !s[0];
}
/*
* Turn bpf_offset_reloc into a low- and high-level spec representation,
* validating correctness along the way, as well as calculating resulting
* field offset (in bytes), specified by accessor string. Low-level spec
* captures every single level of nestedness, including traversing anonymous
* struct/union members. High-level one only captures semantically meaningful
* "turning points": named fields and array indicies.
* E.g., for this case:
*
* struct sample {
* int __unimportant;
* struct {
* int __1;
* int __2;
* int a[7];
* };
* };
*
* struct sample *s = ...;
*
* int x = &s->a[3]; // access string = '0:1:2:3'
*
* Low-level spec has 1:1 mapping with each element of access string (it's
* just a parsed access string representation): [0, 1, 2, 3].
*
* High-level spec will capture only 3 points:
* - intial zero-index access by pointer (&s->... is the same as &s[0]...);
* - field 'a' access (corresponds to '2' in low-level spec);
* - array element #3 access (corresponds to '3' in low-level spec).
*
*/
static int bpf_core_spec_parse(const struct btf *btf,
__u32 type_id,
const char *spec_str,
struct bpf_core_spec *spec)
{
int access_idx, parsed_len, i;
const struct btf_type *t;
const char *name;
__u32 id;
__s64 sz;
if (str_is_empty(spec_str) || *spec_str == ':')
return -EINVAL;
memset(spec, 0, sizeof(*spec));
spec->btf = btf;
/* parse spec_str="0:1:2:3:4" into array raw_spec=[0, 1, 2, 3, 4] */
while (*spec_str) {
if (*spec_str == ':')
++spec_str;
if (sscanf(spec_str, "%d%n", &access_idx, &parsed_len) != 1)
return -EINVAL;
if (spec->raw_len == BPF_CORE_SPEC_MAX_LEN)
return -E2BIG;
spec_str += parsed_len;
spec->raw_spec[spec->raw_len++] = access_idx;
}
if (spec->raw_len == 0)
return -EINVAL;
/* first spec value is always reloc type array index */
t = skip_mods_and_typedefs(btf, type_id, &id);
if (!t)
return -EINVAL;
access_idx = spec->raw_spec[0];
spec->spec[0].type_id = id;
spec->spec[0].idx = access_idx;
spec->len++;
sz = btf__resolve_size(btf, id);
if (sz < 0)
return sz;
spec->offset = access_idx * sz;
for (i = 1; i < spec->raw_len; i++) {
t = skip_mods_and_typedefs(btf, id, &id);
if (!t)
return -EINVAL;
access_idx = spec->raw_spec[i];
if (btf_is_composite(t)) {
const struct btf_member *m;
__u32 offset;
if (access_idx >= btf_vlen(t))
return -EINVAL;
if (btf_member_bitfield_size(t, access_idx))
return -EINVAL;
offset = btf_member_bit_offset(t, access_idx);
if (offset % 8)
return -EINVAL;
spec->offset += offset / 8;
m = btf_members(t) + access_idx;
if (m->name_off) {
name = btf__name_by_offset(btf, m->name_off);
if (str_is_empty(name))
return -EINVAL;
spec->spec[spec->len].type_id = id;
spec->spec[spec->len].idx = access_idx;
spec->spec[spec->len].name = name;
spec->len++;
}
id = m->type;
} else if (btf_is_array(t)) {
const struct btf_array *a = btf_array(t);
t = skip_mods_and_typedefs(btf, a->type, &id);
if (!t || access_idx >= a->nelems)
return -EINVAL;
spec->spec[spec->len].type_id = id;
spec->spec[spec->len].idx = access_idx;
spec->len++;
sz = btf__resolve_size(btf, id);
if (sz < 0)
return sz;
spec->offset += access_idx * sz;
} else {
pr_warning("relo for [%u] %s (at idx %d) captures type [%d] of unexpected kind %d\n",
type_id, spec_str, i, id, btf_kind(t));
return -EINVAL;
}
}
return 0;
}
static bool bpf_core_is_flavor_sep(const char *s)
{
/* check X___Y name pattern, where X and Y are not underscores */
return s[0] != '_' && /* X */
s[1] == '_' && s[2] == '_' && s[3] == '_' && /* ___ */
s[4] != '_'; /* Y */
}
/* Given 'some_struct_name___with_flavor' return the length of a name prefix
* before last triple underscore. Struct name part after last triple
* underscore is ignored by BPF CO-RE relocation during relocation matching.
*/
static size_t bpf_core_essential_name_len(const char *name)
{
size_t n = strlen(name);
int i;
for (i = n - 5; i >= 0; i--) {
if (bpf_core_is_flavor_sep(name + i))
return i + 1;
}
return n;
}
/* dynamically sized list of type IDs */
struct ids_vec {
__u32 *data;
int len;
};
static void bpf_core_free_cands(struct ids_vec *cand_ids)
{
free(cand_ids->data);
free(cand_ids);
}
static struct ids_vec *bpf_core_find_cands(const struct btf *local_btf,
__u32 local_type_id,
const struct btf *targ_btf)
{
size_t local_essent_len, targ_essent_len;
const char *local_name, *targ_name;
const struct btf_type *t;
struct ids_vec *cand_ids;
__u32 *new_ids;
int i, err, n;
t = btf__type_by_id(local_btf, local_type_id);
if (!t)
return ERR_PTR(-EINVAL);
local_name = btf__name_by_offset(local_btf, t->name_off);
if (str_is_empty(local_name))
return ERR_PTR(-EINVAL);
local_essent_len = bpf_core_essential_name_len(local_name);
cand_ids = calloc(1, sizeof(*cand_ids));
if (!cand_ids)
return ERR_PTR(-ENOMEM);
n = btf__get_nr_types(targ_btf);
for (i = 1; i <= n; i++) {
t = btf__type_by_id(targ_btf, i);
targ_name = btf__name_by_offset(targ_btf, t->name_off);
if (str_is_empty(targ_name))
continue;
targ_essent_len = bpf_core_essential_name_len(targ_name);
if (targ_essent_len != local_essent_len)
continue;
if (strncmp(local_name, targ_name, local_essent_len) == 0) {
pr_debug("[%d] %s: found candidate [%d] %s\n",
local_type_id, local_name, i, targ_name);
new_ids = reallocarray(cand_ids->data,
cand_ids->len + 1,
sizeof(*cand_ids->data));
if (!new_ids) {
err = -ENOMEM;
goto err_out;
}
cand_ids->data = new_ids;
cand_ids->data[cand_ids->len++] = i;
}
}
return cand_ids;
err_out:
bpf_core_free_cands(cand_ids);
return ERR_PTR(err);
}
/* Check two types for compatibility, skipping const/volatile/restrict and
* typedefs, to ensure we are relocating offset to the compatible entities:
* - any two STRUCTs/UNIONs are compatible and can be mixed;
* - any two FWDs are compatible;
* - any two PTRs are always compatible;
* - for ENUMs, check sizes, names are ignored;
* - for INT, size and bitness should match, signedness is ignored;
* - for ARRAY, dimensionality is ignored, element types are checked for
* compatibility recursively;
* - everything else shouldn't be ever a target of relocation.
* These rules are not set in stone and probably will be adjusted as we get
* more experience with using BPF CO-RE relocations.
*/
static int bpf_core_fields_are_compat(const struct btf *local_btf,
__u32 local_id,
const struct btf *targ_btf,
__u32 targ_id)
{
const struct btf_type *local_type, *targ_type;
recur:
local_type = skip_mods_and_typedefs(local_btf, local_id, &local_id);
targ_type = skip_mods_and_typedefs(targ_btf, targ_id, &targ_id);
if (!local_type || !targ_type)
return -EINVAL;
if (btf_is_composite(local_type) && btf_is_composite(targ_type))
return 1;
if (btf_kind(local_type) != btf_kind(targ_type))
return 0;
switch (btf_kind(local_type)) {
case BTF_KIND_FWD:
case BTF_KIND_PTR:
return 1;
case BTF_KIND_ENUM:
return local_type->size == targ_type->size;
case BTF_KIND_INT:
return btf_int_offset(local_type) == 0 &&
btf_int_offset(targ_type) == 0 &&
local_type->size == targ_type->size &&
btf_int_bits(local_type) == btf_int_bits(targ_type);
case BTF_KIND_ARRAY:
local_id = btf_array(local_type)->type;
targ_id = btf_array(targ_type)->type;
goto recur;
default:
pr_warning("unexpected kind %d relocated, local [%d], target [%d]\n",
btf_kind(local_type), local_id, targ_id);
return 0;
}
}
/*
* Given single high-level named field accessor in local type, find
* corresponding high-level accessor for a target type. Along the way,
* maintain low-level spec for target as well. Also keep updating target
* offset.
*
* Searching is performed through recursive exhaustive enumeration of all
* fields of a struct/union. If there are any anonymous (embedded)
* structs/unions, they are recursively searched as well. If field with
* desired name is found, check compatibility between local and target types,
* before returning result.
*
* 1 is returned, if field is found.
* 0 is returned if no compatible field is found.
* <0 is returned on error.
*/
static int bpf_core_match_member(const struct btf *local_btf,
const struct bpf_core_accessor *local_acc,
const struct btf *targ_btf,
__u32 targ_id,
struct bpf_core_spec *spec,
__u32 *next_targ_id)
{
const struct btf_type *local_type, *targ_type;
const struct btf_member *local_member, *m;
const char *local_name, *targ_name;
__u32 local_id;
int i, n, found;
targ_type = skip_mods_and_typedefs(targ_btf, targ_id, &targ_id);
if (!targ_type)
return -EINVAL;
if (!btf_is_composite(targ_type))
return 0;
local_id = local_acc->type_id;
local_type = btf__type_by_id(local_btf, local_id);
local_member = btf_members(local_type) + local_acc->idx;
local_name = btf__name_by_offset(local_btf, local_member->name_off);
n = btf_vlen(targ_type);
m = btf_members(targ_type);
for (i = 0; i < n; i++, m++) {
__u32 offset;
/* bitfield relocations not supported */
if (btf_member_bitfield_size(targ_type, i))
continue;
offset = btf_member_bit_offset(targ_type, i);
if (offset % 8)
continue;
/* too deep struct/union/array nesting */
if (spec->raw_len == BPF_CORE_SPEC_MAX_LEN)
return -E2BIG;
/* speculate this member will be the good one */
spec->offset += offset / 8;
spec->raw_spec[spec->raw_len++] = i;
targ_name = btf__name_by_offset(targ_btf, m->name_off);
if (str_is_empty(targ_name)) {
/* embedded struct/union, we need to go deeper */
found = bpf_core_match_member(local_btf, local_acc,
targ_btf, m->type,
spec, next_targ_id);
if (found) /* either found or error */
return found;
} else if (strcmp(local_name, targ_name) == 0) {
/* matching named field */
struct bpf_core_accessor *targ_acc;
targ_acc = &spec->spec[spec->len++];
targ_acc->type_id = targ_id;
targ_acc->idx = i;
targ_acc->name = targ_name;
*next_targ_id = m->type;
found = bpf_core_fields_are_compat(local_btf,
local_member->type,
targ_btf, m->type);
if (!found)
spec->len--; /* pop accessor */
return found;
}
/* member turned out not to be what we looked for */
spec->offset -= offset / 8;
spec->raw_len--;
}
return 0;
}
/*
* Try to match local spec to a target type and, if successful, produce full
* target spec (high-level, low-level + offset).
*/
static int bpf_core_spec_match(struct bpf_core_spec *local_spec,
const struct btf *targ_btf, __u32 targ_id,
struct bpf_core_spec *targ_spec)
{
const struct btf_type *targ_type;
const struct bpf_core_accessor *local_acc;
struct bpf_core_accessor *targ_acc;
int i, sz, matched;
memset(targ_spec, 0, sizeof(*targ_spec));
targ_spec->btf = targ_btf;
local_acc = &local_spec->spec[0];
targ_acc = &targ_spec->spec[0];
for (i = 0; i < local_spec->len; i++, local_acc++, targ_acc++) {
targ_type = skip_mods_and_typedefs(targ_spec->btf, targ_id,
&targ_id);
if (!targ_type)
return -EINVAL;
if (local_acc->name) {
matched = bpf_core_match_member(local_spec->btf,
local_acc,
targ_btf, targ_id,
targ_spec, &targ_id);
if (matched <= 0)
return matched;
} else {
/* for i=0, targ_id is already treated as array element
* type (because it's the original struct), for others
* we should find array element type first
*/
if (i > 0) {
const struct btf_array *a;
if (!btf_is_array(targ_type))
return 0;
a = btf_array(targ_type);
if (local_acc->idx >= a->nelems)
return 0;
if (!skip_mods_and_typedefs(targ_btf, a->type,
&targ_id))
return -EINVAL;
}
/* too deep struct/union/array nesting */
if (targ_spec->raw_len == BPF_CORE_SPEC_MAX_LEN)
return -E2BIG;
targ_acc->type_id = targ_id;
targ_acc->idx = local_acc->idx;
targ_acc->name = NULL;
targ_spec->len++;
targ_spec->raw_spec[targ_spec->raw_len] = targ_acc->idx;
targ_spec->raw_len++;
sz = btf__resolve_size(targ_btf, targ_id);
if (sz < 0)
return sz;
targ_spec->offset += local_acc->idx * sz;
}
}
return 1;
}
/*
* Patch relocatable BPF instruction.
* Expected insn->imm value is provided for validation, as well as the new
* relocated value.
*
* Currently three kinds of BPF instructions are supported:
* 1. rX = <imm> (assignment with immediate operand);
* 2. rX += <imm> (arithmetic operations with immediate operand);
* 3. *(rX) = <imm> (indirect memory assignment with immediate operand).
*
* If actual insn->imm value is wrong, bail out.
*/
static int bpf_core_reloc_insn(struct bpf_program *prog, int insn_off,
__u32 orig_off, __u32 new_off)
{
struct bpf_insn *insn;
int insn_idx;
__u8 class;
if (insn_off % sizeof(struct bpf_insn))
return -EINVAL;
insn_idx = insn_off / sizeof(struct bpf_insn);
insn = &prog->insns[insn_idx];
class = BPF_CLASS(insn->code);
if (class == BPF_ALU || class == BPF_ALU64) {
if (BPF_SRC(insn->code) != BPF_K)
return -EINVAL;
if (insn->imm != orig_off)
return -EINVAL;
insn->imm = new_off;
pr_debug("prog '%s': patched insn #%d (ALU/ALU64) imm %d -> %d\n",
bpf_program__title(prog, false),
insn_idx, orig_off, new_off);
} else {
pr_warning("prog '%s': trying to relocate unrecognized insn #%d, code:%x, src:%x, dst:%x, off:%x, imm:%x\n",
bpf_program__title(prog, false),
insn_idx, insn->code, insn->src_reg, insn->dst_reg,
insn->off, insn->imm);
return -EINVAL;
}
return 0;
}
static struct btf *btf_load_raw(const char *path)
{
struct btf *btf;
size_t read_cnt;
struct stat st;
void *data;
FILE *f;
if (stat(path, &st))
return ERR_PTR(-errno);
data = malloc(st.st_size);
if (!data)
return ERR_PTR(-ENOMEM);
f = fopen(path, "rb");
if (!f) {
btf = ERR_PTR(-errno);
goto cleanup;
}
read_cnt = fread(data, 1, st.st_size, f);
fclose(f);
if (read_cnt < st.st_size) {
btf = ERR_PTR(-EBADF);
goto cleanup;
}
btf = btf__new(data, read_cnt);
cleanup:
free(data);
return btf;
}
/*
* Probe few well-known locations for vmlinux kernel image and try to load BTF
* data out of it to use for target BTF.
*/
static struct btf *bpf_core_find_kernel_btf(void)
{
struct {
const char *path_fmt;
bool raw_btf;
} locations[] = {
/* try canonical vmlinux BTF through sysfs first */
{ "/sys/kernel/btf/vmlinux", true /* raw BTF */ },
/* fall back to trying to find vmlinux ELF on disk otherwise */
{ "/boot/vmlinux-%1$s" },
{ "/lib/modules/%1$s/vmlinux-%1$s" },
{ "/lib/modules/%1$s/build/vmlinux" },
{ "/usr/lib/modules/%1$s/kernel/vmlinux" },
{ "/usr/lib/debug/boot/vmlinux-%1$s" },
{ "/usr/lib/debug/boot/vmlinux-%1$s.debug" },
{ "/usr/lib/debug/lib/modules/%1$s/vmlinux" },
};
char path[PATH_MAX + 1];
struct utsname buf;
struct btf *btf;
int i;
uname(&buf);
for (i = 0; i < ARRAY_SIZE(locations); i++) {
snprintf(path, PATH_MAX, locations[i].path_fmt, buf.release);
if (access(path, R_OK))
continue;
if (locations[i].raw_btf)
btf = btf_load_raw(path);
else
btf = btf__parse_elf(path, NULL);
pr_debug("loading kernel BTF '%s': %ld\n",
path, IS_ERR(btf) ? PTR_ERR(btf) : 0);
if (IS_ERR(btf))
continue;
return btf;
}
pr_warning("failed to find valid kernel BTF\n");
return ERR_PTR(-ESRCH);
}
/* Output spec definition in the format:
* [<type-id>] (<type-name>) + <raw-spec> => <offset>@<spec>,
* where <spec> is a C-syntax view of recorded field access, e.g.: x.a[3].b
*/
static void bpf_core_dump_spec(int level, const struct bpf_core_spec *spec)
{
const struct btf_type *t;
const char *s;
__u32 type_id;
int i;
type_id = spec->spec[0].type_id;
t = btf__type_by_id(spec->btf, type_id);
s = btf__name_by_offset(spec->btf, t->name_off);
libbpf_print(level, "[%u] %s + ", type_id, s);
for (i = 0; i < spec->raw_len; i++)
libbpf_print(level, "%d%s", spec->raw_spec[i],
i == spec->raw_len - 1 ? " => " : ":");
libbpf_print(level, "%u @ &x", spec->offset);
for (i = 0; i < spec->len; i++) {
if (spec->spec[i].name)
libbpf_print(level, ".%s", spec->spec[i].name);
else
libbpf_print(level, "[%u]", spec->spec[i].idx);
}
}
static size_t bpf_core_hash_fn(const void *key, void *ctx)
{
return (size_t)key;
}
static bool bpf_core_equal_fn(const void *k1, const void *k2, void *ctx)
{
return k1 == k2;
}
static void *u32_as_hash_key(__u32 x)
{
return (void *)(uintptr_t)x;
}
/*
* CO-RE relocate single instruction.
*
* The outline and important points of the algorithm:
* 1. For given local type, find corresponding candidate target types.