blob: 6d7fe3589e4a0d79fa6c0f8421d7379877adc893 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-or-later
/* memcontrol.c - Memory Controller
*
* Copyright IBM Corporation, 2007
* Author Balbir Singh <balbir@linux.vnet.ibm.com>
*
* Copyright 2007 OpenVZ SWsoft Inc
* Author: Pavel Emelianov <xemul@openvz.org>
*
* Memory thresholds
* Copyright (C) 2009 Nokia Corporation
* Author: Kirill A. Shutemov
*
* Kernel Memory Controller
* Copyright (C) 2012 Parallels Inc. and Google Inc.
* Authors: Glauber Costa and Suleiman Souhlal
*
* Native page reclaim
* Charge lifetime sanitation
* Lockless page tracking & accounting
* Unified hierarchy configuration model
* Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
*/
#include <linux/page_counter.h>
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
#include <linux/pagewalk.h>
#include <linux/sched/mm.h>
#include <linux/shmem_fs.h>
#include <linux/hugetlb.h>
#include <linux/pagemap.h>
#include <linux/vm_event_item.h>
#include <linux/smp.h>
#include <linux/page-flags.h>
#include <linux/backing-dev.h>
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
#include <linux/limits.h>
#include <linux/export.h>
#include <linux/mutex.h>
#include <linux/rbtree.h>
#include <linux/slab.h>
#include <linux/swap.h>
#include <linux/swapops.h>
#include <linux/spinlock.h>
#include <linux/eventfd.h>
#include <linux/poll.h>
#include <linux/sort.h>
#include <linux/fs.h>
#include <linux/seq_file.h>
#include <linux/vmpressure.h>
#include <linux/mm_inline.h>
#include <linux/swap_cgroup.h>
#include <linux/cpu.h>
#include <linux/oom.h>
#include <linux/lockdep.h>
#include <linux/file.h>
#include <linux/tracehook.h>
#include <linux/psi.h>
#include <linux/seq_buf.h>
#include "internal.h"
#include <net/sock.h>
#include <net/ip.h>
#include "slab.h"
#include <linux/uaccess.h>
#include <trace/events/vmscan.h>
struct cgroup_subsys memory_cgrp_subsys __read_mostly;
EXPORT_SYMBOL(memory_cgrp_subsys);
struct mem_cgroup *root_mem_cgroup __read_mostly;
#define MEM_CGROUP_RECLAIM_RETRIES 5
/* Socket memory accounting disabled? */
static bool cgroup_memory_nosocket;
/* Kernel memory accounting disabled? */
static bool cgroup_memory_nokmem;
/* Whether the swap controller is active */
#ifdef CONFIG_MEMCG_SWAP
int do_swap_account __read_mostly;
#else
#define do_swap_account 0
#endif
#ifdef CONFIG_CGROUP_WRITEBACK
static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
#endif
/* Whether legacy memory+swap accounting is active */
static bool do_memsw_account(void)
{
return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
}
static const char *const mem_cgroup_lru_names[] = {
"inactive_anon",
"active_anon",
"inactive_file",
"active_file",
"unevictable",
};
#define THRESHOLDS_EVENTS_TARGET 128
#define SOFTLIMIT_EVENTS_TARGET 1024
#define NUMAINFO_EVENTS_TARGET 1024
/*
* Cgroups above their limits are maintained in a RB-Tree, independent of
* their hierarchy representation
*/
struct mem_cgroup_tree_per_node {
struct rb_root rb_root;
struct rb_node *rb_rightmost;
spinlock_t lock;
};
struct mem_cgroup_tree {
struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};
static struct mem_cgroup_tree soft_limit_tree __read_mostly;
/* for OOM */
struct mem_cgroup_eventfd_list {
struct list_head list;
struct eventfd_ctx *eventfd;
};
/*
* cgroup_event represents events which userspace want to receive.
*/
struct mem_cgroup_event {
/*
* memcg which the event belongs to.
*/
struct mem_cgroup *memcg;
/*
* eventfd to signal userspace about the event.
*/
struct eventfd_ctx *eventfd;
/*
* Each of these stored in a list by the cgroup.
*/
struct list_head list;
/*
* register_event() callback will be used to add new userspace
* waiter for changes related to this event. Use eventfd_signal()
* on eventfd to send notification to userspace.
*/
int (*register_event)(struct mem_cgroup *memcg,
struct eventfd_ctx *eventfd, const char *args);
/*
* unregister_event() callback will be called when userspace closes
* the eventfd or on cgroup removing. This callback must be set,
* if you want provide notification functionality.
*/
void (*unregister_event)(struct mem_cgroup *memcg,
struct eventfd_ctx *eventfd);
/*
* All fields below needed to unregister event when
* userspace closes eventfd.
*/
poll_table pt;
wait_queue_head_t *wqh;
wait_queue_entry_t wait;
struct work_struct remove;
};
static void mem_cgroup_threshold(struct mem_cgroup *memcg);
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
/* Stuffs for move charges at task migration. */
/*
* Types of charges to be moved.
*/
#define MOVE_ANON 0x1U
#define MOVE_FILE 0x2U
#define MOVE_MASK (MOVE_ANON | MOVE_FILE)
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
spinlock_t lock; /* for from, to */
struct mm_struct *mm;
struct mem_cgroup *from;
struct mem_cgroup *to;
unsigned long flags;
unsigned long precharge;
unsigned long moved_charge;
unsigned long moved_swap;
struct task_struct *moving_task; /* a task moving charges */
wait_queue_head_t waitq; /* a waitq for other context */
} mc = {
.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
/*
* Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
* limit reclaim to prevent infinite loops, if they ever occur.
*/
#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
enum charge_type {
MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
MEM_CGROUP_CHARGE_TYPE_ANON,
MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
NR_CHARGE_TYPE,
};
/* for encoding cft->private value on file */
enum res_type {
_MEM,
_MEMSWAP,
_OOM_TYPE,
_KMEM,
_TCP,
};
#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
#define MEMFILE_ATTR(val) ((val) & 0xffff)
/* Used for OOM nofiier */
#define OOM_CONTROL (0)
/*
* Iteration constructs for visiting all cgroups (under a tree). If
* loops are exited prematurely (break), mem_cgroup_iter_break() must
* be used for reference counting.
*/
#define for_each_mem_cgroup_tree(iter, root) \
for (iter = mem_cgroup_iter(root, NULL, NULL); \
iter != NULL; \
iter = mem_cgroup_iter(root, iter, NULL))
#define for_each_mem_cgroup(iter) \
for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
iter != NULL; \
iter = mem_cgroup_iter(NULL, iter, NULL))
static inline bool should_force_charge(void)
{
return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
(current->flags & PF_EXITING);
}
/* Some nice accessors for the vmpressure. */
struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
{
if (!memcg)
memcg = root_mem_cgroup;
return &memcg->vmpressure;
}
struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
{
return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
}
#ifdef CONFIG_MEMCG_KMEM
/*
* This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
* The main reason for not using cgroup id for this:
* this works better in sparse environments, where we have a lot of memcgs,
* but only a few kmem-limited. Or also, if we have, for instance, 200
* memcgs, and none but the 200th is kmem-limited, we'd have to have a
* 200 entry array for that.
*
* The current size of the caches array is stored in memcg_nr_cache_ids. It
* will double each time we have to increase it.
*/
static DEFINE_IDA(memcg_cache_ida);
int memcg_nr_cache_ids;
/* Protects memcg_nr_cache_ids */
static DECLARE_RWSEM(memcg_cache_ids_sem);
void memcg_get_cache_ids(void)
{
down_read(&memcg_cache_ids_sem);
}
void memcg_put_cache_ids(void)
{
up_read(&memcg_cache_ids_sem);
}
/*
* MIN_SIZE is different than 1, because we would like to avoid going through
* the alloc/free process all the time. In a small machine, 4 kmem-limited
* cgroups is a reasonable guess. In the future, it could be a parameter or
* tunable, but that is strictly not necessary.
*
* MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
* this constant directly from cgroup, but it is understandable that this is
* better kept as an internal representation in cgroup.c. In any case, the
* cgrp_id space is not getting any smaller, and we don't have to necessarily
* increase ours as well if it increases.
*/
#define MEMCG_CACHES_MIN_SIZE 4
#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
/*
* A lot of the calls to the cache allocation functions are expected to be
* inlined by the compiler. Since the calls to memcg_kmem_get_cache are
* conditional to this static branch, we'll have to allow modules that does
* kmem_cache_alloc and the such to see this symbol as well
*/
DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
EXPORT_SYMBOL(memcg_kmem_enabled_key);
struct workqueue_struct *memcg_kmem_cache_wq;
#endif
static int memcg_shrinker_map_size;
static DEFINE_MUTEX(memcg_shrinker_map_mutex);
static void memcg_free_shrinker_map_rcu(struct rcu_head *head)
{
kvfree(container_of(head, struct memcg_shrinker_map, rcu));
}
static int memcg_expand_one_shrinker_map(struct mem_cgroup *memcg,
int size, int old_size)
{
struct memcg_shrinker_map *new, *old;
int nid;
lockdep_assert_held(&memcg_shrinker_map_mutex);
for_each_node(nid) {
old = rcu_dereference_protected(
mem_cgroup_nodeinfo(memcg, nid)->shrinker_map, true);
/* Not yet online memcg */
if (!old)
return 0;
new = kvmalloc(sizeof(*new) + size, GFP_KERNEL);
if (!new)
return -ENOMEM;
/* Set all old bits, clear all new bits */
memset(new->map, (int)0xff, old_size);
memset((void *)new->map + old_size, 0, size - old_size);
rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, new);
call_rcu(&old->rcu, memcg_free_shrinker_map_rcu);
}
return 0;
}
static void memcg_free_shrinker_maps(struct mem_cgroup *memcg)
{
struct mem_cgroup_per_node *pn;
struct memcg_shrinker_map *map;
int nid;
if (mem_cgroup_is_root(memcg))
return;
for_each_node(nid) {
pn = mem_cgroup_nodeinfo(memcg, nid);
map = rcu_dereference_protected(pn->shrinker_map, true);
if (map)
kvfree(map);
rcu_assign_pointer(pn->shrinker_map, NULL);
}
}
static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg)
{
struct memcg_shrinker_map *map;
int nid, size, ret = 0;
if (mem_cgroup_is_root(memcg))
return 0;
mutex_lock(&memcg_shrinker_map_mutex);
size = memcg_shrinker_map_size;
for_each_node(nid) {
map = kvzalloc(sizeof(*map) + size, GFP_KERNEL);
if (!map) {
memcg_free_shrinker_maps(memcg);
ret = -ENOMEM;
break;
}
rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, map);
}
mutex_unlock(&memcg_shrinker_map_mutex);
return ret;
}
int memcg_expand_shrinker_maps(int new_id)
{
int size, old_size, ret = 0;
struct mem_cgroup *memcg;
size = DIV_ROUND_UP(new_id + 1, BITS_PER_LONG) * sizeof(unsigned long);
old_size = memcg_shrinker_map_size;
if (size <= old_size)
return 0;
mutex_lock(&memcg_shrinker_map_mutex);
if (!root_mem_cgroup)
goto unlock;
for_each_mem_cgroup(memcg) {
if (mem_cgroup_is_root(memcg))
continue;
ret = memcg_expand_one_shrinker_map(memcg, size, old_size);
if (ret) {
mem_cgroup_iter_break(NULL, memcg);
goto unlock;
}
}
unlock:
if (!ret)
memcg_shrinker_map_size = size;
mutex_unlock(&memcg_shrinker_map_mutex);
return ret;
}
void memcg_set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
{
if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
struct memcg_shrinker_map *map;
rcu_read_lock();
map = rcu_dereference(memcg->nodeinfo[nid]->shrinker_map);
/* Pairs with smp mb in shrink_slab() */
smp_mb__before_atomic();
set_bit(shrinker_id, map->map);
rcu_read_unlock();
}
}
/**
* mem_cgroup_css_from_page - css of the memcg associated with a page
* @page: page of interest
*
* If memcg is bound to the default hierarchy, css of the memcg associated
* with @page is returned. The returned css remains associated with @page
* until it is released.
*
* If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
* is returned.
*/
struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
{
struct mem_cgroup *memcg;
memcg = page->mem_cgroup;
if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
memcg = root_mem_cgroup;
return &memcg->css;
}
/**
* page_cgroup_ino - return inode number of the memcg a page is charged to
* @page: the page
*
* Look up the closest online ancestor of the memory cgroup @page is charged to
* and return its inode number or 0 if @page is not charged to any cgroup. It
* is safe to call this function without holding a reference to @page.
*
* Note, this function is inherently racy, because there is nothing to prevent
* the cgroup inode from getting torn down and potentially reallocated a moment
* after page_cgroup_ino() returns, so it only should be used by callers that
* do not care (such as procfs interfaces).
*/
ino_t page_cgroup_ino(struct page *page)
{
struct mem_cgroup *memcg;
unsigned long ino = 0;
rcu_read_lock();
if (PageSlab(page) && !PageTail(page))
memcg = memcg_from_slab_page(page);
else
memcg = READ_ONCE(page->mem_cgroup);
while (memcg && !(memcg->css.flags & CSS_ONLINE))
memcg = parent_mem_cgroup(memcg);
if (memcg)
ino = cgroup_ino(memcg->css.cgroup);
rcu_read_unlock();
return ino;
}
static struct mem_cgroup_per_node *
mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
{
int nid = page_to_nid(page);
return memcg->nodeinfo[nid];
}
static struct mem_cgroup_tree_per_node *
soft_limit_tree_node(int nid)
{
return soft_limit_tree.rb_tree_per_node[nid];
}
static struct mem_cgroup_tree_per_node *
soft_limit_tree_from_page(struct page *page)
{
int nid = page_to_nid(page);
return soft_limit_tree.rb_tree_per_node[nid];
}
static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
struct mem_cgroup_tree_per_node *mctz,
unsigned long new_usage_in_excess)
{
struct rb_node **p = &mctz->rb_root.rb_node;
struct rb_node *parent = NULL;
struct mem_cgroup_per_node *mz_node;
bool rightmost = true;
if (mz->on_tree)
return;
mz->usage_in_excess = new_usage_in_excess;
if (!mz->usage_in_excess)
return;
while (*p) {
parent = *p;
mz_node = rb_entry(parent, struct mem_cgroup_per_node,
tree_node);
if (mz->usage_in_excess < mz_node->usage_in_excess) {
p = &(*p)->rb_left;
rightmost = false;
}
/*
* We can't avoid mem cgroups that are over their soft
* limit by the same amount
*/
else if (mz->usage_in_excess >= mz_node->usage_in_excess)
p = &(*p)->rb_right;
}
if (rightmost)
mctz->rb_rightmost = &mz->tree_node;
rb_link_node(&mz->tree_node, parent, p);
rb_insert_color(&mz->tree_node, &mctz->rb_root);
mz->on_tree = true;
}
static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
struct mem_cgroup_tree_per_node *mctz)
{
if (!mz->on_tree)
return;
if (&mz->tree_node == mctz->rb_rightmost)
mctz->rb_rightmost = rb_prev(&mz->tree_node);
rb_erase(&mz->tree_node, &mctz->rb_root);
mz->on_tree = false;
}
static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
struct mem_cgroup_tree_per_node *mctz)
{
unsigned long flags;
spin_lock_irqsave(&mctz->lock, flags);
__mem_cgroup_remove_exceeded(mz, mctz);
spin_unlock_irqrestore(&mctz->lock, flags);
}
static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
{
unsigned long nr_pages = page_counter_read(&memcg->memory);
unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
unsigned long excess = 0;
if (nr_pages > soft_limit)
excess = nr_pages - soft_limit;
return excess;
}
static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
{
unsigned long excess;
struct mem_cgroup_per_node *mz;
struct mem_cgroup_tree_per_node *mctz;
mctz = soft_limit_tree_from_page(page);
if (!mctz)
return;
/*
* Necessary to update all ancestors when hierarchy is used.
* because their event counter is not touched.
*/
for (; memcg; memcg = parent_mem_cgroup(memcg)) {
mz = mem_cgroup_page_nodeinfo(memcg, page);
excess = soft_limit_excess(memcg);
/*
* We have to update the tree if mz is on RB-tree or
* mem is over its softlimit.
*/
if (excess || mz->on_tree) {
unsigned long flags;
spin_lock_irqsave(&mctz->lock, flags);
/* if on-tree, remove it */
if (mz->on_tree)
__mem_cgroup_remove_exceeded(mz, mctz);
/*
* Insert again. mz->usage_in_excess will be updated.
* If excess is 0, no tree ops.
*/
__mem_cgroup_insert_exceeded(mz, mctz, excess);
spin_unlock_irqrestore(&mctz->lock, flags);
}
}
}
static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
{
struct mem_cgroup_tree_per_node *mctz;
struct mem_cgroup_per_node *mz;
int nid;
for_each_node(nid) {
mz = mem_cgroup_nodeinfo(memcg, nid);
mctz = soft_limit_tree_node(nid);
if (mctz)
mem_cgroup_remove_exceeded(mz, mctz);
}
}
static struct mem_cgroup_per_node *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
{
struct mem_cgroup_per_node *mz;
retry:
mz = NULL;
if (!mctz->rb_rightmost)
goto done; /* Nothing to reclaim from */
mz = rb_entry(mctz->rb_rightmost,
struct mem_cgroup_per_node, tree_node);
/*
* Remove the node now but someone else can add it back,
* we will to add it back at the end of reclaim to its correct
* position in the tree.
*/
__mem_cgroup_remove_exceeded(mz, mctz);
if (!soft_limit_excess(mz->memcg) ||
!css_tryget_online(&mz->memcg->css))
goto retry;
done:
return mz;
}
static struct mem_cgroup_per_node *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
{
struct mem_cgroup_per_node *mz;
spin_lock_irq(&mctz->lock);
mz = __mem_cgroup_largest_soft_limit_node(mctz);
spin_unlock_irq(&mctz->lock);
return mz;
}
/**
* __mod_memcg_state - update cgroup memory statistics
* @memcg: the memory cgroup
* @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
* @val: delta to add to the counter, can be negative
*/
void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
{
long x;
if (mem_cgroup_disabled())
return;
x = val + __this_cpu_read(memcg->vmstats_percpu->stat[idx]);
if (unlikely(abs(x) > MEMCG_CHARGE_BATCH)) {
struct mem_cgroup *mi;
/*
* Batch local counters to keep them in sync with
* the hierarchical ones.
*/
__this_cpu_add(memcg->vmstats_local->stat[idx], x);
for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
atomic_long_add(x, &mi->vmstats[idx]);
x = 0;
}
__this_cpu_write(memcg->vmstats_percpu->stat[idx], x);
}
static struct mem_cgroup_per_node *
parent_nodeinfo(struct mem_cgroup_per_node *pn, int nid)
{
struct mem_cgroup *parent;
parent = parent_mem_cgroup(pn->memcg);
if (!parent)
return NULL;
return mem_cgroup_nodeinfo(parent, nid);
}
/**
* __mod_lruvec_state - update lruvec memory statistics
* @lruvec: the lruvec
* @idx: the stat item
* @val: delta to add to the counter, can be negative
*
* The lruvec is the intersection of the NUMA node and a cgroup. This
* function updates the all three counters that are affected by a
* change of state at this level: per-node, per-cgroup, per-lruvec.
*/
void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
int val)
{
pg_data_t *pgdat = lruvec_pgdat(lruvec);
struct mem_cgroup_per_node *pn;
struct mem_cgroup *memcg;
long x;
/* Update node */
__mod_node_page_state(pgdat, idx, val);
if (mem_cgroup_disabled())
return;
pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
memcg = pn->memcg;
/* Update memcg */
__mod_memcg_state(memcg, idx, val);
/* Update lruvec */
__this_cpu_add(pn->lruvec_stat_local->count[idx], val);
x = val + __this_cpu_read(pn->lruvec_stat_cpu->count[idx]);
if (unlikely(abs(x) > MEMCG_CHARGE_BATCH)) {
struct mem_cgroup_per_node *pi;
for (pi = pn; pi; pi = parent_nodeinfo(pi, pgdat->node_id))
atomic_long_add(x, &pi->lruvec_stat[idx]);
x = 0;
}
__this_cpu_write(pn->lruvec_stat_cpu->count[idx], x);
}
void __mod_lruvec_slab_state(void *p, enum node_stat_item idx, int val)
{
struct page *page = virt_to_head_page(p);
pg_data_t *pgdat = page_pgdat(page);
struct mem_cgroup *memcg;
struct lruvec *lruvec;
rcu_read_lock();
memcg = memcg_from_slab_page(page);
/*
* Untracked pages have no memcg, no lruvec. Update only the
* node. If we reparent the slab objects to the root memcg,
* when we free the slab object, we need to update the per-memcg
* vmstats to keep it correct for the root memcg.
*/
if (!memcg) {
__mod_node_page_state(pgdat, idx, val);
} else {
lruvec = mem_cgroup_lruvec(pgdat, memcg);
__mod_lruvec_state(lruvec, idx, val);
}
rcu_read_unlock();
}
void mod_memcg_obj_state(void *p, int idx, int val)
{
struct mem_cgroup *memcg;
rcu_read_lock();
memcg = mem_cgroup_from_obj(p);
if (memcg)
mod_memcg_state(memcg, idx, val);
rcu_read_unlock();
}
/**
* __count_memcg_events - account VM events in a cgroup
* @memcg: the memory cgroup
* @idx: the event item
* @count: the number of events that occured
*/
void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
unsigned long count)
{
unsigned long x;
if (mem_cgroup_disabled())
return;
x = count + __this_cpu_read(memcg->vmstats_percpu->events[idx]);
if (unlikely(x > MEMCG_CHARGE_BATCH)) {
struct mem_cgroup *mi;
/*
* Batch local counters to keep them in sync with
* the hierarchical ones.
*/
__this_cpu_add(memcg->vmstats_local->events[idx], x);
for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
atomic_long_add(x, &mi->vmevents[idx]);
x = 0;
}
__this_cpu_write(memcg->vmstats_percpu->events[idx], x);
}
static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
{
return atomic_long_read(&memcg->vmevents[event]);
}
static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
{
long x = 0;
int cpu;
for_each_possible_cpu(cpu)
x += per_cpu(memcg->vmstats_local->events[event], cpu);
return x;
}
static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
struct page *page,
bool compound, int nr_pages)
{
/*
* Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
* counted as CACHE even if it's on ANON LRU.
*/
if (PageAnon(page))
__mod_memcg_state(memcg, MEMCG_RSS, nr_pages);
else {
__mod_memcg_state(memcg, MEMCG_CACHE, nr_pages);
if (PageSwapBacked(page))
__mod_memcg_state(memcg, NR_SHMEM, nr_pages);
}
if (compound) {
VM_BUG_ON_PAGE(!PageTransHuge(page), page);
__mod_memcg_state(memcg, MEMCG_RSS_HUGE, nr_pages);
}
/* pagein of a big page is an event. So, ignore page size */
if (nr_pages > 0)
__count_memcg_events(memcg, PGPGIN, 1);
else {
__count_memcg_events(memcg, PGPGOUT, 1);
nr_pages = -nr_pages; /* for event */
}
__this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
}
static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
enum mem_cgroup_events_target target)
{
unsigned long val, next;
val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
/* from time_after() in jiffies.h */
if ((long)(next - val) < 0) {
switch (target) {
case MEM_CGROUP_TARGET_THRESH:
next = val + THRESHOLDS_EVENTS_TARGET;
break;
case MEM_CGROUP_TARGET_SOFTLIMIT:
next = val + SOFTLIMIT_EVENTS_TARGET;
break;
case MEM_CGROUP_TARGET_NUMAINFO:
next = val + NUMAINFO_EVENTS_TARGET;
break;
default:
break;
}
__this_cpu_write(memcg->vmstats_percpu->targets[target], next);
return true;
}
return false;
}
/*
* Check events in order.
*
*/
static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
{
/* threshold event is triggered in finer grain than soft limit */
if (unlikely(mem_cgroup_event_ratelimit(memcg,
MEM_CGROUP_TARGET_THRESH))) {
bool do_softlimit;
bool do_numainfo __maybe_unused;
do_softlimit = mem_cgroup_event_ratelimit(memcg,
MEM_CGROUP_TARGET_SOFTLIMIT);
#if MAX_NUMNODES > 1
do_numainfo = mem_cgroup_event_ratelimit(memcg,
MEM_CGROUP_TARGET_NUMAINFO);
#endif
mem_cgroup_threshold(memcg);
if (unlikely(do_softlimit))
mem_cgroup_update_tree(memcg, page);
#if MAX_NUMNODES > 1
if (unlikely(do_numainfo))
atomic_inc(&memcg->numainfo_events);
#endif
}
}
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
{
/*
* mm_update_next_owner() may clear mm->owner to NULL
* if it races with swapoff, page migration, etc.
* So this can be called with p == NULL.
*/
if (unlikely(!p))
return NULL;
return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
}
EXPORT_SYMBOL(mem_cgroup_from_task);
/**
* get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
* @mm: mm from which memcg should be extracted. It can be NULL.
*
* Obtain a reference on mm->memcg and returns it if successful. Otherwise
* root_mem_cgroup is returned. However if mem_cgroup is disabled, NULL is
* returned.
*/
struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
{
struct mem_cgroup *memcg;
if (mem_cgroup_disabled())
return NULL;
rcu_read_lock();
do {
/*
* Page cache insertions can happen withou an
* actual mm context, e.g. during disk probing
* on boot, loopback IO, acct() writes etc.
*/
if (unlikely(!mm))
memcg = root_mem_cgroup;
else {
memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
if (unlikely(!memcg))
memcg = root_mem_cgroup;
}
} while (!css_tryget(&memcg->css));
rcu_read_unlock();
return memcg;
}
EXPORT_SYMBOL(get_mem_cgroup_from_mm);
/**
* get_mem_cgroup_from_page: Obtain a reference on given page's memcg.
* @page: page from which memcg should be extracted.
*
* Obtain a reference on page->memcg and returns it if successful. Otherwise
* root_mem_cgroup is returned.
*/
struct mem_cgroup *get_mem_cgroup_from_page(struct page *page)
{
struct mem_cgroup *memcg = page->mem_cgroup;
if (mem_cgroup_disabled())
return NULL;
rcu_read_lock();
if (!memcg || !css_tryget_online(&memcg->css))
memcg = root_mem_cgroup;
rcu_read_unlock();
return memcg;
}
EXPORT_SYMBOL(get_mem_cgroup_from_page);
/**
* If current->active_memcg is non-NULL, do not fallback to current->mm->memcg.
*/
static __always_inline struct mem_cgroup *get_mem_cgroup_from_current(void)
{
if (unlikely(current->active_memcg)) {
struct mem_cgroup *memcg = root_mem_cgroup;
rcu_read_lock();
if (css_tryget_online(&current->active_memcg->css))
memcg = current->active_memcg;
rcu_read_unlock();
return memcg;
}
return get_mem_cgroup_from_mm(current->mm);
}
/**
* mem_cgroup_iter - iterate over memory cgroup hierarchy
* @root: hierarchy root
* @prev: previously returned memcg, NULL on first invocation
* @reclaim: cookie for shared reclaim walks, NULL for full walks
*
* Returns references to children of the hierarchy below @root, or
* @root itself, or %NULL after a full round-trip.
*
* Caller must pass the return value in @prev on subsequent
* invocations for reference counting, or use mem_cgroup_iter_break()
* to cancel a hierarchy walk before the round-trip is complete.
*
* Reclaimers can specify a node and a priority level in @reclaim to
* divide up the memcgs in the hierarchy among all concurrent
* reclaimers operating on the same node and priority.
*/
struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
struct mem_cgroup *prev,
struct mem_cgroup_reclaim_cookie *reclaim)
{
struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
struct cgroup_subsys_state *css = NULL;
struct mem_cgroup *memcg = NULL;
struct mem_cgroup *pos = NULL;
if (mem_cgroup_disabled())
return NULL;
if (!root)
root = root_mem_cgroup;
if (prev && !reclaim)
pos = prev;
if (!root->use_hierarchy && root != root_mem_cgroup) {
if (prev)
goto out;
return root;
}
rcu_read_lock();
if (reclaim) {
struct mem_cgroup_per_node *mz;
mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
iter = &mz->iter[reclaim->priority];
if (prev && reclaim->generation != iter->generation)
goto out_unlock;
while (1) {
pos = READ_ONCE(iter->position);
if (!pos || css_tryget(&pos->css))
break;
/*
* css reference reached zero, so iter->position will
* be cleared by ->css_released. However, we should not
* rely on this happening soon, because ->css_released
* is called from a work queue, and by busy-waiting we
* might block it. So we clear iter->position right
* away.
*/
(void)cmpxchg(&iter->position, pos, NULL);
}
}
if (pos)
css = &pos->css;
for (;;) {
css = css_next_descendant_pre(css, &root->css);
if (!css) {
/*
* Reclaimers share the hierarchy walk, and a
* new one might jump in right at the end of
* the hierarchy - make sure they see at least
* one group and restart from the beginning.
*/
if (!prev)
continue;
break;
}
/*
* Verify the css and acquire a reference. The root
* is provided by the caller, so we know it's alive
* and kicking, and don't take an extra reference.
*/
memcg = mem_cgroup_from_css(css);
if (css == &root->css)
break;
if (css_tryget(css))
break;
memcg = NULL;
}
if (reclaim) {
/*
* The position could have already been updated by a competing
* thread, so check that the value hasn't changed since we read
* it to avoid reclaiming from the same cgroup twice.
*/
(void)cmpxchg(&iter->position, pos, memcg);
if (pos)
css_put(&pos->css);
if (!memcg)
iter->generation++;
else if (!prev)
reclaim->generation = iter->generation;
}
out_unlock:
rcu_read_unlock();
out:
if (prev && prev != root)
css_put(&prev->css);
return memcg;
}
/**
* mem_cgroup_iter_break - abort a hierarchy walk prematurely
* @root: hierarchy root
* @prev: last visited hierarchy member as returned by mem_cgroup_iter()
*/
void mem_cgroup_iter_break(struct mem_cgroup *root,
struct mem_cgroup *prev)
{
if (!root)
root = root_mem_cgroup;
if (prev && prev != root)
css_put(&prev->css);
}
static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
struct mem_cgroup *dead_memcg)
{
struct mem_cgroup_reclaim_iter *iter;
struct mem_cgroup_per_node *mz;
int nid;
int i;
for_each_node(nid) {
mz = mem_cgroup_nodeinfo(from, nid);
for (i = 0; i <= DEF_PRIORITY; i++) {
iter = &mz->iter[i];
cmpxchg(&iter->position,
dead_memcg, NULL);
}
}
}
static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
{
struct mem_cgroup *memcg = dead_memcg;
struct mem_cgroup *last;
do {
__invalidate_reclaim_iterators(memcg, dead_memcg);
last = memcg;
} while ((memcg = parent_mem_cgroup(memcg)));
/*
* When cgruop1 non-hierarchy mode is used,
* parent_mem_cgroup() does not walk all the way up to the
* cgroup root (root_mem_cgroup). So we have to handle
* dead_memcg from cgroup root separately.
*/
if (last != root_mem_cgroup)
__invalidate_reclaim_iterators(root_mem_cgroup,
dead_memcg);
}
/**
* mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
* @memcg: hierarchy root
* @fn: function to call for each task
* @arg: argument passed to @fn
*
* This function iterates over tasks attached to @memcg or to any of its
* descendants and calls @fn for each task. If @fn returns a non-zero
* value, the function breaks the iteration loop and returns the value.
* Otherwise, it will iterate over all tasks and return 0.
*
* This function must not be called for the root memory cgroup.
*/
int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
int (*fn)(struct task_struct *, void *), void *arg)
{
struct mem_cgroup *iter;
int ret = 0;
BUG_ON(memcg == root_mem_cgroup);
for_each_mem_cgroup_tree(iter, memcg) {
struct css_task_iter it;
struct task_struct *task;
css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
while (!ret && (task = css_task_iter_next(&it)))
ret = fn(task, arg);
css_task_iter_end(&it);
if (ret) {
mem_cgroup_iter_break(memcg, iter);
break;
}
}
return ret;
}
/**
* mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
* @page: the page
* @pgdat: pgdat of the page
*
* This function is only safe when following the LRU page isolation
* and putback protocol: the LRU lock must be held, and the page must
* either be PageLRU() or the caller must have isolated/allocated it.
*/
struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
{
struct mem_cgroup_per_node *mz;
struct mem_cgroup *memcg;
struct lruvec *lruvec;
if (mem_cgroup_disabled()) {
lruvec = &pgdat->lruvec;
goto out;
}
memcg = page->mem_cgroup;
/*
* Swapcache readahead pages are added to the LRU - and
* possibly migrated - before they are charged.
*/
if (!memcg)
memcg = root_mem_cgroup;
mz = mem_cgroup_page_nodeinfo(memcg, page);
lruvec = &mz->lruvec;
out:
/*
* Since a node can be onlined after the mem_cgroup was created,
* we have to be prepared to initialize lruvec->zone here;
* and if offlined then reonlined, we need to reinitialize it.
*/
if (unlikely(lruvec->pgdat != pgdat))
lruvec->pgdat = pgdat;
return lruvec;
}
/**
* mem_cgroup_update_lru_size - account for adding or removing an lru page
* @lruvec: mem_cgroup per zone lru vector
* @lru: index of lru list the page is sitting on
* @zid: zone id of the accounted pages
* @nr_pages: positive when adding or negative when removing
*
* This function must be called under lru_lock, just before a page is added
* to or just after a page is removed from an lru list (that ordering being
* so as to allow it to check that lru_size 0 is consistent with list_empty).
*/
void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
int zid, int nr_pages)
{
struct mem_cgroup_per_node *mz;
unsigned long *lru_size;
long size;
if (mem_cgroup_disabled())
return;
mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
lru_size = &mz->lru_zone_size[zid][lru];
if (nr_pages < 0)
*lru_size += nr_pages;
size = *lru_size;
if (WARN_ONCE(size < 0,
"%s(%p, %d, %d): lru_size %ld\n",
__func__, lruvec, lru, nr_pages, size)) {
VM_BUG_ON(1);
*lru_size = 0;
}
if (nr_pages > 0)
*lru_size += nr_pages;
}
/**
* mem_cgroup_margin - calculate chargeable space of a memory cgroup
* @memcg: the memory cgroup
*
* Returns the maximum amount of memory @mem can be charged with, in
* pages.
*/
static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
{
unsigned long margin = 0;
unsigned long count;
unsigned long limit;
count = page_counter_read(&memcg->memory);
limit = READ_ONCE(memcg->memory.max);
if (count < limit)
margin = limit - count;
if (do_memsw_account()) {
count = page_counter_read(&memcg->memsw);
limit = READ_ONCE(memcg->memsw.max);
if (count <= limit)
margin = min(margin, limit - count);
else
margin = 0;
}
return margin;
}
/*
* A routine for checking "mem" is under move_account() or not.
*
* Checking a cgroup is mc.from or mc.to or under hierarchy of
* moving cgroups. This is for waiting at high-memory pressure
* caused by "move".
*/
static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
{
struct mem_cgroup *from;
struct mem_cgroup *to;
bool ret = false;
/*
* Unlike task_move routines, we access mc.to, mc.from not under
* mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
*/
spin_lock(&mc.lock);
from = mc.from;
to = mc.to;
if (!from)
goto unlock;
ret = mem_cgroup_is_descendant(from, memcg) ||
mem_cgroup_is_descendant(to, memcg);
unlock:
spin_unlock(&mc.lock);
return ret;
}
static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
{
if (mc.moving_task && current != mc.moving_task) {
if (mem_cgroup_under_move(memcg)) {
DEFINE_WAIT(wait);
prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
/* moving charge context might have finished. */
if (mc.moving_task)
schedule();
finish_wait(&mc.waitq, &wait);
return true;
}
}
return false;
}
static char *memory_stat_format(struct mem_cgroup *memcg)
{
struct seq_buf s;
int i;
seq_buf_init(&s, kmalloc(PAGE_SIZE, GFP_KERNEL), PAGE_SIZE);
if (!s.buffer)
return NULL;
/*
* Provide statistics on the state of the memory subsystem as
* well as cumulative event counters that show past behavior.
*
* This list is ordered following a combination of these gradients:
* 1) generic big picture -> specifics and details
* 2) reflecting userspace activity -> reflecting kernel heuristics
*
* Current memory state:
*/
seq_buf_printf(&s, "anon %llu\n",
(u64)memcg_page_state(memcg, MEMCG_RSS) *
PAGE_SIZE);
seq_buf_printf(&s, "file %llu\n",
(u64)memcg_page_state(memcg, MEMCG_CACHE) *
PAGE_SIZE);
seq_buf_printf(&s, "kernel_stack %llu\n",
(u64)memcg_page_state(memcg, MEMCG_KERNEL_STACK_KB) *
1024);
seq_buf_printf(&s, "slab %llu\n",
(u64)(memcg_page_state(memcg, NR_SLAB_RECLAIMABLE) +
memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE)) *
PAGE_SIZE);
seq_buf_printf(&s, "sock %llu\n",
(u64)memcg_page_state(memcg, MEMCG_SOCK) *
PAGE_SIZE);
seq_buf_printf(&s, "shmem %llu\n",
(u64)memcg_page_state(memcg, NR_SHMEM) *
PAGE_SIZE);
seq_buf_printf(&s, "file_mapped %llu\n",
(u64)memcg_page_state(memcg, NR_FILE_MAPPED) *
PAGE_SIZE);
seq_buf_printf(&s, "file_dirty %llu\n",
(u64)memcg_page_state(memcg, NR_FILE_DIRTY) *
PAGE_SIZE);
seq_buf_printf(&s, "file_writeback %llu\n",
(u64)memcg_page_state(memcg, NR_WRITEBACK) *
PAGE_SIZE);
/*
* TODO: We should eventually replace our own MEMCG_RSS_HUGE counter
* with the NR_ANON_THP vm counter, but right now it's a pain in the
* arse because it requires migrating the work out of rmap to a place
* where the page->mem_cgroup is set up and stable.
*/
seq_buf_printf(&s, "anon_thp %llu\n",
(u64)memcg_page_state(memcg, MEMCG_RSS_HUGE) *
PAGE_SIZE);
for (i = 0; i < NR_LRU_LISTS; i++)
seq_buf_printf(&s, "%s %llu\n", mem_cgroup_lru_names[i],
(u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
PAGE_SIZE);
seq_buf_printf(&s, "slab_reclaimable %llu\n",
(u64)memcg_page_state(memcg, NR_SLAB_RECLAIMABLE) *
PAGE_SIZE);
seq_buf_printf(&s, "slab_unreclaimable %llu\n",
(u64)memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE) *
PAGE_SIZE);
/* Accumulated memory events */
seq_buf_printf(&s, "pgfault %lu\n", memcg_events(memcg, PGFAULT));
seq_buf_printf(&s, "pgmajfault %lu\n", memcg_events(memcg, PGMAJFAULT));
seq_buf_printf(&s, "workingset_refault %lu\n",
memcg_page_state(memcg, WORKINGSET_REFAULT));
seq_buf_printf(&s, "workingset_activate %lu\n",
memcg_page_state(memcg, WORKINGSET_ACTIVATE));
seq_buf_printf(&s, "workingset_nodereclaim %lu\n",
memcg_page_state(memcg, WORKINGSET_NODERECLAIM));
seq_buf_printf(&s, "pgrefill %lu\n", memcg_events(memcg, PGREFILL));
seq_buf_printf(&s, "pgscan %lu\n",
memcg_events(memcg, PGSCAN_KSWAPD) +
memcg_events(memcg, PGSCAN_DIRECT));
seq_buf_printf(&s, "pgsteal %lu\n",
memcg_events(memcg, PGSTEAL_KSWAPD) +
memcg_events(memcg, PGSTEAL_DIRECT));
seq_buf_printf(&s, "pgactivate %lu\n", memcg_events(memcg, PGACTIVATE));
seq_buf_printf(&s, "pgdeactivate %lu\n", memcg_events(memcg, PGDEACTIVATE));
seq_buf_printf(&s, "pglazyfree %lu\n", memcg_events(memcg, PGLAZYFREE));
seq_buf_printf(&s, "pglazyfreed %lu\n", memcg_events(memcg, PGLAZYFREED));
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
seq_buf_printf(&s, "thp_fault_alloc %lu\n",
memcg_events(memcg, THP_FAULT_ALLOC));
seq_buf_printf(&s, "thp_collapse_alloc %lu\n",
memcg_events(memcg, THP_COLLAPSE_ALLOC));
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
/* The above should easily fit into one page */
WARN_ON_ONCE(seq_buf_has_overflowed(&s));
return s.buffer;
}
#define K(x) ((x) << (PAGE_SHIFT-10))
/**
* mem_cgroup_print_oom_context: Print OOM information relevant to
* memory controller.
* @memcg: The memory cgroup that went over limit
* @p: Task that is going to be killed
*
* NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
* enabled
*/
void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
{
rcu_read_lock();
if (memcg) {
pr_cont(",oom_memcg=");
pr_cont_cgroup_path(memcg->css.cgroup);
} else
pr_cont(",global_oom");
if (p) {
pr_cont(",task_memcg=");
pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
}
rcu_read_unlock();
}
/**
* mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
* memory controller.
* @memcg: The memory cgroup that went over limit
*/
void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
{
char *buf;
pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
K((u64)page_counter_read(&memcg->memory)),
K((u64)memcg->memory.max), memcg->memory.failcnt);
if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
K((u64)page_counter_read(&memcg->swap)),
K((u64)memcg->swap.max), memcg->swap.failcnt);
else {
pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
K((u64)page_counter_read(&memcg->memsw)),
K((u64)memcg->memsw.max), memcg->memsw.failcnt);
pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
K((u64)page_counter_read(&memcg->kmem)),
K((u64)memcg->kmem.max), memcg->kmem.failcnt);
}
pr_info("Memory cgroup stats for ");
pr_cont_cgroup_path(memcg->css.cgroup);
pr_cont(":");
buf = memory_stat_format(memcg);
if (!buf)
return;
pr_info("%s", buf);
kfree(buf);
}
/*
* Return the memory (and swap, if configured) limit for a memcg.
*/
unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
{
unsigned long max;
max = memcg->memory.max;
if (mem_cgroup_swappiness(memcg)) {
unsigned long memsw_max;
unsigned long swap_max;
memsw_max = memcg->memsw.max;
swap_max = memcg->swap.max;
swap_max = min(swap_max, (unsigned long)total_swap_pages);
max = min(max + swap_max, memsw_max);
}
return max;
}
unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
{
return page_counter_read(&memcg->memory);
}
static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
int order)
{
struct oom_control oc = {
.zonelist = NULL,
.nodemask = NULL,
.memcg = memcg,
.gfp_mask = gfp_mask,
.order = order,
};
bool ret;
if (mutex_lock_killable(&oom_lock))
return true;
/*
* A few threads which were not waiting at mutex_lock_killable() can
* fail to bail out. Therefore, check again after holding oom_lock.
*/
ret = should_force_charge() || out_of_memory(&oc);
mutex_unlock(&oom_lock);
return ret;
}
#if MAX_NUMNODES > 1
/**
* test_mem_cgroup_node_reclaimable
* @memcg: the target memcg
* @nid: the node ID to be checked.
* @noswap : specify true here if the user wants flle only information.
*
* This function returns whether the specified memcg contains any
* reclaimable pages on a node. Returns true if there are any reclaimable
* pages in the node.
*/
static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
int nid, bool noswap)
{
struct lruvec *lruvec = mem_cgroup_lruvec(NODE_DATA(nid), memcg);
if (lruvec_page_state(lruvec, NR_INACTIVE_FILE) ||
lruvec_page_state(lruvec, NR_ACTIVE_FILE))
return true;
if (noswap || !total_swap_pages)
return false;
if (lruvec_page_state(lruvec, NR_INACTIVE_ANON) ||
lruvec_page_state(lruvec, NR_ACTIVE_ANON))
return true;
return false;
}
/*
* Always updating the nodemask is not very good - even if we have an empty
* list or the wrong list here, we can start from some node and traverse all
* nodes based on the zonelist. So update the list loosely once per 10 secs.
*
*/
static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
{
int nid;
/*
* numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
* pagein/pageout changes since the last update.
*/
if (!atomic_read(&memcg->numainfo_events))
return;
if (atomic_inc_return(&memcg->numainfo_updating) > 1)
return;
/* make a nodemask where this memcg uses memory from */
memcg->scan_nodes = node_states[N_MEMORY];
for_each_node_mask(nid, node_states[N_MEMORY]) {
if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
node_clear(nid, memcg->scan_nodes);
}
atomic_set(&memcg->numainfo_events, 0);
atomic_set(&memcg->numainfo_updating, 0);
}
/*
* Selecting a node where we start reclaim from. Because what we need is just
* reducing usage counter, start from anywhere is O,K. Considering
* memory reclaim from current node, there are pros. and cons.
*
* Freeing memory from current node means freeing memory from a node which
* we'll use or we've used. So, it may make LRU bad. And if several threads
* hit limits, it will see a contention on a node. But freeing from remote
* node means more costs for memory reclaim because of memory latency.
*
* Now, we use round-robin. Better algorithm is welcomed.
*/
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
{
int node;
mem_cgroup_may_update_nodemask(memcg);
node = memcg->last_scanned_node;
node = next_node_in(node, memcg->scan_nodes);
/*
* mem_cgroup_may_update_nodemask might have seen no reclaimmable pages
* last time it really checked all the LRUs due to rate limiting.
* Fallback to the current node in that case for simplicity.
*/
if (unlikely(node == MAX_NUMNODES))
node = numa_node_id();
memcg->last_scanned_node = node;
return node;
}
#else
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
{
return 0;
}
#endif
static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
pg_data_t *pgdat,
gfp_t gfp_mask,
unsigned long *total_scanned)
{
struct mem_cgroup *victim = NULL;
int total = 0;
int loop = 0;
unsigned long excess;
unsigned long nr_scanned;
struct mem_cgroup_reclaim_cookie reclaim = {
.pgdat = pgdat,
.priority = 0,
};
excess = soft_limit_excess(root_memcg);
while (1) {
victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
if (!victim) {
loop++;
if (loop >= 2) {
/*
* If we have not been able to reclaim
* anything, it might because there are
* no reclaimable pages under this hierarchy
*/
if (!total)
break;
/*
* We want to do more targeted reclaim.
* excess >> 2 is not to excessive so as to
* reclaim too much, nor too less that we keep
* coming back to reclaim from this cgroup
*/
if (total >= (excess >> 2) ||
(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
break;
}
continue;
}
total += mem_cgroup_shrink_node(victim, gfp_mask, false,
pgdat, &nr_scanned);
*total_scanned += nr_scanned;
if (!soft_limit_excess(root_memcg))
break;
}
mem_cgroup_iter_break(root_memcg, victim);
return total;
}
#ifdef CONFIG_LOCKDEP
static struct lockdep_map memcg_oom_lock_dep_map = {
.name = "memcg_oom_lock",
};
#endif
static DEFINE_SPINLOCK(memcg_oom_lock);
/*
* Check OOM-Killer is already running under our hierarchy.
* If someone is running, return false.
*/
static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
{
struct mem_cgroup *iter, *failed = NULL;
spin_lock(&memcg_oom_lock);
for_each_mem_cgroup_tree(iter, memcg) {
if (iter->oom_lock) {
/*
* this subtree of our hierarchy is already locked
* so we cannot give a lock.
*/
failed = iter;
mem_cgroup_iter_break(memcg, iter);
break;
} else
iter->oom_lock = true;
}
if (failed) {
/*
* OK, we failed to lock the whole subtree so we have
* to clean up what we set up to the failing subtree
*/
for_each_mem_cgroup_tree(iter, memcg) {
if (iter == failed) {
mem_cgroup_iter_break(memcg, iter);
break;
}
iter->oom_lock = false;
}
} else
mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
spin_unlock(&memcg_oom_lock);
return !failed;
}
static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
{
struct mem_cgroup *iter;
spin_lock(&memcg_oom_lock);
mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
for_each_mem_cgroup_tree(iter, memcg)
iter->oom_lock = false;
spin_unlock(&memcg_oom_lock);
}
static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
{
struct mem_cgroup *iter;
spin_lock(&memcg_oom_lock);
for_each_mem_cgroup_tree(iter, memcg)
iter->under_oom++;
spin_unlock(&memcg_oom_lock);
}
static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
{
struct mem_cgroup *iter;
/*
* When a new child is created while the hierarchy is under oom,
* mem_cgroup_oom_lock() may not be called. Watch for underflow.
*/
spin_lock(&memcg_oom_lock);
for_each_mem_cgroup_tree(iter, memcg)
if (iter->under_oom > 0)
iter->under_oom--;
spin_unlock(&memcg_oom_lock);
}
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
struct oom_wait_info {
struct mem_cgroup *memcg;
wait_queue_entry_t wait;
};
static int memcg_oom_wake_function(wait_queue_entry_t *wait,
unsigned mode, int sync, void *arg)
{
struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
struct mem_cgroup *oom_wait_memcg;
struct oom_wait_info *oom_wait_info;
oom_wait_info = container_of(wait, struct oom_wait_info, wait);
oom_wait_memcg = oom_wait_info->memcg;
if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
!mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
return 0;
return autoremove_wake_function(wait, mode, sync, arg);
}
static void memcg_oom_recover(struct mem_cgroup *memcg)
{
/*
* For the following lockless ->under_oom test, the only required
* guarantee is that it must see the state asserted by an OOM when
* this function is called as a result of userland actions
* triggered by the notification of the OOM. This is trivially
* achieved by invoking mem_cgroup_mark_under_oom() before
* triggering notification.
*/
if (memcg && memcg->under_oom)
__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
}
enum oom_status {
OOM_SUCCESS,
OOM_FAILED,
OOM_ASYNC,
OOM_SKIPPED
};
static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
{
enum oom_status ret;
bool locked;
if (order > PAGE_ALLOC_COSTLY_ORDER)
return OOM_SKIPPED;
memcg_memory_event(memcg, MEMCG_OOM);
/*
* We are in the middle of the charge context here, so we
* don't want to block when potentially sitting on a callstack
* that holds all kinds of filesystem and mm locks.
*
* cgroup1 allows disabling the OOM killer and waiting for outside
* handling until the charge can succeed; remember the context and put
* the task to sleep at the end of the page fault when all locks are
* released.
*
* On the other hand, in-kernel OOM killer allows for an async victim
* memory reclaim (oom_reaper) and that means that we are not solely
* relying on the oom victim to make a forward progress and we can
* invoke the oom killer here.
*
* Please note that mem_cgroup_out_of_memory might fail to find a
* victim and then we have to bail out from the charge path.
*/
if (memcg->oom_kill_disable) {
if (!current->in_user_fault)
return OOM_SKIPPED;
css_get(&memcg->css);
current->memcg_in_oom = memcg;
current->memcg_oom_gfp_mask = mask;
current->memcg_oom_order = order;
return OOM_ASYNC;
}
mem_cgroup_mark_under_oom(memcg);
locked = mem_cgroup_oom_trylock(memcg);
if (locked)
mem_cgroup_oom_notify(memcg);
mem_cgroup_unmark_under_oom(memcg);
if (mem_cgroup_out_of_memory(memcg, mask, order))
ret = OOM_SUCCESS;
else
ret = OOM_FAILED;
if (locked)
mem_cgroup_oom_unlock(memcg);
return ret;
}
/**
* mem_cgroup_oom_synchronize - complete memcg OOM handling
* @handle: actually kill/wait or just clean up the OOM state
*
* This has to be called at the end of a page fault if the memcg OOM
* handler was enabled.
*
* Memcg supports userspace OOM handling where failed allocations must
* sleep on a waitqueue until the userspace task resolves the
* situation. Sleeping directly in the charge context with all kinds
* of locks held is not a good idea, instead we remember an OOM state
* in the task and mem_cgroup_oom_synchronize() has to be called at
* the end of the page fault to complete the OOM handling.
*
* Returns %true if an ongoing memcg OOM situation was detected and
* completed, %false otherwise.
*/
bool mem_cgroup_oom_synchronize(bool handle)
{
struct mem_cgroup *memcg = current->memcg_in_oom;
struct oom_wait_info owait;
bool locked;
/* OOM is global, do not handle */
if (!memcg)
return false;
if (!handle)
goto cleanup;
owait.memcg = memcg;
owait.wait.flags = 0;
owait.wait.func = memcg_oom_wake_function;
owait.wait.private = current;
INIT_LIST_HEAD(&owait.wait.entry);
prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
mem_cgroup_mark_under_oom(memcg);
locked = mem_cgroup_oom_trylock(memcg);
if (locked)
mem_cgroup_oom_notify(memcg);
if (locked && !memcg->oom_kill_disable) {
mem_cgroup_unmark_under_oom(memcg);
finish_wait(&memcg_oom_waitq, &owait.wait);
mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
current->memcg_oom_order);
} else {
schedule();
mem_cgroup_unmark_under_oom(memcg);
finish_wait(&memcg_oom_waitq, &owait.wait);
}
if (locked) {
mem_cgroup_oom_unlock(memcg);
/*
* There is no guarantee that an OOM-lock contender
* sees the wakeups triggered by the OOM kill
* uncharges. Wake any sleepers explicitely.
*/
memcg_oom_recover(memcg);
}
cleanup:
current->memcg_in_oom = NULL;
css_put(&memcg->css);
return true;
}
/**
* mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
* @victim: task to be killed by the OOM killer
* @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
*
* Returns a pointer to a memory cgroup, which has to be cleaned up
* by killing all belonging OOM-killable tasks.
*
* Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
*/
struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
struct mem_cgroup *oom_domain)
{
struct mem_cgroup *oom_group = NULL;
struct mem_cgroup *memcg;
if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
return NULL;
if (!oom_domain)
oom_domain = root_mem_cgroup;
rcu_read_lock();
memcg = mem_cgroup_from_task(victim);
if (memcg == root_mem_cgroup)
goto out;
/*
* Traverse the memory cgroup hierarchy from the victim task's
* cgroup up to the OOMing cgroup (or root) to find the
* highest-level memory cgroup with oom.group set.
*/
for (; memcg; memcg = parent_mem_cgroup(memcg)) {
if (memcg->oom_group)
oom_group = memcg;
if (memcg == oom_domain)
break;
}
if (oom_group)
css_get(&oom_group->css);
out:
rcu_read_unlock();
return oom_group;
}
void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
{
pr_info("Tasks in ");
pr_cont_cgroup_path(memcg->css.cgroup);
pr_cont(" are going to be killed due to memory.oom.group set\n");
}
/**
* lock_page_memcg - lock a page->mem_cgroup binding
* @page: the page
*
* This function protects unlocked LRU pages from being moved to
* another cgroup.
*
* It ensures lifetime of the returned memcg. Caller is responsible
* for the lifetime of the page; __unlock_page_memcg() is available
* when @page might get freed inside the locked section.
*/
struct mem_cgroup *lock_page_memcg(struct page *page)
{
struct mem_cgroup *memcg;
unsigned long flags;
/*
* The RCU lock is held throughout the transaction. The fast
* path can get away without acquiring the memcg->move_lock
* because page moving starts with an RCU grace period.
*
* The RCU lock also protects the memcg from being freed when
* the page state that is going to change is the only thing
* preventing the page itself from being freed. E.g. writeback
* doesn't hold a page reference and relies on PG_writeback to
* keep off truncation, migration and so forth.
*/
rcu_read_lock();
if (mem_cgroup_disabled())
return NULL;
again:
memcg = page->mem_cgroup;
if (unlikely(!memcg))
return NULL;
if (atomic_read(&memcg->moving_account) <= 0)
return memcg;
spin_lock_irqsave(&memcg->move_lock, flags);
if (memcg != page->mem_cgroup) {
spin_unlock_irqrestore(&memcg->move_lock, flags);
goto again;
}
/*
* When charge migration first begins, we can have locked and
* unlocked page stat updates happening concurrently. Track
* the task who has the lock for unlock_page_memcg().
*/
memcg->move_lock_task = current;
memcg->move_lock_flags = flags;
return memcg;
}
EXPORT_SYMBOL(lock_page_memcg);
/**
* __unlock_page_memcg - unlock and unpin a memcg
* @memcg: the memcg
*
* Unlock and unpin a memcg returned by lock_page_memcg().
*/
void __unlock_page_memcg(struct mem_cgroup *memcg)
{
if (memcg && memcg->move_lock_task == current) {
unsigned long flags = memcg->move_lock_flags;
memcg->move_lock_task = NULL;
memcg->move_lock_flags = 0;
spin_unlock_irqrestore(&memcg->move_lock, flags);
}
rcu_read_unlock();
}
/**
* unlock_page_memcg - unlock a page->mem_cgroup binding
* @page: the page
*/
void unlock_page_memcg(struct page *page)
{
__unlock_page_memcg(page->mem_cgroup);
}
EXPORT_SYMBOL(unlock_page_memcg);
struct memcg_stock_pcp {
struct mem_cgroup *cached; /* this never be root cgroup */
unsigned int nr_pages;
struct work_struct work;
unsigned long flags;
#define FLUSHING_CACHED_CHARGE 0
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
static DEFINE_MUTEX(percpu_charge_mutex);
/**
* consume_stock: Try to consume stocked charge on this cpu.
* @memcg: memcg to consume from.
* @nr_pages: how many pages to charge.
*
* The charges will only happen if @memcg matches the current cpu's memcg
* stock, and at least @nr_pages are available in that stock. Failure to
* service an allocation will refill the stock.
*
* returns true if successful, false otherwise.
*/
static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
{
struct memcg_stock_pcp *stock;
unsigned long flags;
bool ret = false;
if (nr_pages > MEMCG_CHARGE_BATCH)
return ret;
local_irq_save(flags);
stock = this_cpu_ptr(&memcg_stock);
if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
stock->nr_pages -= nr_pages;
ret = true;
}
local_irq_restore(flags);
return ret;
}
/*
* Returns stocks cached in percpu and reset cached information.
*/
static void drain_stock(struct memcg_stock_pcp *stock)
{
struct mem_cgroup *old = stock->cached;
if (stock->nr_pages) {
page_counter_uncharge(&old->memory, stock->nr_pages);
if (do_memsw_account())
page_counter_uncharge(&old->memsw, stock->nr_pages);
css_put_many(&old->css, stock->nr_pages);
stock->nr_pages = 0;
}
stock->cached = NULL;
}
static void drain_local_stock(struct work_struct *dummy)
{
struct memcg_stock_pcp *stock;
unsigned long flags;
/*
* The only protection from memory hotplug vs. drain_stock races is
* that we always operate on local CPU stock here with IRQ disabled
*/
local_irq_save(flags);
stock = this_cpu_ptr(&memcg_stock);
drain_stock(stock);
clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
local_irq_restore(flags);
}
/*
* Cache charges(val) to local per_cpu area.
* This will be consumed by consume_stock() function, later.
*/
static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
{
struct memcg_stock_pcp *stock;
unsigned long flags;
local_irq_save(flags);
stock = this_cpu_ptr(&memcg_stock);
if (stock->cached != memcg) { /* reset if necessary */
drain_stock(stock);
stock->cached = memcg;
}
stock->nr_pages += nr_pages;
if (stock->nr_pages > MEMCG_CHARGE_BATCH)
drain_stock(stock);
local_irq_restore(flags);
}
/*
* Drains all per-CPU charge caches for given root_memcg resp. subtree
* of the hierarchy under it.
*/
static void drain_all_stock(struct mem_cgroup *root_memcg)
{
int cpu, curcpu;
/* If someone's already draining, avoid adding running more workers. */
if (!mutex_trylock(&percpu_charge_mutex))
return;
/*
* Notify other cpus that system-wide "drain" is running
* We do not care about races with the cpu hotplug because cpu down
* as well as workers from this path always operate on the local
* per-cpu data. CPU up doesn't touch memcg_stock at all.
*/
curcpu = get_cpu();
for_each_online_cpu(cpu) {
struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
struct mem_cgroup *memcg;
bool flush = false;
rcu_read_lock();
memcg = stock->cached;
if (memcg && stock->nr_pages &&
mem_cgroup_is_descendant(memcg, root_memcg))
flush = true;
rcu_read_unlock();
if (flush &&
!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
if (cpu == curcpu)
drain_local_stock(&stock->work);
else
schedule_work_on(cpu, &stock->work);
}
}
put_cpu();
mutex_unlock(&percpu_charge_mutex);
}
static int memcg_hotplug_cpu_dead(unsigned int cpu)
{
struct memcg_stock_pcp *stock;
struct mem_cgroup *memcg, *mi;
stock = &per_cpu(memcg_stock, cpu);
drain_stock(stock);
for_each_mem_cgroup(memcg) {
int i;
for (i = 0; i < MEMCG_NR_STAT; i++) {
int nid;
long x;
x = this_cpu_xchg(memcg->vmstats_percpu->stat[i], 0);
if (x)
for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
atomic_long_add(x, &memcg->vmstats[i]);
if (i >= NR_VM_NODE_STAT_ITEMS)
continue;
for_each_node(nid) {
struct mem_cgroup_per_node *pn;
pn = mem_cgroup_nodeinfo(memcg, nid);
x = this_cpu_xchg(pn->lruvec_stat_cpu->count[i], 0);
if (x)
do {
atomic_long_add(x, &pn->lruvec_stat[i]);
} while ((pn = parent_nodeinfo(pn, nid)));
}
}
for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
long x;
x = this_cpu_xchg(memcg->vmstats_percpu->events[i], 0);
if (x)
for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
atomic_long_add(x, &memcg->vmevents[i]);
}
}
return 0;
}
static void reclaim_high(struct mem_cgroup *memcg,
unsigned int nr_pages,
gfp_t gfp_mask)
{
do {
if (page_counter_read(&memcg->memory) <= memcg->high)
continue;
memcg_memory_event(memcg, MEMCG_HIGH);
try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
} while ((memcg = parent_mem_cgroup(memcg)));
}
static void high_work_func(struct work_struct *work)
{
struct mem_cgroup *memcg;
memcg = container_of(work, struct mem_cgroup, high_work);
reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
}
/*
* Clamp the maximum sleep time per allocation batch to 2 seconds. This is
* enough to still cause a significant slowdown in most cases, while still
* allowing diagnostics and tracing to proceed without becoming stuck.
*/
#define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)
/*
* When calculating the delay, we use these either side of the exponentiation to
* maintain precision and scale to a reasonable number of jiffies (see the table
* below.
*
* - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
* overage ratio to a delay.
* - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down down the
* proposed penalty in order to reduce to a reasonable number of jiffies, and
* to produce a reasonable delay curve.
*
* MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
* reasonable delay curve compared to precision-adjusted overage, not
* penalising heavily at first, but still making sure that growth beyond the
* limit penalises misbehaviour cgroups by slowing them down exponentially. For
* example, with a high of 100 megabytes:
*
* +-------+------------------------+
* | usage | time to allocate in ms |
* +-------+------------------------+
* | 100M | 0 |
* | 101M | 6 |
* | 102M | 25 |
* | 103M | 57 |
* | 104M | 102 |
* | 105M | 159 |
* | 106M | 230 |
* | 107M | 313 |
* | 108M | 409 |
* | 109M | 518 |
* | 110M | 639 |
* | 111M | 774 |
* | 112M | 921 |
* | 113M | 1081 |
* | 114M | 1254 |
* | 115M | 1439 |
* | 116M | 1638 |
* | 117M | 1849 |
* | 118M | 2000 |
* | 119M | 2000 |
* | 120M | 2000 |
* +-------+------------------------+
*/
#define MEMCG_DELAY_PRECISION_SHIFT 20
#define MEMCG_DELAY_SCALING_SHIFT 14
/*
* Get the number of jiffies that we should penalise a mischievous cgroup which
* is exceeding its memory.high by checking both it and its ancestors.
*/
static unsigned long calculate_high_delay(struct mem_cgroup *memcg,
unsigned int nr_pages)
{
unsigned long penalty_jiffies;
u64 max_overage = 0;
do {
unsigned long usage, high;
u64 overage;
usage = page_counter_read(&memcg->memory);
high = READ_ONCE(memcg->high);
if (usage <= high)
continue;
/*
* Prevent division by 0 in overage calculation by acting as if
* it was a threshold of 1 page
*/
high = max(high, 1UL);
overage = usage - high;
overage <<= MEMCG_DELAY_PRECISION_SHIFT;
overage = div64_u64(overage, high);
if (overage > max_overage)
max_overage = overage;
} while ((memcg = parent_mem_cgroup(memcg)) &&
!mem_cgroup_is_root(memcg));
if (!max_overage)
return 0;
/*
* We use overage compared to memory.high to calculate the number of
* jiffies to sleep (penalty_jiffies). Ideally this value should be
* fairly lenient on small overages, and increasingly harsh when the
* memcg in question makes it clear that it has no intention of stopping
* its crazy behaviour, so we exponentially increase the delay based on
* overage amount.
*/
penalty_jiffies = max_overage * max_overage * HZ;
penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT;
penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT;
/*
* Factor in the task's own contribution to the overage, such that four
* N-sized allocations are throttled approximately the same as one
* 4N-sized allocation.
*
* MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
* larger the current charge patch is than that.
*/
penalty_jiffies = penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
/*
* Clamp the max delay per usermode return so as to still keep the
* application moving forwards and also permit diagnostics, albeit
* extremely slowly.
*/
return min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);
}
/*
* Scheduled by try_charge() to be executed from the userland return path
* and reclaims memory over the high limit.
*/
void mem_cgroup_handle_over_high(void)
{
unsigned long penalty_jiffies;
unsigned long pflags;
unsigned int nr_pages = current->memcg_nr_pages_over_high;
struct mem_cgroup *memcg;
if (likely(!nr_pages))
return;
memcg = get_mem_cgroup_from_mm(current->mm);
reclaim_high(memcg, nr_pages, GFP_KERNEL);
current->memcg_nr_pages_over_high = 0;
/*
* memory.high is breached and reclaim is unable to keep up. Throttle
* allocators proactively to slow down excessive growth.
*/
penalty_jiffies = calculate_high_delay(memcg, nr_pages);
/*
* Don't sleep if the amount of jiffies this memcg owes us is so low
* that it's not even worth doing, in an attempt to be nice to those who
* go only a small amount over their memory.high value and maybe haven't
* been aggressively reclaimed enough yet.
*/
if (penalty_jiffies <= HZ / 100)
goto out;
/*
* If we exit early, we're guaranteed to die (since
* schedule_timeout_killable sets TASK_KILLABLE). This means we don't
* need to account for any ill-begotten jiffies to pay them off later.
*/
psi_memstall_enter(&pflags);
schedule_timeout_killable(penalty_jiffies);
psi_memstall_leave(&pflags);
out:
css_put(&memcg->css);
}
static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
unsigned int nr_pages)
{
unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
struct mem_cgroup *mem_over_limit;
struct page_counter *counter;
unsigned long nr_reclaimed;
bool may_swap = true;
bool drained = false;
enum oom_status oom_status;
if (mem_cgroup_is_root(memcg))
return 0;
retry:
if (consume_stock(memcg, nr_pages))
return 0;
if (!do_memsw_account() ||
page_counter_try_charge(&memcg->memsw, batch, &counter)) {
if (page_counter_try_charge(&memcg->memory, batch, &counter))
goto done_restock;
if (do_memsw_account())
page_counter_uncharge(&memcg->memsw, batch);
mem_over_limit = mem_cgroup_from_counter(counter, memory);
} else {
mem_over_limit = mem_cgroup_from_counter(counter, memsw);
may_swap = false;
}
if (batch > nr_pages) {
batch = nr_pages;
goto retry;
}
/*
* Memcg doesn't have a dedicated reserve for atomic
* allocations. But like the global atomic pool, we need to
* put the burden of reclaim on regular allocation requests
* and let these go through as privileged allocations.
*/
if (gfp_mask & __GFP_ATOMIC)
goto force;
/*
* Unlike in global OOM situations, memcg is not in a physical
* memory shortage. Allow dying and OOM-killed tasks to
* bypass the last charges so that they can exit quickly and
* free their memory.
*/
if (unlikely(should_force_charge()))
goto force;
/*
* Prevent unbounded recursion when reclaim operations need to
* allocate memory. This might exceed the limits temporarily,
* but we prefer facilitating memory reclaim and getting back
* under the limit over triggering OOM kills in these cases.
*/
if (unlikely(current->flags & PF_MEMALLOC))
goto force;
if (unlikely(task_in_memcg_oom(current)))
goto nomem;
if (!gfpflags_allow_blocking(gfp_mask))
goto nomem;
memcg_memory_event(mem_over_limit, MEMCG_MAX);
nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
gfp_mask, may_swap);
if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
goto retry;
if (!drained) {
drain_all_stock(mem_over_limit);
drained = true;
goto retry;
}
if (gfp_mask & __GFP_NORETRY)
goto nomem;
/*
* Even though the limit is exceeded at this point, reclaim
* may have been able to free some pages. Retry the charge
* before killing the task.
*
* Only for regular pages, though: huge pages are rather
* unlikely to succeed so close to the limit, and we fall back
* to regular pages anyway in case of failure.
*/
if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
goto retry;
/*
* At task move, charge accounts can be doubly counted. So, it's
* better to wait until the end of task_move if something is going on.
*/
if (mem_cgroup_wait_acct_move(mem_over_limit))
goto retry;
if (nr_retries--)
goto retry;
if (gfp_mask & __GFP_RETRY_MAYFAIL)
goto nomem;
if (gfp_mask & __GFP_NOFAIL)
goto force;
if (fatal_signal_pending(current))
goto force;
/*
* keep retrying as long as the memcg oom killer is able to make
* a forward progress or bypass the charge if the oom killer
* couldn't make any progress.
*/
oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask,
get_order(nr_pages * PAGE_SIZE));
switch (oom_status) {
case OOM_SUCCESS:
nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
goto retry;
case OOM_FAILED:
goto force;
default:
goto nomem;
}
nomem:
if (!(gfp_mask & __GFP_NOFAIL))
return -ENOMEM;
force:
/*
* The allocation either can't fail or will lead to more memory
* being freed very soon. Allow memory usage go over the limit
* temporarily by force charging it.
*/
page_counter_charge(&memcg->memory, nr_pages);
if (do_memsw_account())
page_counter_charge(&memcg->memsw, nr_pages);
css_get_many(&memcg->css, nr_pages);
return 0;
done_restock:
css_get_many(&memcg->css, batch);
if (batch > nr_pages)
refill_stock(memcg, batch - nr_pages);
/*
* If the hierarchy is above the normal consumption range, schedule
* reclaim on returning to userland. We can perform reclaim here
* if __GFP_RECLAIM but let's always punt for simplicity and so that
* GFP_KERNEL can consistently be used during reclaim. @memcg is
* not recorded as it most likely matches current's and won't
* change in the meantime. As high limit is checked again before
* reclaim, the cost of mismatch is negligible.
*/
do {
if (page_counter_read(&memcg->memory) > memcg->high) {
/* Don't bother a random interrupted task */
if (in_interrupt()) {
schedule_work(&memcg->high_work);
break;
}
current->memcg_nr_pages_over_high += batch;
set_notify_resume(current);
break;
}
} while ((memcg = parent_mem_cgroup(memcg)));
return 0;
}
static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
{
if (mem_cgroup_is_root(memcg))
return;
page_counter_uncharge(&memcg->memory, nr_pages);
if (do_memsw_account())
page_counter_uncharge(&memcg->memsw, nr_pages);
css_put_many(&memcg->css, nr_pages);
}
static void lock_page_lru(struct page *page, int *isolated)
{
pg_data_t *pgdat = page_pgdat(page);
spin_lock_irq(&pgdat->lru_lock);
if (PageLRU(page)) {
struct lruvec *lruvec;
lruvec = mem_cgroup_page_lruvec(page, pgdat);
ClearPageLRU(page);
del_page_from_lru_list(page, lruvec, page_lru(page));
*isolated = 1;
} else
*isolated = 0;
}
static void unlock_page_lru(struct page *page, int isolated)
{
pg_data_t *pgdat = page_pgdat(page);
if (isolated) {
struct lruvec *lruvec;
lruvec = mem_cgroup_page_lruvec(page, pgdat);
VM_BUG_ON_PAGE(PageLRU(page), page);
SetPageLRU(page);
add_page_to_lru_list(page, lruvec, page_lru(page));
}
spin_unlock_irq(&pgdat->lru_lock);
}
static void commit_charge(struct page *page, struct mem_cgroup *memcg,
bool lrucare)
{
int isolated;
VM_BUG_ON_PAGE(page->mem_cgroup, page);
/*
* In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
* may already be on some other mem_cgroup's LRU. Take care of it.
*/
if (lrucare)
lock_page_lru(page, &isolated);
/*
* Nobody should be changing or seriously looking at
* page->mem_cgroup at this point:
*
* - the page is uncharged
*
* - the page is off-LRU
*
* - an anonymous fault has exclusive page access, except for
* a locked page table
*
* - a page cache insertion, a swapin fault, or a migration
* have the page locked
*/
page->mem_cgroup = memcg;
if (lrucare)
unlock_page_lru(page, isolated);
}
#ifdef CONFIG_MEMCG_KMEM
/*
* Returns a pointer to the memory cgroup to which the kernel object is charged.
*
* The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
* cgroup_mutex, etc.
*/
struct mem_cgroup *mem_cgroup_from_obj(void *p)
{
struct page *page;
if (mem_cgroup_disabled())
return NULL;
page = virt_to_head_page(p);
/*
* Slab pages don't have page->mem_cgroup set because corresponding
* kmem caches can be reparented during the lifetime. That's why
* memcg_from_slab_page() should be used instead.
*/
if (PageSlab(page))
return memcg_from_slab_page(page);
/* All other pages use page->mem_cgroup */
return page->mem_cgroup;
}
static int memcg_alloc_cache_id(void)
{
int id, size;
int err;
id = ida_simple_get(&memcg_cache_ida,
0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
if (id < 0)
return id;
if (id < memcg_nr_cache_ids)
return id;
/*
* There's no space for the new id in memcg_caches arrays,
* so we have to grow them.
*/
down_write(&memcg_cache_ids_sem);
size = 2 * (id + 1);
if (size < MEMCG_CACHES_MIN_SIZE)
size = MEMCG_CACHES_MIN_SIZE;
else if (size > MEMCG_CACHES_MAX_SIZE)
size = MEMCG_CACHES_MAX_SIZE;
err = memcg_update_all_caches(size);
if (!err)
err = memcg_update_all_list_lrus(size);
if (!err)
memcg_nr_cache_ids = size;
up_write(&memcg_cache_ids_sem);
if (err) {
ida_simple_remove(&memcg_cache_ida, id);
return err;
}
return id;
}
static void memcg_free_cache_id(int id)
{
ida_simple_remove(&memcg_cache_ida, id);
}
struct memcg_kmem_cache_create_work {
struct mem_cgroup *memcg;
struct kmem_cache *cachep;
struct work_struct work;
};
static void memcg_kmem_cache_create_func(struct work_struct *w)
{
struct memcg_kmem_cache_create_work *cw =
container_of(w, struct memcg_kmem_cache_create_work, work);
struct mem_cgroup *memcg = cw->memcg;
struct kmem_cache *cachep = cw->cachep;
memcg_create_kmem_cache(memcg, cachep);
css_put(&memcg->css);
kfree(cw);
}
/*
* Enqueue the creation of a per-memcg kmem_cache.
*/
static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
struct kmem_cache *cachep)
{
struct memcg_kmem_cache_create_work *cw;
if (!css_tryget_online(&memcg->css))
return;
cw = kmalloc(sizeof(*cw), GFP_NOWAIT | __GFP_NOWARN);
if (!cw) {
css_put(&memcg->css);
return;
}
cw->memcg = memcg;
cw->cachep = cachep;
INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
queue_work(memcg_kmem_cache_wq, &cw->work);
}
static inline bool memcg_kmem_bypass(void)
{
if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
return true;
return false;
}
/**
* memcg_kmem_get_cache: select the correct per-memcg cache for allocation
* @cachep: the original global kmem cache
*
* Return the kmem_cache we're supposed to use for a slab allocation.
* We try to use the current memcg's version of the cache.
*
* If the cache does not exist yet, if we are the first user of it, we
* create it asynchronously in a workqueue and let the current allocation
* go through with the original cache.
*
* This function takes a reference to the cache it returns to assure it
* won't get destroyed while we are working with it. Once the caller is
* done with it, memcg_kmem_put_cache() must be called to release the
* reference.
*/
struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep)
{
struct mem_cgroup *memcg;
struct kmem_cache *memcg_cachep;
struct memcg_cache_array *arr;
int kmemcg_id;
VM_BUG_ON(!is_root_cache(cachep));
if (memcg_kmem_bypass())
return cachep;
rcu_read_lock();
if (unlikely(current->active_memcg))
memcg = current->active_memcg;
else
memcg = mem_cgroup_from_task(current);
if (!memcg || memcg == root_mem_cgroup)
goto out_unlock;
kmemcg_id = READ_ONCE(memcg->kmemcg_id);
if (kmemcg_id < 0)
goto out_unlock;
arr = rcu_dereference(cachep->memcg_params.memcg_caches);
/*
* Make sure we will access the up-to-date value. The code updating
* memcg_caches issues a write barrier to match the data dependency
* barrier inside READ_ONCE() (see memcg_create_kmem_cache()).
*/
memcg_cachep = READ_ONCE(arr->entries[kmemcg_id]);
/*
* If we are in a safe context (can wait, and not in interrupt
* context), we could be be predictable and return right away.
* This would guarantee that the allocation being performed
* already belongs in the new cache.
*
* However, there are some clashes that can arrive from locking.
* For instance, because we acquire the slab_mutex while doing
* memcg_create_kmem_cache, this means no further allocation
* could happen with the slab_mutex held. So it's better to
* defer everything.
*
* If the memcg is dying or memcg_cache is about to be released,
* don't bother creating new kmem_caches. Because memcg_cachep
* is ZEROed as the fist step of kmem offlining, we don't need
* percpu_ref_tryget_live() here. css_tryget_online() check in
* memcg_schedule_kmem_cache_create() will prevent us from
* creation of a new kmem_cache.
*/
if (unlikely(!memcg_cachep))
memcg_schedule_kmem_cache_create(memcg, cachep);
else if (percpu_ref_tryget(&memcg_cachep->memcg_params.refcnt))
cachep = memcg_cachep;
out_unlock:
rcu_read_unlock();
return cachep;
}
/**
* memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache
* @cachep: the cache returned by memcg_kmem_get_cache
*/
void memcg_kmem_put_cache(struct kmem_cache *cachep)
{
if (!is_root_cache(cachep))
percpu_ref_put(&cachep->memcg_params.refcnt);
}
/**
* __memcg_kmem_charge_memcg: charge a kmem page
* @page: page to charge
* @gfp: reclaim mode
* @order: allocation order
* @memcg: memory cgroup to charge
*
* Returns 0 on success, an error code on failure.
*/
int __memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
struct mem_cgroup *memcg)
{
unsigned int nr_pages = 1 << order;
struct page_counter *counter;
int ret;
ret = try_charge(memcg, gfp, nr_pages);
if (ret)
return ret;
if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
!page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
/*
* Enforce __GFP_NOFAIL allocation because callers are not
* prepared to see failures and likely do not have any failure
* handling code.
*/
if (gfp & __GFP_NOFAIL) {
page_counter_charge(&memcg->kmem, nr_pages);
return 0;
}
cancel_charge(memcg, nr_pages);
return -ENOMEM;
}
return 0;
}
/**
* __memcg_kmem_charge: charge a kmem page to the current memory cgroup
* @page: page to charge
* @gfp: reclaim mode
* @order: allocation order
*
* Returns 0 on success, an error code on failure.
*/
int __memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
{
struct mem_cgroup *memcg;
int ret = 0;
if (memcg_kmem_bypass())
return 0;
memcg = get_mem_cgroup_from_current();
if (!mem_cgroup_is_root(memcg)) {
ret = __memcg_kmem_charge_memcg(page, gfp, order, memcg);
if (!ret) {
page->mem_cgroup = memcg;
__SetPageKmemcg(page);
}
}
css_put(&memcg->css);
return ret;
}
/**
* __memcg_kmem_uncharge_memcg: uncharge a kmem page
* @memcg: memcg to uncharge
* @nr_pages: number of pages to uncharge
*/
void __memcg_kmem_uncharge_memcg(struct mem_cgroup *memcg,
unsigned int nr_pages)
{
if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
page_counter_uncharge(&memcg->kmem, nr_pages);
page_counter_uncharge(&memcg->memory, nr_pages);
if (do_memsw_account())
page_counter_uncharge(&memcg->memsw, nr_pages);
}
/**
* __memcg_kmem_uncharge: uncharge a kmem page
* @page: page to uncharge
* @order: allocation order
*/
void __memcg_kmem_uncharge(struct page *page, int order)
{
struct mem_cgroup *memcg = page->mem_cgroup;
unsigned int nr_pages = 1 << order;
if (!memcg)
return;
VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
__memcg_kmem_uncharge_memcg(memcg, nr_pages);
page->mem_cgroup = NULL;
/* slab pages do not have PageKmemcg flag set */
if (PageKmemcg(page))
__ClearPageKmemcg(page);
css_put_many(&memcg->css, nr_pages);
}
#endif /* CONFIG_MEMCG_KMEM */
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
/*
* Because tail pages are not marked as "used", set it. We're under
* pgdat->lru_lock and migration entries setup in all page mappings.
*/
void mem_cgroup_split_huge_fixup(struct page *head)
{
int i;
if (mem_cgroup_disabled())
return;
for (i = 1; i < HPAGE_PMD_NR; i++)
head[i].mem_cgroup = head->mem_cgroup;
__mod_memcg_state(head->mem_cgroup, MEMCG_RSS_HUGE, -HPAGE_PMD_NR);
}
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
#ifdef CONFIG_MEMCG_SWAP
/**
* mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
* @entry: swap entry to be moved
* @from: mem_cgroup which the entry is moved from
* @to: mem_cgroup which the entry is moved to
*
* It succeeds only when the swap_cgroup's record for this entry is the same
* as the mem_cgroup's id of @from.
*
* Returns 0 on success, -EINVAL on failure.
*
* The caller must have charged to @to, IOW, called page_counter_charge() about
* both res and memsw, and called css_get().
*/
static int mem_cgroup_move_swap_account(swp_entry_t entry,
struct mem_cgroup *from, struct mem_cgroup *to)
{
unsigned short old_id, new_id;
old_id = mem_cgroup_id(from);
new_id = mem_cgroup_id(to);
if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
mod_memcg_state(from, MEMCG_SWAP, -1);
mod_memcg_state(to, MEMCG_SWAP, 1);
return 0;
}
return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
struct mem_cgroup *from, struct mem_cgroup *to)
{
return -EINVAL;
}
#endif
static DEFINE_MUTEX(memcg_max_mutex);
static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
unsigned long max, bool memsw)
{
bool enlarge = false;
bool drained = false;
int ret;
bool limits_invariant;
struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
do {
if (signal_pending(current)) {
ret = -EINTR;
break;
}
mutex_lock(&memcg_max_mutex);
/*
* Make sure that the new limit (memsw or memory limit) doesn't
* break our basic invariant rule memory.max <= memsw.max.
*/
limits_invariant = memsw ? max >= memcg->memory.max :
max <= memcg->memsw.max;
if (!limits_invariant) {
mutex_unlock(&memcg_max_mutex);
ret = -EINVAL;
break;
}
if (max > counter->max)
enlarge = true;
ret = page_counter_set_max(counter, max);
mutex_unlock(&memcg_max_mutex);
if (!ret)
break;
if (!drained) {
drain_all_stock(memcg);
drained = true;
continue;
}
if (!try_to_free_mem_cgroup_pages(memcg, 1,
GFP_KERNEL, !memsw)) {
ret = -EBUSY;
break;
}
} while (true);
if (!ret && enlarge)
memcg_oom_recover(memcg);
return ret;
}
unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
gfp_t gfp_mask,
unsigned long *total_scanned)
{
unsigned long nr_reclaimed = 0;
struct mem_cgroup_per_node *mz, *next_mz = NULL;
unsigned long reclaimed;
int loop = 0;
struct mem_cgroup_tree_per_node *mctz;
unsigned long excess;
unsigned long nr_scanned;
if (order > 0)
return 0;
mctz = soft_limit_tree_node(pgdat->node_id);
/*
* Do not even bother to check the largest node if the root
* is empty. Do it lockless to prevent lock bouncing. Races
* are acceptable as soft limit is best effort anyway.
*/
if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
return 0;
/*
* This loop can run a while, specially if mem_cgroup's continuously
* keep exceeding their soft limit and putting the system under
* pressure
*/
do {
if (next_mz)
mz = next_mz;
else
mz = mem_cgroup_largest_soft_limit_node(mctz);
if (!mz)
break;
nr_scanned = 0;
reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
gfp_mask, &nr_scanned);
nr_reclaimed += reclaimed;
*total_scanned += nr_scanned;
spin_lock_irq(&mctz->lock);
__mem_cgroup_remove_exceeded(mz, mctz);
/*
* If we failed to reclaim anything from this memory cgroup
* it is time to move on to the next cgroup
*/
next_mz = NULL;
if (!reclaimed)
next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
excess = soft_limit_excess(mz->memcg);
/*
* One school of thought says that we should not add
* back the node to the tree if reclaim returns 0.
* But our reclaim could return 0, simply because due
* to priority we are exposing a smaller subset of
* memory to reclaim from. Consider this as a longer
* term TODO.
*/
/* If excess == 0, no tree ops */
__mem_cgroup_insert_exceeded(mz, mctz, excess);
spin_unlock_irq(&mctz->lock);
css_put(&mz->memcg->css);
loop++;
/*
* Could not reclaim anything and there are no more
* mem cgroups to try or we seem to be looping without
* reclaiming anything.
*/
if (!nr_reclaimed &&
(next_mz == NULL ||
loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
break;
} while (!nr_reclaimed);
if (next_mz)
css_put(&next_mz->memcg->css);
return nr_reclaimed;
}
/*
* Test whether @memcg has children, dead or alive. Note that this
* function doesn't care whether @memcg has use_hierarchy enabled and
* returns %true if there are child csses according to the cgroup
* hierarchy. Testing use_hierarchy is the caller's responsiblity.
*/
static inline bool memcg_has_children(struct mem_cgroup *memcg)
{
bool ret;
rcu_read_lock();
ret = css_next_child(NULL, &memcg->css);
rcu_read_unlock();
return ret;
}
/*
* Reclaims as many pages from the given memcg as possible.
*
* Caller is responsible for holding css reference for memcg.
*/
static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
{
int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
/* we call try-to-free pages for make this cgroup empty */
lru_add_drain_all();
drain_all_stock(memcg);
/* try to free all pages in this cgroup */
while (nr_retries && page_counter_read(&memcg->memory)) {
int progress;
if (signal_pending(current))
return -EINTR;
progress = try_to_free_mem_cgroup_pages(memcg, 1,
GFP_KERNEL, true);
if (!progress) {
nr_retries--;
/* maybe some writeback is necessary */
congestion_wait(BLK_RW_ASYNC, HZ/10);
}
}
return 0;
}
static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
char *buf, size_t nbytes,
loff_t off)
{
struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
if (mem_cgroup_is_root(memcg))
return -EINVAL;
return mem_cgroup_force_empty(memcg) ?: nbytes;
}
static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
struct cftype *cft)
{
return mem_cgroup_from_css(css)->use_hierarchy;
}
static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
struct cftype *cft, u64 val)
{
int retval = 0;
struct mem_cgroup *memcg = mem_cgroup_from_css(css);
struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
if (memcg->use_hierarchy == val)
return 0;
/*
* If parent's use_hierarchy is set, we can't make any modifications
* in the child subtrees. If it is unset, then the change can
* occur, provided the current cgroup has no children.
*
* For the root cgroup, parent_mem is NULL, we allow value to be
* set if there are no children.
*/
if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
(val == 1 || val == 0)) {
if (!memcg_has_children(memcg))
memcg->use_hierarchy = val;
else
retval = -EBUSY;
} else
retval = -EINVAL;
return retval;
}
static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
{
unsigned long val;
if (mem_cgroup_is_root(memcg)) {
val = memcg_page_state(memcg, MEMCG_CACHE) +
memcg_page_state(memcg, MEMCG_RSS);
if (swap)
val += memcg_page_state(memcg, MEMCG_SWAP);
} else {
if (!swap)
val = page_counter_read(&memcg->memory);
else
val = page_counter_read(&memcg->memsw);
}
return val;
}
enum {
RES_USAGE,
RES_LIMIT,
RES_MAX_USAGE,
RES_FAILCNT,
RES_SOFT_LIMIT,
};
static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
struct cftype *cft)
{
struct mem_cgroup *memcg = mem_cgroup_from_css(css);
struct page_counter *counter;
switch (MEMFILE_TYPE(cft->private)) {
case _MEM:
counter = &memcg->memory;
break;
case _MEMSWAP:
counter = &memcg->memsw;
break;
case _KMEM:
counter = &memcg->kmem;
break;
case _TCP:
counter = &memcg->tcpmem;
break;
default:
BUG();
}
switch (MEMFILE_ATTR(cft->private)) {
case RES_USAGE:
if (counter == &memcg->memory)
return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
if (counter == &memcg->memsw)
return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
return (u64)page_counter_read(counter) * PAGE_SIZE;
case RES_LIMIT:
return (u64)counter->max * PAGE_SIZE;
case RES_MAX_USAGE:
return (u64)counter->watermark * PAGE_SIZE;
case RES_FAILCNT:
return counter->failcnt;
case RES_SOFT_LIMIT:
return (u64)memcg->soft_limit * PAGE_SIZE;
default:
BUG();
}
}
static void memcg_flush_percpu_vmstats(struct mem_cgroup *memcg)
{
unsigned long stat[MEMCG_NR_STAT] = {0};
struct mem_cgroup *mi;
int node, cpu, i;
for_each_online_cpu(cpu)
for (i = 0; i < MEMCG_NR_STAT; i++)
stat[i] += per_cpu(memcg->vmstats_percpu->stat[i], cpu);
for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
for (i = 0; i < MEMCG_NR_STAT; i++)
atomic_long_add(stat[i], &mi->vmstats[i]);
for_each_node(node) {
struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
struct mem_cgroup_per_node *pi;
for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
stat[i] = 0;
for_each_online_cpu(cpu)
for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
stat[i] += per_cpu(
pn->lruvec_stat_cpu->count[i], cpu);
for (pi = pn; pi; pi = parent_nodeinfo(pi, node))
for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
atomic_long_add(stat[i], &pi->lruvec_stat[i]);
}
}
static void memcg_flush_percpu_vmevents(struct mem_cgroup *memcg)
{
unsigned long events[NR_VM_EVENT_ITEMS];
struct mem_cgroup *mi;
int cpu, i;
for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
events[i] = 0;
for_each_online_cpu(cpu)
for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
events[i] += per_cpu(memcg->vmstats_percpu->events[i],
cpu);
for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
atomic_long_add(events[i], &mi->vmevents[i]);
}
#ifdef CONFIG_MEMCG_KMEM
static int memcg_online_kmem(struct mem_cgroup *memcg)
{
int memcg_id;
if (cgroup_memory_nokmem)
return 0;
BUG_ON(memcg->kmemcg_id >= 0);
BUG_ON(memcg->kmem_state);
memcg_id = memcg_alloc_cache_id();
if (memcg_id < 0)
return memcg_id;
static_branch_inc(&memcg_kmem_enabled_key);
/*
* A memory cgroup is considered kmem-online as soon as it gets
* kmemcg_id. Setting the id after enabling static branching will
* guarantee no one starts accounting before all call sites are
* patched.
*/
memcg->kmemcg_id = memcg_id;
memcg->kmem_state = KMEM_ONLINE;
INIT_LIST_HEAD(&memcg->kmem_caches);
return 0;
}
static void memcg_offline_kmem(struct mem_cgroup *memcg)
{
struct cgroup_subsys_state *css;
struct mem_cgroup *parent, *child;
int kmemcg_id;
if (memcg->kmem_state != KMEM_ONLINE)
return;
/*
* Clear the online state before clearing memcg_caches array
* entries. The slab_mutex in memcg_deactivate_kmem_caches()
* guarantees that no cache will be created for this cgroup
* after we are done (see memcg_create_kmem_cache()).
*/
memcg->kmem_state = KMEM_ALLOCATED;
parent = parent_mem_cgroup(memcg);
if (!parent)
parent = root_mem_cgroup;
/*
* Deactivate and reparent kmem_caches.
*/
memcg_deactivate_kmem_caches(memcg, parent);
kmemcg_id = memcg->kmemcg_id;
BUG_ON(kmemcg_id < 0);
/*
* Change kmemcg_id of this cgroup and all its descendants to the
* parent's id, and then move all entries from this cgroup's list_lrus
* to ones of the parent. After we have finished, all list_lrus
* corresponding to this cgroup are guaranteed to remain empty. The
* ordering is imposed by list_lru_node->lock taken by
* memcg_drain_all_list_lrus().
*/
rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
css_for_each_descendant_pre(css, &memcg->css) {
child = mem_cgroup_from_css(css);
BUG_ON(child->kmemcg_id != kmemcg_id);
child->kmemcg_id = parent->kmemcg_id;
if (!memcg->use_hierarchy)
break;
}
rcu_read_unlock();
memcg_drain_all_list_lrus(kmemcg_id, parent);
memcg_free_cache_id(kmemcg_id);
}
static void memcg_free_kmem(struct mem_cgroup *memcg)
{
/* css_alloc() failed, offlining didn't happen */
if (unlikely(memcg->kmem_state == KMEM_ONLINE))
memcg_offline_kmem(memcg);
if (memcg->kmem_state == KMEM_ALLOCATED) {
WARN_ON(!list_empty(&memcg->kmem_caches));
static_branch_dec(&memcg_kmem_enabled_key);
}
}
#else
static int memcg_online_kmem(struct mem_cgroup *memcg)
{
return 0;
}
static void memcg_offline_kmem(struct mem_cgroup *memcg)
{
}
static void memcg_free_kmem(struct mem_cgroup *memcg)
{
}
#endif /* CONFIG_MEMCG_KMEM */
static int memcg_update_kmem_max(struct mem_cgroup *memcg,
unsigned long max)
{
int ret;
mutex_lock(&memcg_max_mutex);
ret = page_counter_set_max(&memcg->kmem, max);
mutex_unlock(&memcg_max_mutex);
return ret;
}
static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
{
int ret;
mutex_lock(&memcg_max_mutex);
ret = page_counter_set_max(&memcg->tcpmem, max);
if (ret)
goto out;
if (!memcg->tcpmem_active) {
/*
* The active flag needs to be written after the static_key
* update. This is what guarantees that the socket activation
* function is the last one to run. See mem_cgroup_sk_alloc()
* for details, and note that we don't mark any socket as
* belonging to this memcg until that flag is up.
*
* We need to do this, because static_keys will span multiple
* sites, but we can't control their order. If we mark a socket
* as accounted, but the accounting functions are not patched in
* yet, we'll lose accounting.
*
* We never race with the readers in mem_cgroup_sk_alloc(),
* because when this value change, the code to process it is not
* patched in yet.
*/
static_branch_inc(&memcg_sockets_enabled_key);
memcg->tcpmem_active = true;
}
out:
mutex_unlock(&memcg_max_mutex);
return ret;
}
/*
* The user of this function is...
* RES_LIMIT.
*/
static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
char *buf, size_t nbytes, loff_t off)
{
struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
unsigned long nr_pages;
int ret;
buf = strstrip(buf);
ret = page_counter_memparse(buf, "-1", &nr_pages);
if (ret)
return ret;
switch (MEMFILE_ATTR(of_cft(of)->private)) {
case RES_LIMIT:
if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
ret = -EINVAL;
break;
}
switch (MEMFILE_TYPE(of_cft(of)->private)) {
case _MEM:
ret = mem_cgroup_resize_max(memcg, nr_pages, false);
break;
case _MEMSWAP:
ret = mem_cgroup_resize_max(memcg, nr_pages, true);
break;
case _KMEM:
pr_warn_once("kmem.limit_in_bytes is deprecated and will be removed. "
"Please report your usecase to linux-mm@kvack.org if you "
"depend on this functionality.\n");
ret = memcg_update_kmem_max(memcg, nr_pages);
break;
case _TCP:
ret = memcg_update_tcp_max(memcg, nr_pages);
break;
}
break;
case RES_SOFT_LIMIT:
memcg->soft_limit = nr_pages;
ret = 0;
break;
}
return ret ?: nbytes;
}
static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
size_t nbytes, loff_t off)
{
struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
struct page_counter *counter;
switch (MEMFILE_TYPE(of_cft(of)->private)) {
case _MEM:
counter = &memcg->memory;
break;
case _MEMSWAP:
counter = &memcg->memsw;
break;
case _KMEM:
counter = &memcg->kmem;
break;
case _TCP:
counter = &memcg->tcpmem;
break;
default:
BUG();
}
switch (MEMFILE_ATTR(of_cft(of)->private)) {
case RES_MAX_USAGE:
page_counter_reset_watermark(counter);
break;
case RES_FAILCNT:
counter->failcnt = 0;
break;
default:
BUG();
}
return nbytes;
}
static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
struct cftype *cft)
{
return mem_cgroup_from_css(css)->move_charge_at_immigrate;
}
#ifdef CONFIG_MMU
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
struct cftype *cft, u64 val)
{
struct mem_cgroup *memcg = mem_cgroup_from_css(css);
if (val & ~MOVE_MASK)
return -EINVAL;
/*
* No kind of locking is needed in here, because ->can_attach() will
* check this value once in the beginning of the process, and then carry
* on with stale data. This means that changes to this value will only
* affect task migrations starting after the change.
*/
memcg->move_charge_at_immigrate = val;
return 0;
}
#else
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
struct cftype *cft, u64 val)
{
return -ENOSYS;
}
#endif
#ifdef CONFIG_NUMA
#define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
#define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
#define LRU_ALL ((1 << NR_LRU_LISTS) - 1)
static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
int nid, unsigned int lru_mask)
{
struct lruvec *lruvec = mem_cgroup_lruvec(NODE_DATA(nid), memcg);
unsigned long nr = 0;
enum lru_list lru;
VM_BUG_ON((unsigned)nid >= nr_node_ids);
for_each_lru(lru) {
if (!(BIT(lru) & lru_mask))
continue;
nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
}
return nr;
}
static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
unsigned int lru_mask)
{
unsigned long nr = 0;
enum lru_list lru;
for_each_lru(lru) {
if (!(BIT(lru) & lru_mask))
continue;
nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
}
return nr;
}
static int memcg_numa_stat_show(struct seq_file *m, void *v)
{
struct numa_stat {
const char *name;
unsigned int lru_mask;
};
static const struct numa_stat stats[] = {
{ "total", LRU_ALL },
{ "file", LRU_ALL_FILE },
{ "anon", LRU_ALL_ANON },
{ "unevictable", BIT(LRU_UNEVICTABLE) },
};
const struct numa_stat *stat;
int nid;
unsigned long nr;
struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
seq_printf(m, "%s=%lu", stat->name, nr);
for_each_node_state(nid, N_MEMORY) {
nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
stat->lru_mask);
seq_printf(m, " N%d=%lu", nid, nr);
}
seq_putc(m, '\n');
}
for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
struct mem_cgroup *iter;
nr = 0;
for_each_mem_cgroup_tree(iter, memcg)
nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
for_each_node_state(nid, N_MEMORY) {
nr = 0;
for_each_mem_cgroup_tree(iter, memcg)
nr += mem_cgroup_node_nr_lru_pages(
iter, nid, stat->lru_mask);
seq_printf(m, " N%d=%lu", nid, nr);
}
seq_putc(m, '\n');
}
return 0;
}
#endif /* CONFIG_NUMA */
static const unsigned int memcg1_stats[] = {
MEMCG_CACHE,
MEMCG_RSS,
MEMCG_RSS_HUGE,
NR_SHMEM,
NR_FILE_MAPPED,
NR_FILE_DIRTY,
NR_WRITEBACK,
MEMCG_SWAP,
};
static const char *const memcg1_stat_names[] = {
"cache",
"rss",
"rss_huge",
"shmem",
"mapped_file",
"dirty",
"writeback",
"swap",
};
/* Universal VM events cgroup1 shows, original sort order */
static const unsigned int memcg1_events[] = {
PGPGIN,
PGPGOUT,
PGFAULT,
PGMAJFAULT,
};
static const char *const memcg1_event_names[] = {
"pgpgin",
"pgpgout",
"pgfault",
"pgmajfault",
};
static int memcg_stat_show(struct seq_file *m, void *v)
{
struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
unsigned long memory, memsw;
struct mem_cgroup *mi;
unsigned int i;
BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
continue;
seq_printf(m, "%s %lu\n", memcg1_stat_names[i],
memcg_page_state_local(memcg, memcg1_stats[i]) *
PAGE_SIZE);
}
for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
seq_printf(m, "%s %lu\n", memcg1_event_names[i],
memcg_events_local(memcg, memcg1_events[i]));
for (i = 0; i < NR_LRU_LISTS; i++)
seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
memcg_page_state_local(memcg, NR_LRU_BASE + i) *
PAGE_SIZE);
/* Hierarchical information */
memory = memsw = PAGE_COUNTER_MAX;
for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
memory = min(memory, mi->memory.max);
memsw = min(memsw, mi->memsw.max);
}
seq_printf(m, "hierarchical_memory_limit %llu\n",
(u64)memory * PAGE_SIZE);
if (do_memsw_account())
seq_printf(m, "hierarchical_memsw_limit %llu\n",
(u64)memsw * PAGE_SIZE);
for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
continue;
seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
(u64)memcg_page_state(memcg, memcg1_stats[i]) *
PAGE_SIZE);
}
for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
seq_printf(m, "total_%s %llu\n", memcg1_event_names[i],
(u64)memcg_events(memcg, memcg1_events[i]));
for (i = 0; i < NR_LRU_LISTS; i++)
seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i],
(u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
PAGE_SIZE);
#ifdef CONFIG_DEBUG_VM
{
pg_data_t *pgdat;
struct mem_cgroup_per_node *mz;
struct zone_reclaim_stat *rstat;
unsigned long recent_rotated[2] = {0, 0};
unsigned long recent_scanned[2] = {0, 0};
for_each_online_pgdat(pgdat) {
mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
rstat = &mz->lruvec.reclaim_stat;
recent_rotated[0] += rstat->recent_rotated[0];
recent_rotated[1] += rstat->recent_rotated[1];
recent_scanned[0] += rstat->recent_scanned[0];
recent_scanned[1] += rstat->recent_scanned[1];
}
seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
}
#endif
return 0;
}
static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
struct cftype *cft)
{
struct mem_cgroup *memcg = mem_cgroup_from_css(css);
return mem_cgroup_swappiness(memcg);
}
static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
struct cftype *cft, u64 val)
{
struct mem_cgroup *memcg = mem_cgroup_from_css(css);
if (val > 100)
return -EINVAL;
if (css->parent)
memcg->swappiness = val;
else
vm_swappiness = val;
return 0;
}
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
struct mem_cgroup_threshold_ary *t;
unsigned long usage;
int i;
rcu_read_lock();
if (!swap)
t = rcu_dereference(memcg->thresholds.primary);
else
t = rcu_dereference(memcg->memsw_thresholds.primary);
if (!t)
goto unlock;
usage = mem_cgroup_usage(memcg, swap);
/*
* current_threshold points to threshold just below or equal to usage.
* If it's not true, a threshold was crossed after last
* call of __mem_cgroup_threshold().
*/
i = t->current_threshold;
/*
* Iterate backward over array of thresholds starting from
* current_threshold and check if a threshold is crossed.
* If none of thresholds below usage is crossed, we read
* only one element of the array here.
*/
for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
eventfd_signal(t->entries[i].eventfd, 1);
/* i = current_threshold + 1 */
i++;
/*
* Iterate forward over array of thresholds starting from
* current_threshold+1 and check if a threshold is crossed.
* If none of thresholds above usage is crossed, we read
* only one element of the array here.
*/
for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
eventfd_signal(t->entries[i].eventfd, 1);
/* Update current_threshold */
t->current_threshold = i - 1;
unlock:
rcu_read_unlock();
}
static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
while (memcg) {
__mem_cgroup_threshold(memcg, false);
if (do_memsw_account())
__mem_cgroup_threshold(memcg, true);
memcg = parent_mem_cgroup(memcg);
}
}
static int compare_thresholds(const void *a, const void *b)
{
const struct mem_cgroup_threshold *_a = a;
const struct mem_cgroup_threshold *_b = b;
if (_a->threshold > _b->threshold)
return 1;
if (_a->threshold < _b->threshold)
return -1;
return 0;
}
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
{
struct mem_cgroup_eventfd_list *ev;
spin_lock(&memcg_oom_lock);
list_for_each_entry(ev, &memcg->oom_notify, list)
eventfd_signal(ev->eventfd, 1);
spin_unlock(&memcg_oom_lock);
return 0;
}
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
{
struct mem_cgroup *iter;
for_each_mem_cgroup_tree(iter, memcg)
mem_cgroup_oom_notify_cb(iter);
}
static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
struct eventfd_ctx *eventfd, const char *args, enum res_type type)
{
struct mem_cgroup_thresholds *thresholds;
struct mem_cgroup_threshold_ary *new;
unsigned long threshold;
unsigned long usage;
int i, size, ret;
ret = page_counter_memparse(args, "-1", &threshold);
if (ret)
return ret;
mutex_lock(&memcg->thresholds_lock);
if (type == _MEM) {
thresholds = &memcg->thresholds;
usage = mem_cgroup_usage(memcg, false);
} else if (type == _MEMSWAP) {
thresholds = &memcg->memsw_thresholds;
usage = mem_cgroup_usage(memcg, true);
} else
BUG();
/* Check if a threshold crossed before adding a new one */
if (thresholds->primary)
__mem_cgroup_threshold(memcg, type == _MEMSWAP);
size = thresholds->primary ? thresholds->primary->size + 1 : 1;
/* Allocate memory for new array of thresholds */
new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
if (!new) {
ret = -ENOMEM;
goto unlock;
}
new->size = size;
/* Copy thresholds (if any) to new array */
if (thresholds->primary) {
memcpy(new->entries, thresholds->primary->entries, (size - 1) *
sizeof(struct mem_cgroup_threshold));
}
/* Add new threshold */
new->entries[size - 1].eventfd = eventfd;
new->entries[size - 1].threshold = threshold;
/* Sort thresholds. Registering of new threshold isn't time-critical */
sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
compare_thresholds, NULL);
/* Find current threshold */
new->current_threshold = -1;
for (i = 0; i < size; i++) {
if (new->entries[i].threshold <= usage) {
/*
* new->current_threshold will not be used until
* rcu_assign_pointer(), so it's safe to increment
* it here.
*/
++new->current_threshold;
} else
break;
}
/* Free old spare buffer and save old primary buffer as spare */
kfree(thresholds->spare);
thresholds->spare = thresholds->primary;
rcu_assign_pointer(thresholds->primary, new);
/* To be sure that nobody uses thresholds */
synchronize_rcu();
unlock:
mutex_unlock(&memcg->thresholds_lock);
return ret;
}
static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
struct eventfd_ctx *eventfd, const char *args)
{
return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
}
static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
struct eventfd_ctx *eventfd, const char *args)
{
return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
}
static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
struct eventfd_ctx *eventfd, enum res_type type)
{
struct mem_cgroup_thresholds *thresholds;
struct mem_cgroup_threshold_ary *new;
unsigned long usage;
int i, j, size, entries;
mutex_lock(&memcg->thresholds_lock);
if (type == _MEM) {
thresholds = &memcg->thresholds;
usage = mem_cgroup_usage(memcg, false);
} else if (type == _MEMSWAP) {
thresholds = &memcg->memsw_thresholds;
usage = mem_cgroup_usage(memcg, true);
} else
BUG();
if (!thresholds->primary)
goto unlock;
/* Check if a threshold crossed before removing */
__mem_cgroup_threshold(memcg, type == _MEMSWAP);
/* Calculate new number of threshold */
size = entries = 0;
for (i = 0; i < thresholds->primary->size; i++) {
if (thresholds->primary->entries[i].eventfd != eventfd)
size++;
else
entries++;
}
new = thresholds->spare;
/* If no items related to eventfd have been cleared, nothing to do */
if (!entries)
goto unlock;
/* Set thresholds array to NULL if we don't have thresholds */
if (!size) {
kfree(new);
new = NULL;
goto swap_buffers;
}
new->size = size;
/* Copy thresholds and find current threshold */
new->current_threshold = -1;
for (i = 0, j = 0; i < thresholds->primary->size; i++) {
if (thresholds->primary->entries[i].eventfd == eventfd)
continue;
new->entries[j] = thresholds->primary->entries[i];
if (new->entries[j].threshold <= usage) {
/*
* new->current_threshold will not be used
* until rcu_assign_pointer(), so it's safe to increment
* it here.
*/
++new->current_threshold;
}
j++;
}
swap_buffers:
/* Swap primary and spare array */
thresholds->spare = thresholds->primary;
rcu_assign_pointer(thresholds->primary, new);
/* To be sure that nobody uses thresholds */
synchronize_rcu();
/* If all events are unregistered, free the spare array */
if (!new) {
kfree(thresholds->spare);
thresholds->spare = NULL;
}
unlock:
mutex_unlock(&memcg->thresholds_lock);
}
static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
struct eventfd_ctx *eventfd)
{
return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
}
static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
struct eventfd_ctx *eventfd)
{
return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
}
static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
struct eventfd_ctx *eventfd, const char *args)
{
struct mem_cgroup_eventfd_list *event;
event = kmalloc(sizeof(*event), GFP_KERNEL);
if (!event)
return -ENOMEM;
spin_lock(&memcg_oom_lock);
event->eventfd = eventfd;
list_add(&event->list, &memcg->oom_notify);
/* already in OOM ? */
if (memcg->under_oom)
eventfd_signal(eventfd, 1);
spin_unlock(&memcg_oom_lock);
return 0;
}
static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
struct eventfd_ctx *eventfd)
{
struct mem_cgroup_eventfd_list *ev, *tmp;
spin_lock(&memcg_oom_lock);
list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
if (ev->eventfd == eventfd) {
list_del(&ev->list);
kfree(ev);
}
}
spin_unlock(&memcg_oom_lock);
}
static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
{
struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
seq_printf(sf, "oom_kill %lu\n",
atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
return 0;
}
static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
struct cftype *cft, u64 val)
{
struct mem_cgroup *memcg = mem_cgroup_from_css(css);
/* cannot set to root cgroup and only 0 and 1 are allowed */
if (!css->parent || !((val == 0) || (val == 1)))
return -EINVAL;
memcg->oom_kill_disable = val;
if (!val)
memcg_oom_recover(memcg);
return 0;
}
#ifdef CONFIG_CGROUP_WRITEBACK
#include <trace/events/writeback.h>
static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
{
return wb_domain_init(&memcg->cgwb_domain, gfp);
}
static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
{
wb_domain_exit(&memcg->cgwb_domain);
}
static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
{
wb_domain_size_changed(&memcg->cgwb_domain);
}
struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
{
struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
if (!memcg->css.parent)
return NULL;
return &memcg->cgwb_domain;
}
/*
* idx can be of type enum memcg_stat_item or node_stat_item.
* Keep in sync with memcg_exact_page().
*/
static unsigned long memcg_exact_page_state(struct mem_cgroup *memcg, int idx)
{
long x = atomic_long_read(&memcg->vmstats[idx]);
int cpu;
for_each_online_cpu(cpu)
x += per_cpu_ptr(memcg->vmstats_percpu, cpu)->stat[idx];
if (x < 0)
x = 0;
return x;
}
/**
* mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
* @wb: bdi_writeback in question
* @pfilepages: out parameter for number of file pages
* @pheadroom: out parameter for number of allocatable pages according to memcg
* @pdirty: out parameter for number of dirty pages
* @pwriteback: out parameter for number of pages under writeback
*
* Determine the numbers of file, headroom, dirty, and writeback pages in
* @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
* is a bit more involved.
*
* A memcg's headroom is "min(max, high) - used". In the hierarchy, the
* headroom is calculated as the lowest headroom of itself and the
* ancestors. Note that this doesn't consider the actual amount of
* available memory in the system. The caller should further cap
* *@pheadroom accordingly.
*/
void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
unsigned long *pheadroom, unsigned long *pdirty,
unsigned long *pwriteback)
{
struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
struct mem_cgroup *parent;
*pdirty = memcg_exact_page_state(memcg, NR_FILE_DIRTY);
/* this should eventually include NR_UNSTABLE_NFS */
*pwriteback = memcg_exact_page_state(memcg, NR_WRITEBACK);
*pfilepages = memcg_exact_page_state(memcg, NR_INACTIVE_FILE) +
memcg_exact_page_state(memcg, NR_ACTIVE_FILE);
*pheadroom = PAGE_COUNTER_MAX;
while ((parent = parent_mem_cgroup(memcg))) {
unsigned long ceiling = min(memcg->memory.max, memcg->high);
unsigned long used = page_counter_read(&memcg->memory);
*pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
memcg = parent;
}
}
/*
* Foreign dirty flushing
*
* There's an inherent mismatch between memcg and writeback. The former
* trackes ownership per-page while the latter per-inode. This was a
* deliberate design decision because honoring per-page ownership in the
* writeback path is complicated, may lead to higher CPU and IO overheads
* and deemed unnecessary given that write-sharing an inode across
* different cgroups isn't a common use-case.
*
* Combined with inode majority-writer ownership switching, this works well
* enough in most cases but there are some pathological cases. For
* example, let's say there are two cgroups A and B which keep writing to
* different but confined parts of the same inode. B owns the inode and
* A's memory is limited far below B's. A's dirty ratio can rise enough to
* trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
* triggering background writeback. A will be slowed down without a way to
* make writeback of the dirty pages happen.
*
* Conditions like the above can lead to a cgroup getting repatedly and
* severely throttled after making some progress after each
* dirty_expire_interval while the underyling IO device is almost
* completely idle.
*
* Solving this problem completely requires matching the ownership tracking
* granularities between memcg and writeback in either direction. However,
* the more egregious behaviors can be avoided by simply remembering the
* most recent foreign dirtying events and initiating remote flushes on
* them when local writeback isn't enough to keep the memory clean enough.
*
* The following two functions implement such mechanism. When a foreign
* page - a page whose memcg and writeback ownerships don't match - is
* dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
* bdi_writeback on the page owning memcg. When balance_dirty_pages()
* decides that the memcg needs to sleep due to high dirty ratio, it calls
* mem_cgroup_flush_foreign() which queues writeback on the recorded
* foreign bdi_writebacks which haven't expired. Both the numbers of
* recorded bdi_writebacks and concurrent in-flight foreign writebacks are
* limited to MEMCG_CGWB_FRN_CNT.
*
* The mechanism only remembers IDs and doesn't hold any object references.
* As being wrong occasionally doesn't matter, updates and accesses to the
* records are lockless and racy.
*/
void mem_cgroup_track_foreign_dirty_slowpath(struct page *page,
struct bdi_writeback *wb)
{
struct mem_cgroup *memcg = page->mem_cgroup;
struct memcg_cgwb_frn *frn;
u64 now = get_jiffies_64();
u64 oldest_at = now;
int oldest = -1;
int i;
trace_track_foreign_dirty(page, wb);
/*
* Pick the slot to use. If there is already a slot for @wb, keep
* using it. If not replace the oldest one which isn't being
* written out.
*/
for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
frn = &memcg->cgwb_frn[i];
if (frn->bdi_id == wb->bdi->id &&
frn->memcg_id == wb->memcg_css->id)
break;
if (time_before64(frn->at, oldest_at) &&
atomic_read(&frn->done.cnt) == 1) {
oldest = i;
oldest_at = frn->at;
}
}
if (i < MEMCG_CGWB_FRN_CNT) {
/*
* Re-using an existing one. Update timestamp lazily to
* avoid making the cacheline hot. We want them to be
* reasonably up-to-date and significantly shorter than
* dirty_expire_interval as that's what expires the record.
* Use the shorter of 1s and dirty_expire_interval / 8.
*/
unsigned long update_intv =
min_t(unsigned long, HZ,
msecs_to_jiffies(dirty_expire_interval * 10) / 8);
if (time_before64(frn->at, now - update_intv))
frn->at = now;
} else if (oldest >= 0) {
/* replace the oldest free one */
frn = &memcg->cgwb_frn[oldest];
frn->bdi_id = wb->bdi->id;
frn->memcg_id = wb->memcg_css->id;
frn->at = now;
}
}
/* issue foreign writeback flushes for recorded foreign dirtying events */
void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
{
struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
u64 now = jiffies_64;
int i;
for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];
/*
* If the record is older than dirty_expire_interval,
* writeback on it has already started. No need to kick it
* off again. Also, don't start a new one if there's
* already one in flight.
*/
if (time_after64(frn->at, now - intv) &&
atomic_read(&frn->done.cnt) == 1) {
frn->at = 0;
trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id, 0,
WB_REASON_FOREIGN_FLUSH,
&frn->done);
}
}
}
#else /* CONFIG_CGROUP_WRITEBACK */
static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
{
return 0;
}
static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
{
}
static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
{
}
#endif /* CONFIG_CGROUP_WRITEBACK */
/*
* DO NOT USE IN NEW FILES.
*
* "cgroup.event_control" implementation.
*
* This is way over-engineered. It tries to support fully configurable
* events for each user. Such level of flexibility is completely
* unnecessary especially in the light of the planned unified hierarchy.
*
* Please deprecate this and replace with something simpler if at all
* possible.
*/
/*
* Unregister event and free resources.
*
* Gets called from workqueue.
*/
static void memcg_event_remove(struct work_struct *work)
{
struct mem_cgroup_event *event =
container_of(work, struct mem_cgroup_event, remove);
struct mem_cgroup *memcg = event->memcg;
remove_wait_queue(event->wqh, &event->wait);
event->unregister_event(memcg, event->eventfd);
/* Notify userspace the event is going away. */
eventfd_signal(event->eventfd, 1);
eventfd_ctx_put(event->eventfd);
kfree(event);
css_put(&memcg->css);
}
/*
* Gets called on EPOLLHUP on eventfd when user closes it.
*
* Called with wqh->lock held and interrupts disabled.
*/
static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
int sync, void *key)
{
struct mem_cgroup_event *event =
container_of(wait, struct mem_cgroup_event, wait);
struct mem_cgroup *memcg = event->memcg;
__poll_t flags = key_to_poll(key);
if (flags & EPOLLHUP) {
/*
* If the event has been detached at cgroup removal, we
* can simply return knowing the other side will cleanup
* for us.
*
* We can't race against event freeing since the other
* side will require wqh->lock via remove_wait_queue(),
* which we hold.
*/
spin_lock(&memcg->event_list_lock);
if (!list_empty(&event->list)) {
list_del_init(&event->list);
/*
* We are in atomic context, but cgroup_event_remove()
* may sleep, so we have to call it in workqueue.
*/
schedule_work(&event->remove);
}
spin_unlock(&memcg->event_list_lock);
}
return 0;
}
static void memcg_event_ptable_queue_proc(struct file *file,
wait_queue_head_t *wqh, poll_table *pt)
{
struct mem_cgroup_event *event =
container_of(pt, struct mem_cgroup_event, pt);
event->wqh = wqh;
add_wait_queue(wqh, &event->wait);
}
/*
* DO NOT USE IN NEW FILES.
*
* Parse input and register new cgroup event handler.
*
* Input must be in format '<event_fd> <control_fd> <args>'.
* Interpretation of args is defined by control file implementation.
*/
static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
char *buf, size_t nbytes, loff_t off)
{
struct cgroup_subsys_state *css = of_css(of);
struct mem_cgroup *memcg = mem_cgroup_from_css(css);
struct mem_cgroup_event *event;
struct cgroup_subsys_state *cfile_css;
unsigned int efd, cfd;
struct fd efile;
struct fd cfile;
const char *name;
char *endp;
int ret;
buf = strstrip(buf);
efd = simple_strtoul(buf, &endp, 10);
if (*endp != ' ')
return -EINVAL;
buf = endp + 1;
cfd = simple_strtoul(buf, &endp, 10);
if ((*endp != ' ') && (*endp != '\0'))
return -EINVAL;
buf = endp + 1;
event = kzalloc(sizeof(*event), GFP_KERNEL);
if (!event)
return -ENOMEM;
event->memcg = memcg;
INIT_LIST_HEAD(&event->list);
init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
init_waitqueue_func_entry(&event->wait, memcg_event_wake);
INIT_WORK(&event->remove, memcg_event_remove);
efile = fdget(efd);
if (!efile.file) {
ret = -EBADF;
goto out_kfree;
}
event->eventfd = eventfd_ctx_fileget(efile.file);
if (IS_ERR(event->eventfd)) {
ret = PTR_ERR(event->eventfd);
goto out_put_efile;
}
cfile = fdget(cfd);
if (!cfile.file) {
ret = -EBADF;
goto out_put_eventfd;
}
/* the process need read permission on control file */
/* AV: shouldn't we check that it's been opened for read instead? */
ret = inode_permission(file_inode(cfile.file), MAY_READ);
if (ret < 0)
goto out_put_cfile;
/*
* Determine the event callbacks and set them in @event. This used
* to be done via struct cftype but cgroup core no longer knows
* about these events. The following is crude but the whole thing
* is for compatibility anyway.
*
* DO NOT ADD NEW FILES.
*/
name = cfile.file->f_path.dentry->d_name.name;
if (!strcmp(name, "memory.usage_in_bytes")) {
event->register_event = mem_cgroup_usage_register_event;
event->unregister_event = mem_cgroup_usage_unregister_event;
} else if (!strcmp(name, "memory.oom_control")) {
event->register_event = mem_cgroup_oom_register_event;
event->unregister_event = mem_cgroup_oom_unregister_event;
} else if (!strcmp(name, "memory.pressure_level")) {
event->register_event = vmpressure_register_event;
event->unregister_event = vmpressure_unregister_event;
} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
event->register_event = memsw_cgroup_usage_register_event;
event->unregister_event = memsw_cgroup_usage_unregister_event;
} else {
ret = -EINVAL;
goto out_put_cfile;
}
/*
* Verify @cfile should belong to @css. Also, remaining events are
* automatically removed on cgroup destruction but the removal is
* asynchronous, so take an extra ref on @css.
*/
cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
&memory_cgrp_subsys);
ret = -EINVAL;
if (IS_ERR(cfile_css))
goto out_put_cfile;
if (cfile_css != css) {
css_put(cfile_css);
goto out_put_cfile;
}
ret = event->register_event(memcg, event->eventfd, buf);
if (ret)
goto out_put_css;
vfs_poll(efile.file, &event->pt);
spin_lock(&memcg->event_list_lock);
list_add(&event->list, &memcg->event_list);
spin_unlock(&memcg->event_list_lock);
fdput(cfile);
fdput(efile);
return nbytes;
out_put_css:
css_put(css);
out_put_cfile:
fdput(cfile);
out_put_eventfd:
eventfd_ctx_put(event->eventfd);
out_put_efile:
fdput(efile);
out_kfree:
kfree(event);
return ret;
}
static struct cftype mem_cgroup_legacy_files[] = {
{
.name = "usage_in_bytes",
.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
.read_u64 = mem_cgroup_read_u64,
},
{
.name = "max_usage_in_bytes",
.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
.write = mem_cgroup_reset,
.read_u64 = mem_cgroup_read_u64,
},
{
.name = "limit_in_bytes",
.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
.write = mem_cgroup_write,
.read_u64 = mem_cgroup_read_u64,
},
{
.name = "soft_limit_in_bytes",
.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
.write = mem_cgroup_write,
.read_u64 = mem_cgroup_read_u64,
},
{
.name = "failcnt",
.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
.write = mem_cgroup_reset,
.read_u64 = mem_cgroup_read_u64,
},
{
.name = "stat",
.seq_show = memcg_stat_show,
},
{
.name = "force_empty",
.write = mem_cgroup_force_empty_write,
},
{
.name = "use_hierarchy",
.write_u64 = mem_cgroup_hierarchy_write,
.read_u64 = mem_cgroup_hierarchy_read,
},
{
.name = "cgroup.event_control", /* XXX: for compat */
.write = memcg_write_event_control,
.flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
},
{
.name = "swappiness",
.read_u64 = mem_cgroup_swappiness_read,
.write_u64 = mem_cgroup_swappiness_write,
},
{
.name = "move_charge_at_immigrate",
.read_u64 = mem_cgroup_move_charge_read,
.write_u64 = mem_cgroup_move_charge_write,
},
{
.name = "oom_control",
.seq_show = mem_cgroup_oom_control_read,
.write_u64 = mem_cgroup_oom_control_write,
.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
},
{
.name = "pressure_level",
},
#ifdef CONFIG_NUMA
{
.name = "numa_stat",
.seq_show = memcg_numa_stat_show,
},
#endif
{
.name = "kmem.limit_in_bytes",
.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
.write = mem_cgroup_write,
.read_u64 = mem_cgroup_read_u64,
},
{
.name = "kmem.usage_in_bytes",
.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
.read_u64 = mem_cgroup_read_u64,
},
{
.name = "kmem.failcnt",
.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
.write = mem_cgroup_reset,
.read_u64 = mem_cgroup_read_u64,
},
{
.name = "kmem.max_usage_in_bytes",
.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
.write = mem_cgroup_reset,
.read_u64 = mem_cgroup_read_u64,
},
#if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
{
.name = "kmem.slabinfo",
.seq_start = memcg_slab_start,
.seq_next = memcg_slab_next,
.seq_stop = memcg_slab_stop,
.seq_show = memcg_slab_show,
},
#endif
{
.name = "kmem.tcp.limit_in_bytes",
.private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
.write = mem_cgroup_write,
.read_u64 = mem_cgroup_read_u64,
},
{
.name = "kmem.tcp.usage_in_bytes",
.private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
.read_u64 = mem_cgroup_read_u64,
},
{
.name = "kmem.tcp.failcnt",
.private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
.write = mem_cgroup_reset,
.read_u64 = mem_cgroup_read_u64,
},
{
.name = "kmem.tcp.max_usage_in_bytes",
.private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
.write = mem_cgroup_reset,
.read_u64 = mem_cgroup_read_u64,
},
{ }, /* terminate */
};
/*
* Private memory cgroup IDR
*
* Swap-out records and page cache shadow entries need to store memcg
* references in constrained space, so we maintain an ID space that is
* limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
* memory-controlled cgroups to 64k.
*
* However, there usually are many references to the oflline CSS after
* the cgroup has been destroyed, such as page cache or reclaimable
* slab objects, that don't need to hang on to the ID. We want to keep
* those dead CSS from occupying IDs, or we might quickly exhaust the
* relatively small ID space and prevent the creation of new cgroups
* even when there are much fewer than 64k cgroups - possibly none.
*
* Maintain a private 16-bit ID space for memcg, and allow the ID to
* be freed and recycled when it's no longer needed, which is usually
* when the CSS is offlined.
*
* The only exception to that are records of swapped out tmpfs/shmem
* pages that need to be attributed to live ancestors on swapin. But
* those references are manageable from userspace.
*/
static DEFINE_IDR(mem_cgroup_idr);
static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
{
if (memcg->id.id > 0) {
idr_remove(&mem_cgroup_idr, memcg->id.id);
memcg->id.id = 0;
}
}
static void mem_cgroup_id_get_many(struct mem_cgroup *memcg, unsigned int n)
{
refcount_add(n, &memcg->id.ref);
}
static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
{
if (refcount_sub_and_test(n, &memcg->id.ref)) {
mem_cgroup_id_remove(memcg);
/* Memcg ID pins CSS */
css_put(&memcg->css);
}
}
static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
{
mem_cgroup_id_put_many(memcg, 1);
}
/**
* mem_cgroup_from_id - look up a memcg from a memcg id
* @id: the memcg id to look up
*
* Caller must hold rcu_read_lock().
*/
struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
{
WARN_ON_ONCE(!rcu_read_lock_held());
return idr_find(&mem_cgroup_idr, id);
}
static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
{
struct mem_cgroup_per_node *pn;
int tmp = node;
/*
* This routine is called against possible nodes.
* But it's BUG to call kmalloc() against offline node.
*
* TODO: this routine can waste much memory for nodes which will
* never be onlined. It's better to use memory hotplug callback
* function.
*/
if (!node_state(node, N_NORMAL_MEMORY))
tmp = -1;
pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
if (!pn)
return 1;
pn->lruvec_stat_local = alloc_percpu(struct lruvec_stat);
if (!pn->lruvec_stat_local) {
kfree(pn);
return 1;
}
pn->lruvec_stat_cpu = alloc_percpu(struct lruvec_stat);
if (!pn->lruvec_stat_cpu) {
free_percpu(pn->lruvec_stat_local);
kfree(pn);
return 1;
}
lruvec_init(&pn->lruvec);
pn->usage_in_excess = 0;
pn->on_tree = false;
pn->memcg = memcg;
memcg->nodeinfo[node] = pn;
return 0;
}
static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
{
struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
if (!pn)
return;
free_percpu(pn->lruvec_stat_cpu);
free_percpu(pn->lruvec_stat_local);
kfree(pn);
}
static void __mem_cgroup_free(struct mem_cgroup *memcg)
{
int node;
for_each_node(node)
free_mem_cgroup_per_node_info(memcg, node);
free_percpu(memcg->vmstats_percpu);
free_percpu(memcg->vmstats_local);
kfree(memcg);
}
static void mem_cgroup_free(struct mem_cgroup *memcg)
{
memcg_wb_domain_exit(memcg);
/*
* Flush percpu vmstats and vmevents to guarantee the value correctness
* on parent's and all ancestor levels.
*/
memcg_flush_percpu_vmstats(memcg);
memcg_flush_percpu_vmevents(memcg);
__mem_cgroup_free(memcg);
}
static struct mem_cgroup *mem_cgroup_alloc(void)
{
struct mem_cgroup *memcg;
unsigned int size;
int node;
int __maybe_unused i;
long error = -ENOMEM;
size = sizeof(struct mem_cgroup);
size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
memcg = kzalloc(size, GFP_KERNEL);
if (!memcg)
return ERR_PTR(error);
memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
1, MEM_CGROUP_ID_MAX,
GFP_KERNEL);
if (memcg->id.id < 0) {
error = memcg->id.id;
goto fail;
}
memcg->vmstats_local = alloc_percpu(struct memcg_vmstats_percpu);
if (!memcg->vmstats_local)
goto fail;
memcg->vmstats_percpu = alloc_percpu(struct memcg_vmstats_percpu);
if (!memcg->vmstats_percpu)
goto fail;
for_each_node(node)
if (alloc_mem_cgroup_per_node_info(memcg, node))
goto fail;
if (memcg_wb_domain_init(memcg, GFP_KERNEL))
goto fail;
INIT_WORK(&memcg->high_work, high_work_func);
memcg->last_scanned_node = MAX_NUMNODES;
INIT_LIST_HEAD(&memcg->oom_notify);
mutex_init(&memcg->thresholds_lock);
spin_lock_init(&memcg->move_lock);
vmpressure_init(&memcg->vmpressure);
INIT_LIST_HEAD(&memcg->event_list);
spin_lock_init(&memcg->event_list_lock);
memcg->socket_pressure = jiffies;
#ifdef CONFIG_MEMCG_KMEM
memcg->kmemcg_id = -1;
#endif
#ifdef CONFIG_CGROUP_WRITEBACK
INIT_LIST_HEAD(&memcg->cgwb_list);
for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
memcg->cgwb_frn[i].done =
__WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
#endif
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
memcg->deferred_split_queue.split_queue_len = 0;
#endif
idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
return memcg;
fail:
mem_cgroup_id_remove(memcg);
__mem_cgroup_free(memcg);
return ERR_PTR(error);
}
static struct cgroup_subsys_state * __ref
mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
{
struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
struct mem_cgroup *memcg;
long error = -ENOMEM;
memcg = mem_cgroup_alloc();
if (IS_ERR(memcg))
return ERR_CAST(memcg);
memcg->high = PAGE_COUNTER_MAX;
memcg->soft_limit = PAGE_COUNTER_MAX;
if (parent) {
memcg->swappiness = mem_cgroup_swappiness(parent);
memcg->oom_kill_disable = parent->oom_kill_disable;
}
if (parent && parent->use_hierarchy) {
memcg->use_hierarchy = true;
page_counter_init(&memcg->memory, &parent->memory);
page_counter_init(&memcg->swap, &parent->swap);
page_counter_init(&memcg->memsw, &parent->memsw);
page_counter_init(&memcg->kmem, &parent->kmem);
page_counter_init(&memcg->tcpmem, &parent->tcpmem);
} else {
page_counter_init(&memcg->memory, NULL);
page_counter_init(&memcg->swap, NULL);
page_counter_init(&memcg->memsw, NULL);
page_counter_init(&memcg->kmem, NULL);
page_counter_init(&memcg->tcpmem, NULL);
/*
* Deeper hierachy with use_hierarchy == false doesn't make
* much sense so let cgroup subsystem know about this
* unfortunate state in our controller.
*/
if (parent != root_mem_cgroup)
memory_cgrp_subsys.broken_hierarchy = true;
}
/* The following stuff does not apply to the root */
if (!parent) {
#ifdef CONFIG_MEMCG_KMEM
INIT_LIST_HEAD(&memcg->kmem_caches);
#endif
root_mem_cgroup = memcg;
return &memcg->css;
}
error = memcg_online_kmem(memcg);
if (error)
goto fail;
if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
static_branch_inc(&memcg_sockets_enabled_key);
return &memcg->css;
fail:
mem_cgroup_id_remove(memcg);
mem_cgroup_free(memcg);
return ERR_PTR(error);
}
static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
{
struct mem_cgroup *memcg = mem_cgroup_from_css(css);
/*
* A memcg must be visible for memcg_expand_shrinker_maps()
* by the time the maps are allocated. So, we allocate maps
* here, when for_each_mem_cgroup() can't skip it.
*/
if (memcg_alloc_shrinker_maps(memcg)) {
mem_cgroup_id_remove(memcg);
return -ENOMEM;
}
/* Online state pins memcg ID, memcg ID pins CSS */
refcount_set(&memcg->id.ref, 1);
css_get(css);
return 0;
}
static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
{
struct mem_cgroup *memcg = mem_cgroup_from_css(css);
struct mem_cgroup_event *event, *tmp;
/*
* Unregister events and notify userspace.
* Notify userspace about cgroup removing only after rmdir of cgroup
* directory to avoid race between userspace and kernelspace.
*/
spin_lock(&memcg->event_list_lock);
list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
list_del_init(&event->list);
schedule_work(&event->remove);
}
spin_unlock(&memcg->event_list_lock);
page_counter_set_min(&memcg->memory, 0);
page_counter_set_low(&memcg->memory, 0);
memcg_offline_kmem(memcg);
wb_memcg_offline(memcg);
drain_all_stock(memcg);
mem_cgroup_id_put(memcg);
}
static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
{
struct mem_cgroup *memcg = mem_cgroup_from_css(css);
invalidate_reclaim_iterators(memcg);
}
static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
{
struct mem_cgroup *memcg = mem_cgroup_from_css(css);
int __maybe_unused i;
#ifdef CONFIG_CGROUP_WRITEBACK
for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
wb_wait_for_completion(&memcg->cgwb_frn[i].done);
#endif
if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
static_branch_dec(&memcg_sockets_enabled_key);
if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
static_branch_dec(&memcg_sockets_enabled_key);
vmpressure_cleanup(&memcg->vmpressure);
cancel_work_sync(&memcg->high_work);
mem_cgroup_remove_from_trees(memcg);
memcg_free_shrinker_maps(memcg);
memcg_free_kmem(memcg);
mem_cgroup_free(memcg);
}
/**
* mem_cgroup_css_reset - reset the states of a mem_cgroup
* @css: the target css
*
* Reset the states of the mem_cgroup associated with @css. This is
* invoked when the userland requests disabling on the default hierarchy
* but the memcg is pinned through dependency. The memcg should stop
* applying policies and should revert to the vanilla state as it may be
* made visible again.
*
* The current implementation only resets the essential configurations.
* This needs to be expanded to cover all the visible parts.
*/
static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
{
struct mem_cgroup *memcg = mem_cgroup_from_css(css);
page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
page_counter_set_max(&memcg->memsw, PAGE_COUNTER_MAX);
page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
page_counter_set_min(&memcg->memory, 0);
page_counter_set_low(&memcg->memory, 0);
memcg->high = PAGE_COUNTER_MAX;
memcg->soft_limit = PAGE_COUNTER_MAX;
memcg_wb_domain_size_changed(memcg);
}
#ifdef CONFIG_MMU
/* Handlers for move charge at task migration. */
static int mem_cgroup_do_precharge(unsigned long count)
{
int ret;
/* Try a single bulk charge without reclaim first, kswapd may wake */
ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
if (!ret) {
mc.precharge += count;
return ret;
}
/* Try charges one by one with reclaim, but do not retry */
while (count--) {
ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
if (ret)
return ret;
mc.precharge++;
cond_resched();
}
return 0;
}
union mc_target {
struct page *page;
swp_entry_t ent;
};
enum mc_target_type {
MC_TARGET_NONE = 0,
MC_TARGET_PAGE,
MC_TARGET_SWAP,
MC_TARGET_DEVICE,
};
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
unsigned long addr, pte_t ptent)
{
struct page *page = vm_normal_page(vma, addr, ptent);
if (!page || !page_mapped(page))
return NULL;
if (PageAnon(page)) {
if (!(mc.flags & MOVE_ANON))
return NULL;
} else {
if (!(mc.flags & MOVE_FILE))
return NULL;
}
if (!get_page_unless_zero(page))
return NULL;
return page;
}
#if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
pte_t ptent, swp_entry_t *entry)
{
struct page *page = NULL;
swp_entry_t ent = pte_to_swp_entry(ptent);
if (!(mc.flags & MOVE_ANON))
return NULL;
/*
* Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
* a device and because they are not accessible by CPU they are store
* as special swap entry in the CPU page table.
*/
if (is_device_private_entry(ent)) {
page = device_private_entry_to_page(ent);
/*
* MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
* a refcount of 1 when free (unlike normal page)
*/
if (!page_ref_add_unless(page, 1, 1))
return NULL;
return page;
}
if (non_swap_entry(ent))
return NULL;
/*
* Because lookup_swap_cache() updates some statistics counter,
* we call find_get_page() with swapper_space directly.
*/
page = find_get_page(swap_address_space(ent), swp_offset(ent));
if (do_memsw_account())
entry->val = ent.val;
return page;
}
#else
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
pte_t ptent, swp_entry_t *entry)
{
return NULL;
}
#endif
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
struct page *page = NULL;
struct address_space *mapping;
pgoff_t pgoff;
if (!vma->vm_file) /* anonymous vma */
return NULL;
if (!(mc.flags & MOVE_FILE))
return NULL;
mapping = vma->vm_file->f_mapping;
pgoff = linear_page_index(vma, addr);
/* page is moved even if it's not RSS of this task(page-faulted). */
#ifdef CONFIG_SWAP
/* shmem/tmpfs may report page out on swap: account for that too. */
if (shmem_mapping(mapping)) {
page = find_get_entry(mapping, pgoff);
if (xa_is_value(page)) {
swp_entry_t swp = radix_to_swp_entry(page);
if (do_memsw_account())
*entry = swp;
page = find_get_page(swap_address_space(swp),
swp_offset(swp));
}
} else
page = find_get_page(mapping, pgoff);
#else
page = find_get_page(mapping, pgoff);
#endif
return page;
}
/**
* mem_cgroup_move_account - move account of the page
* @page: the page
* @compound: charge the page as compound or small page
* @from: mem_cgroup which the page is moved from.
* @to: mem_cgroup which the page is moved to. @from != @to.
*
* The caller must make sure the page is not on LRU (isolate_page() is useful.)
*
* This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
* from old cgroup.
*/
static int mem_cgroup_move_account(struct page *page,
bool compound,
struct mem_cgroup *from,
struct mem_cgroup *to)
{
struct lruvec *from_vec, *to_vec;
struct pglist_data *pgdat;
unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
int ret;
bool anon;
VM_BUG_ON(from == to);
VM_BUG_ON_PAGE(PageLRU(page), page);
VM_BUG_ON(compound && !PageTransHuge(page));
/*
* Prevent mem_cgroup_migrate() from looking at
* page->mem_cgroup of its source page while we change it.
*/
ret = -EBUSY;
if (!trylock_page(page))
goto out;
ret = -EINVAL;
if (page->mem_cgroup != from)
goto out_unlock;
anon = PageAnon(page);
pgdat = page_pgdat(page);
from_vec = mem_cgroup_lruvec(pgdat, from);
to_vec = mem_cgroup_lruvec(pgdat, to);
lock_page_memcg(page);
if (!anon && page_mapped(page)) {
__mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages);
__mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages);
}
if (!anon && PageDirty(page)) {
struct address_space *mapping = page_mapping(page);
if (mapping_cap_account_dirty(mapping)) {
__mod_lruvec_state(from_vec, NR_FILE_DIRTY, -nr_pages);
__mod_lruvec_state(to_vec, NR_FILE_DIRTY, nr_pages);
}
}
if (PageWriteback(page)) {
__mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages);
__mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages);
}
/*
* All state has been migrated, let's switch to the new memcg.
*
* It is safe to change page->mem_cgroup here because the page
* is referenced, charged, isolated, and locked: we can't race
* with (un)charging, migration, LRU putback, or anything else
* that would rely on a stable page->mem_cgroup.
*
* Note that lock_page_memcg is a memcg lock, not a page lock,
* to save space. As soon as we switch page->mem_cgroup to a
* new memcg that isn't locked, the above state can change
* concurrently again. Make sure we're truly done with it.
*/
smp_mb();
page->mem_cgroup = to; /* caller should have done css_get */
__unlock_page_memcg(from);
ret = 0;
local_irq_disable();
mem_cgroup_charge_statistics(to, page, compound, nr_pages);
memcg_check_events(to, page);
mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
memcg_check_events(from, page);
local_irq_enable();
out_unlock:
unlock_page(page);
out:
return ret;
}
/**
* get_mctgt_type - get target type of moving charge
* @vma: the vma the pte to be checked belongs
* @addr: the address corresponding to the pte to be checked
* @ptent: the pte to be checked
* @target: the pointer the target page or swap ent will be stored(can be NULL)
*
* Returns
* 0(MC_TARGET_NONE): if the pte is not a target for move charge.
* 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
* move charge. if @target is not NULL, the page is stored in target->page
* with extra refcnt got(Callers should handle it).
* 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
* target for charge migration. if @target is not NULL, the entry is stored
* in target->ent.
* 3(MC_TARGET_DEVICE): like MC_TARGET_PAGE but page is MEMORY_DEVICE_PRIVATE
* (so ZONE_DEVICE page and thus not on the lru).
* For now we such page is charge like a regular page would be as for all
* intent and purposes it is just special memory taking the place of a
* regular page.
*
* See Documentations/vm/hmm.txt and include/linux/hmm.h
*
* Called with pte lock held.
*/
static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
unsigned long addr, pte_t ptent, union mc_target *target)
{
struct page *page = NULL;
enum mc_target_type ret = MC_TARGET_NONE;
swp_entry_t ent = { .val = 0 };
if (pte_present(ptent))
page = mc_handle_present_pte(vma, addr, ptent);
else if (is_swap_pte(ptent))
page = mc_handle_swap_pte(vma, ptent, &ent);
else if (pte_none(ptent))
page = mc_handle_file_pte(vma, addr, ptent, &ent);
if (!page && !ent.val)
return ret;
if (page) {
/*
* Do only loose check w/o serialization.
* mem_cgroup_move_account() checks the page is valid or
* not under LRU exclusion.
*/
if (page->mem_cgroup == mc.from) {
ret = MC_TARGET_PAGE;
if (is_device_private_page(page))
ret = MC_TARGET_DEVICE;
if (target)
target->page = page;
}
if (!ret || !target)
put_page(page);
}
/*
* There is a swap entry and a page doesn't exist or isn't charged.
* But we cannot move a tail-page in a THP.
*/
if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
ret = MC_TARGET_SWAP;
if (target)
target->ent = ent;
}
return ret;
}
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
/*
* We don't consider PMD mapped swapping or file mapped pages because THP does
* not support them for now.
* Caller should make sure that pmd_trans_huge(pmd) is true.
*/
static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
unsigned long addr, pmd_t pmd, union mc_target *target)
{
struct page *page = NULL;
enum mc_target_type ret = MC_TARGET_NONE;
if (unlikely(is_swap_pmd(pmd))) {
VM_BUG_ON(thp_migration_supported() &&
!is_pmd_migration_entry(pmd));
return ret;
}
page = pmd_page(pmd);
VM_BUG_ON_PAGE(!page || !PageHead(page), page);
if (!(mc.flags & MOVE_ANON))
return ret;
if (page->mem_cgroup == mc.from) {
ret = MC_TARGET_PAGE;
if (target) {
get_page(page);
target->page = page;
}
}
return ret;
}
#else
static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
unsigned long addr, pmd_t pmd, union mc_target *target)
{
return MC_TARGET_NONE;
}
#endif
static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
unsigned long addr, unsigned long end,
struct mm_walk *walk)
{
struct vm_area_struct *vma = walk->vma;
pte_t *pte;
spinlock_t *ptl;
ptl = pmd_trans_huge_lock(pmd, vma);
if (ptl) {
/*
* Note their can not be MC_TARGET_DEVICE for now as we do not
* support transparent huge page with MEMORY_DEVICE_PRIVATE but
* this might change.
*/
if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
mc.precharge += HPAGE_PMD_NR;
spin_unlock(ptl);
return 0;
}
if (pmd_trans_unstable(pmd))
return 0;
pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
for (; addr != end; pte++, addr += PAGE_SIZE)
if (get_mctgt_type(vma, addr, *pte, NULL))
mc.precharge++; /* increment precharge temporarily */
pte_unmap_unlock(pte - 1, ptl);
cond_resched();
return 0;
}
static const struct mm_walk_ops precharge_walk_ops = {
.pmd_entry = mem_cgroup_count_precharge_pte_range,
};
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
unsigned long precharge;
down_read(&mm->mmap_sem);
walk_page_range(mm, 0, mm->highest_vm_end, &precharge_walk_ops, NULL);
up_read(&mm->mmap_sem);
precharge = mc.precharge;
mc.precharge = 0;
return precharge;
}
static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
unsigned long precharge = mem_cgroup_count_precharge(mm);
VM_BUG_ON(mc.moving_task);
mc.moving_task = current;
return mem_cgroup_do_precharge(precharge);
}
/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
static void __mem_cgroup_clear_mc(void)
{
struct mem_cgroup *from = mc.from;
struct mem_cgroup *to = mc.to;
/* we must uncharge all the leftover precharges from mc.to */
if (mc.precharge) {
cancel_charge(mc.to, mc.precharge);
mc.precharge = 0;
}
/*
* we didn't uncharge from mc.from at mem_cgroup_move_account(), so
* we must uncharge here.
*/
if (mc.moved_charge) {
cancel_charge(mc.from, mc.moved_charge);
mc.moved_charge = 0;
}
/* we must fixup refcnts and charges */
if (mc.moved_swap) {
/* uncharge swap account from the old cgroup */
if (!mem_cgroup_is_root(mc.from))
page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
mem_cgroup_id_put_many(mc.from, mc.moved_swap);
/*
* we charged both to->memory and to->memsw, so we
* should uncharge to->memory.
*/
if (!mem_cgroup_is_root(mc.to))
page_counter_uncharge(&mc.to->memory, mc.moved_swap);
css_put_many(&mc.to->css, mc.moved_swap);
mc.moved_swap = 0;
}
memcg_oom_recover(from);
memcg_oom_recover(to);
wake_up_all(&mc.waitq);
}
static void mem_cgroup_clear_mc(void)
{
struct mm_struct *mm = mc.mm;
/*
* we must clear moving_task before waking up waiters at the end of
* task migration.
*/
mc.moving_task = NULL;
__mem_cgroup_clear_mc();
spin_lock(&mc.lock);
mc.from = NULL;
mc.to = NULL;
mc.mm = NULL;
spin_unlock(&mc.lock);
mmput(mm);
}
static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
{
struct cgroup_subsys_state *css;
struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
struct mem_cgroup *from;
struct task_struct *leader, *p;
struct mm_struct *mm;
unsigned long move_flags;
int ret = 0;
/* charge immigration isn't supported on the default hierarchy */
if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
return 0;
/*
* Multi-process migrations only happen on the default hierarchy
* where charge immigration is not used. Perform charge
* immigration if @tset contains a leader and whine if there are
* multiple.
*/
p = NULL;
cgroup_taskset_for_each_leader(leader, css, tset) {
WARN_ON_ONCE(p);
p = leader;
memcg = mem_cgroup_from_css(css);
}
if (!p)
return 0;
/*
* We are now commited to this value whatever it is. Changes in this
* tunable will only affect upcoming migrations, not the current one.
* So we need to save it, and keep it going.
*/
move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
if (!move_flags)
return 0;
from = mem_cgroup_from_task(p);
VM_BUG_ON(from == memcg);
mm = get_task_mm(p);
if (!mm)
return 0;
/* We move charges only when we move a owner of the mm */
if (mm->owner == p) {
VM_BUG_ON(mc.from);
VM_BUG_ON(mc.to);
VM_BUG_ON(mc.precharge);
VM_BUG_ON(mc.moved_charge);
VM_BUG_ON(mc.moved_swap);
spin_lock(&mc.lock);
mc.mm = mm;
mc.from = from;
mc.to = memcg;
mc.flags = move_flags;
spin_unlock(&mc.lock);
/* We set mc.moving_task later */
ret = mem_cgroup_precharge_mc(mm);
if (ret)
mem_cgroup_clear_mc();
} else {
mmput(mm);
}
return ret;
}
static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
{
if (mc.to)
mem_cgroup_clear_mc();
}
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
unsigned long addr, unsigned long end,
struct mm_walk *walk)
{
int ret = 0;
struct vm_area_struct *vma = walk->vma;
pte_t *pte;
spinlock_t *ptl;
enum mc_target_type target_type;
union mc_target target;
struct page *page;
ptl = pmd_trans_huge_lock(pmd, vma);
if (ptl) {
if (mc.precharge < HPAGE_PMD_NR) {
spin_unlock(ptl);
return 0;
}
target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
if (target_type == MC_TARGET_PAGE) {
page = target.page;
if (!isolate_lru_page(page)) {
if (!mem_cgroup_move_account(page, true,
mc.from, mc.to)) {
mc.precharge -= HPAGE_PMD_NR;
mc.moved_charge += HPAGE_PMD_NR;
}
putback_lru_page(page);
}
put_page(page);
} else if (target_type == MC_TARGET_DEVICE) {
page = target.page;
if (!mem_cgroup_move_account(page, true,
mc.from, mc.to)) {
mc.precharge -= HPAGE_PMD_NR;
mc.moved_charge += HPAGE_PMD_NR;
}
put_page(page);
}
spin_unlock(ptl);
return 0;
}
if (pmd_trans_unstable(pmd))
return 0;
retry:
pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
for (; addr != end; addr += PAGE_SIZE) {
pte_t ptent = *(pte++);
bool device = false;
swp_entry_t ent;
if (!mc.precharge)
break;
switch (get_mctgt_type(vma, addr, ptent, &target)) {
case MC_TARGET_DEVICE:
device = true;
/* fall through */
case MC_TARGET_PAGE:
page = target.page;
/*
* We can have a part of the split pmd here. Moving it
* can be done but it would be too convoluted so simply
* ignore such a partial THP and keep it in original
* memcg. There should be somebody mapping the head.
*/
if (PageTransCompound(page))
goto put;
if (!device && isolate_lru_page(page))
goto put;
if (!mem_cgroup_move_account(page, false,
mc.from, mc.to)) {
mc.precharge--;
/* we uncharge from mc.from later. */
mc.moved_charge++;
}
if (!device)
putback_lru_page(page);
put: /* get_mctgt_type() gets the page */
put_page(page);
break;
case MC_TARGET_SWAP:
ent = target.ent;
if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
mc.precharge--;
mem_cgroup_id_get_many(mc.to, 1);
/* we fixup other refcnts and charges later. */
mc.moved_swap++;
}
break;
default:
break;
}
}
pte_unmap_unlock(pte - 1, ptl);
cond_resched();
if (addr != end) {
/*
* We have consumed all precharges we got in can_attach().
* We try charge one by one, but don't do any additional
* charges to mc.to if we have failed in charge once in attach()
* phase.
*/
ret = mem_cgroup_do_precharge(1);
if (!ret)
goto retry;
}
return ret;
}
static const struct mm_walk_ops charge_walk_ops = {
.pmd_entry = mem_cgroup_move_charge_pte_range,
};
static void mem_cgroup_move_charge(void)
{
lru_add_drain_all();
/*
* Signal lock_page_memcg() to take the memcg's move_lock
* while we're moving its pages to another memcg. Then wait
* for already started RCU-only updates to finish.
*/
atomic_inc(&mc.from->moving_account);
synchronize_rcu();
retry:
if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) {
/*
* Someone who are holding the mmap_sem might be waiting in
* waitq. So we cancel all extra charges, wake up all waiters,
* and retry. Because we cancel precharges, we might not be able
* to move enough charges, but moving charge is a best-effort
* feature anyway, so it wouldn't be a big problem.
*/
__mem_cgroup_clear_mc();
cond_resched();
goto retry;
}
/*
* When we have consumed all precharges and failed in doing
* additional charge, the page walk just aborts.
*/
walk_page_range(mc.mm, 0, mc.mm->highest_vm_end, &charge_walk_ops,
NULL);
up_read(&mc.mm->mmap_sem);
atomic_dec(&mc.from->moving_account);
}
static void mem_cgroup_move_task(void)
{
if (mc.to) {
mem_cgroup_move_charge();
mem_cgroup_clear_mc();
}
}
#else /* !CONFIG_MMU */
static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
{
return 0;
}
static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
{
}
static void mem_cgroup_move_task(void)
{
}
#endif
/*
* Cgroup retains root cgroups across [un]mount cycles making it necessary
* to verify whether we're attached to the default hierarchy on each mount
* attempt.
*/
static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
{
/*
* use_hierarchy is forced on the default hierarchy. cgroup core
* guarantees that @root doesn't have any children, so turning it
* on for the root memcg is enough.
*/
if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
root_mem_cgroup->use_hierarchy = true;
else
root_mem_cgroup->use_hierarchy = false;
}
static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
{
if (value == PAGE_COUNTER_MAX)
seq_puts(m, "max\n");
else
seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
return 0;
}
static u64 memory_current_read(struct cgroup_subsys_state *css,
struct cftype *cft)
{
struct mem_cgroup *memcg = mem_cgroup_from_css(css);
return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
}
static int memory_min_show(struct seq_file *m, void *v)
{
return seq_puts_memcg_tunable(m,
READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
}
static ssize_t memory_min_write(struct kernfs_open_file *of,
char *buf, size_t nbytes, loff_t off)
{
struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
unsigned long min;
int err;
buf = strstrip(buf);
err = page_counter_memparse(buf, "max", &min);
if (err)
return err;
page_counter_set_min(&memcg->memory, min);
return nbytes;
}
static int memory_low_show(struct seq_file *m, void *v)
{
return seq_puts_memcg_tunable(m,
READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
}
static ssize_t memory_low_write(struct kernfs_open_file *of,
char *buf, size_t nbytes, loff_t off)
{
struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
unsigned long low;
int err;
buf = strstrip(buf);
err = page_counter_memparse(buf, "max", &low);
if (err)
return err;
page_counter_set_low(&memcg->memory, low);
return nbytes;
}
static int memory_high_show(struct seq_file *m, void *v)
{
return seq_puts_memcg_tunable(m, READ_ONCE(mem_cgroup_from_seq(m)->high));
}
static ssize_t memory_high_write(struct kernfs_open_file *of,
char *buf, size_t nbytes, loff_t off)
{
struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
unsigned long nr_pages;
unsigned long high;
int err;
buf = strstrip(buf);
err = page_counter_memparse(buf, "max", &high);
if (err)
return err;
memcg->high = high;
nr_pages = page_counter_read(&memcg->memory);
if (nr_pages > high)
try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
GFP_KERNEL, true);
memcg_wb_domain_size_changed(memcg);
return nbytes;
}
static int memory_max_show(struct seq_file *m, void *v)
{
return seq_puts_memcg_tunable(m,
READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
}
static ssize_t memory_max_write(struct kernfs_open_file *of,
char *buf, size_t nbytes, loff_t off)
{
struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
bool drained = false;
unsigned long max;
int err;
buf = strstrip(buf);
err = page_counter_memparse(buf, "max", &max);
if (err)
return err;
xchg(&memcg->memory.max, max);
for (;;) {
unsigned long nr_pages = page_counter_read(&memcg->memory);
if (nr_pages <= max)
break;
if (signal_pending(current)) {
err = -EINTR;
break;
}
if (!drained) {
drain_all_stock(memcg);
drained = true;
continue;
}
if (nr_reclaims) {
if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
GFP_KERNEL, true))
nr_reclaims--;
continue;
}
memcg_memory_event(memcg, MEMCG_OOM);
if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
break;
}
memcg_wb_domain_size_changed(memcg);
return nbytes;
}
static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
{
seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
seq_printf(m, "oom_kill %lu\n",
atomic_long_read(&events[MEMCG_OOM_KILL]));
}
static int memory_events_show(struct seq_file *m, void *v)
{
struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
__memory_events_show(m, memcg->memory_events);
return 0;
}
static int memory_events_local_show(struct seq_file *m, void *v)
{
struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
__memory_events_show(m, memcg->memory_events_local);
return 0;
}
static int memory_stat_show(struct seq_file *m, void *v)
{
struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
char *buf;
buf = memory_stat_format(memcg);
if (!buf)
return -ENOMEM;
seq_puts(m, buf);
kfree(buf);
return 0;
}
static int memory_oom_group_show(struct seq_file *m, void *v)
{
struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
seq_printf(m, "%d\n", memcg->oom_group);
return 0;
}
static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
char *buf, size_t nbytes, loff_t off)
{
struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
int ret, oom_group;
buf = strstrip(buf);
if (!buf)
return -EINVAL;
ret = kstrtoint(buf, 0, &oom_group);
if (ret)
return ret;
if (oom_group != 0 && oom_group != 1)
return -EINVAL;
memcg->oom_group = oom_group;
return nbytes;
}
static struct cftype memory_files[] = {
{
.name = "current",
.flags = CFTYPE_NOT_ON_ROOT,
.read_u64 = memory_current_read,
},
{
.name = "min",
.flags = CFTYPE_NOT_ON_ROOT,
.seq_show = memory_min_show,
.write = memory_min_write,
},
{
.name = "low",
.flags = CFTYPE_NOT_ON_ROOT,
.seq_show = memory_low_show,
.write = memory_low_write,
},
{
.name = "high",
.flags = CFTYPE_NOT_ON_ROOT,
.seq_show = memory_high_show,
.write = memory_high_write,
},
{
.name = "max",
.flags = CFTYPE_NOT_ON_ROOT,
.seq_show = memory_max_show,
.write = memory_max_write,
},
{
.name = "events",
.flags = CFTYPE_NOT_ON_ROOT,
.file_offset = offsetof(struct mem_cgroup, events_file),
.seq_show = memory_events_show,
},
{
.name = "events.local",
.flags = CFTYPE_NOT_ON_ROOT,
.file_offset = offsetof(struct mem_cgroup, events_local_file),
.seq_show = memory_events_local_show,
},
{
.name = "stat",
.flags = CFTYPE_NOT_ON_ROOT,
.seq_show = memory_stat_show,
},
{
.name = "oom.group",
.flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
.seq_show = memory_oom_group_show,
.write = memory_oom_group_write,
},
{ } /* terminate */
};
struct cgroup_subsys memory_cgrp_subsys = {
.css_alloc = mem_cgroup_css_alloc,
.css_online = mem_cgroup_css_online,
.css_offline = mem_cgroup_css_offline,
.css_released = mem_cgroup_css_released,
.css_free = mem_cgroup_css_free,
.css_reset = mem_cgroup_css_reset,
.can_attach = mem_cgroup_can_attach,
.cancel_attach = mem_cgroup_cancel_attach,
.post_attach = mem_cgroup_move_task,
.bind = mem_cgroup_bind,
.dfl_cftypes = memory_files,
.legacy_cftypes = mem_cgroup_legacy_files,
.early_init = 0,
};
/**
* mem_cgroup_protected - check if memory consumption is in the normal range
* @root: the top ancestor of the sub-tree being checked
* @memcg: the memory cgroup to check
*
* WARNING: This function is not stateless! It can only be used as part
* of a top-down tree iteration, not for isolated queries.
*
* Returns one of the following:
* MEMCG_PROT_NONE: cgroup memory is not protected
* MEMCG_PROT_LOW: cgroup memory is protected as long there is
* an unprotected supply of reclaimable memory from other cgroups.
* MEMCG_PROT_MIN: cgroup memory is protected
*
* @root is exclusive; it is never protected when looked at directly
*
* To provide a proper hierarchical behavior, effective memory.min/low values
* are used. Below is the description of how effective memory.low is calculated.
* Effective memory.min values is calculated in the same way.
*
* Effective memory.low is always equal or less than the original memory.low.
* If there is no memory.low overcommittment (which is always true for
* top-level memory cgroups), these two values are equal.
* Otherwise, it's a part of parent's effective memory.low,
* calculated as a cgroup's memory.low usage divided by sum of sibling's
* memory.low usages, where memory.low usage is the size of actually
* protected memory.
*
* low_usage
* elow = min( memory.low, parent->elow * ------------------ ),
* siblings_low_usage
*
* | memory.current, if memory.current < memory.low
* low_usage = |
* | 0, otherwise.
*
*
* Such definition of the effective memory.low provides the expected
* hierarchical behavior: parent's memory.low value is limiting
* children, unprotected memory is reclaimed first and cgroups,
* which are not using their guarantee do not affect actual memory
* distribution.
*
* For example, if there are memcgs A, A/B, A/C, A/D and A/E:
*
* A A/memory.low = 2G, A/memory.current = 6G
* //\\
* BC DE B/memory.low = 3G B/memory.current = 2G
* C/memory.low = 1G C/memory.current = 2G
* D/memory.low = 0 D/memory.current = 2G
* E/memory.low = 10G E/memory.current = 0
*
* and the memory pressure is applied, the following memory distribution
* is expected (approximately):
*
* A/memory.current = 2G
*
* B/memory.current = 1.3G
* C/memory.current = 0.6G
* D/memory.current = 0
* E/memory.current = 0
*
* These calculations require constant tracking of the actual low usages
* (see propagate_protected_usage()), as well as recursive calculation of
* effective memory.low values. But as we do call mem_cgroup_protected()
* path for each memory cgroup top-down from the reclaim,
* it's possible to optimize this part, and save calculated elow
* for next usage. This part is intentionally racy, but it's ok,
* as memory.low is a best-effort mechanism.
*/
enum mem_cgroup_protection mem_cgroup_protected(struct mem_cgroup *root,
struct mem_cgroup *memcg)
{
struct mem_cgroup *parent;
unsigned long emin, parent_emin;
unsigned long elow, parent_elow;
unsigned long usage;
if (mem_cgroup_disabled())
return MEMCG_PROT_NONE;
if (!root)
root = root_mem_cgroup;
/*
* Effective values of the reclaim targets are ignored so they
* can be stale. Have a look at mem_cgroup_protection for more
* details.
* TODO: calculation should be more robust so that we do not need
* that special casing.
*/
if (memcg == root)
return MEMCG_PROT_NONE;
usage = page_counter_read(&memcg->memory);
if (!usage)
return MEMCG_PROT_NONE;
emin = memcg->memory.min;
elow = memcg->memory.low;
parent = parent_mem_cgroup(memcg);
/* No parent means a non-hierarchical mode on v1 memcg */
if (!parent)
return MEMCG_PROT_NONE;
if (parent == root)
goto exit;
parent_emin = READ_ONCE(parent->memory.emin);
emin = min(emin, parent_emin);
if (emin && parent_emin) {
unsigned long min_usage, siblings_min_usage;
min_usage = min(usage, memcg->memory.min);
siblings_min_usage = atomic_long_read(
&parent->memory.children_min_usage);
if (min_usage && siblings_min_usage)
emin = min(emin, parent_emin * min_usage /
siblings_min_usage);
}
parent_elow = READ_ONCE(parent->memory.elow);
elow = min(elow, parent_elow);
if (elow && parent_elow) {
unsigned long low_usage, siblings_low_usage;
low_usage = min(usage, memcg->memory.low);
siblings_low_usage = atomic_long_read(
&parent->memory.children_low_usage);
if (low_usage && siblings_low_usage)
elow = min(elow, parent_elow * low_usage /
siblings_low_usage);
}
exit:
memcg->memory.emin = emin;
memcg->memory.elow = elow;
if (usage <= emin)
return MEMCG_PROT_MIN;
else if (usage <= elow)
return MEMCG_PROT_LOW;
else
return MEMCG_PROT_NONE;
}
/**
* mem_cgroup_try_charge - try charging a page
* @page: page to charge
* @mm: mm context of the victim
* @gfp_mask: reclaim mode
* @memcgp: charged memcg return
* @compound: charge the page as compound or small page
*
* Try to charge @page to the memcg that @mm belongs to, reclaiming
* pages according to @gfp_mask if necessary.
*
* Returns 0 on success, with *@memcgp pointing to the charged memcg.
* Otherwise, an error code is returned.
*
* After page->mapping has been set up, the caller must finalize the
* charge with mem_cgroup_commit_charge(). Or abort the transaction
* with mem_cgroup_cancel_charge() in case page instantiation fails.
*/
int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
gfp_t gfp_mask, struct mem_cgroup **memcgp,
bool compound)
{
struct mem_cgroup *memcg = NULL;
unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
int ret = 0;
if (mem_cgroup_disabled())
goto out;
if (PageSwapCache(page)) {
/*
* Every swap fault against a single page tries to charge the
* page, bail as early as possible. shmem_unuse() encounters
* already charged pages, too. The USED bit is protected by
* the page lock, which serializes swap cache removal, which
* in turn serializes uncharging.
*/
VM_BUG_ON_PAGE(!PageLocked(page), page);
if (compound_head(page)->mem_cgroup)
goto out;
if (do_swap_account) {
swp_entry_t ent = { .val = page_private(page), };
unsigned short id = lookup_swap_cgroup_id(ent);
rcu_read_lock();
memcg = mem_cgroup_from_id(id);
if (memcg && !css_tryget_online(&memcg->css))
memcg = NULL;
rcu_read_unlock();
}
}
if (!memcg)
memcg = get_mem_cgroup_from_mm(mm);
ret = try_charge(memcg, gfp_mask, nr_pages);
css_put(&memcg->css);
out:
*memcgp = memcg;
return ret;
}
int mem_cgroup_try_charge_delay(struct page *page, struct mm_struct *mm,
gfp_t gfp_mask, struct mem_cgroup **memcgp,
bool compound)
{
struct mem_cgroup *memcg;
int ret;
ret = mem_cgroup_try_charge(page, mm, gfp_mask, memcgp, compound);
memcg = *memcgp;
mem_cgroup_throttle_swaprate(memcg, page_to_nid(page), gfp_mask);
return ret;
}
/**
* mem_cgroup_commit_charge - commit a page charge
* @page: page to charge
* @memcg: memcg to charge the page to
* @lrucare: page might be on LRU already
* @compound: charge the page as compound or small page
*
* Finalize a charge transaction started by mem_cgroup_try_charge(),
* after page->mapping has been set up. This must happen atomically
* as part of the page instantiation, i.e. under the page table lock
* for anonymous pages, under the page lock for page and swap cache.
*
* In addition, the page must not be on the LRU during the commit, to
* prevent racing with task migration. If it might be, use @lrucare.
*
* Use mem_cgroup_cancel_charge() to cancel the transaction instead.
*/
void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
bool lrucare, bool compound)
{
unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
VM_BUG_ON_PAGE(!page->mapping, page);
VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
if (mem_cgroup_disabled())
return;
/*
* Swap faults will attempt to charge the same page multiple
* times. But reuse_swap_page() might have removed the page
* from swapcache already, so we can't check PageSwapCache().
*/
if (!memcg)
return;
commit_charge(page, memcg, lrucare);
local_irq_disable();
mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
memcg_check_events(memcg, page);
local_irq_enable();
if (do_memsw_account() && PageSwapCache(page)) {
swp_entry_t entry = { .val = page_private(page) };
/*
* The swap entry might not get freed for a long time,
* let's not wait for it. The page already received a
* memory+swap charge, drop the swap entry duplicate.
*/
mem_cgroup_uncharge_swap(entry, nr_pages);
}
}
/**
* mem_cgroup_cancel_charge - cancel a page charge
* @page: page to charge
* @memcg: memcg to charge the page to
* @compound: charge the page as compound or small page
*
* Cancel a charge transaction started by mem_cgroup_try_charge().
*/
void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
bool compound)
{
unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
if (mem_cgroup_disabled())
return;
/*
* Swap faults will attempt to charge the same page multiple
* times. But reuse_swap_page() might have removed the page
* from swapcache already, so we can't check PageSwapCache().
*/
if (!memcg)
return;
cancel_charge(memcg, nr_pages);
}
struct uncharge_gather {
struct mem_cgroup *memcg;
unsigned long pgpgout;
unsigned long nr_anon;
unsigned long nr_file;
unsigned long nr_kmem;
unsigned long nr_huge;
unsigned long nr_shmem;
struct page *dummy_page;
};
static inline void uncharge_gather_clear(struct uncharge_gather *ug)
{
memset(ug, 0, sizeof(*ug));
}
static void uncharge_batch(const struct uncharge_gather *ug)
{
unsigned long nr_pages = ug->nr_anon + ug->nr_file + ug->nr_kmem;
unsigned long flags;
if (!mem_cgroup_is_root(ug->memcg)) {
page_counter_uncharge(&ug->memcg->memory, nr_pages);
if (do_memsw_account())
page_counter_uncharge(&ug->memcg->memsw, nr_pages);
if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
memcg_oom_recover(ug->memcg);
}
local_irq_save(flags);
__mod_memcg_state(ug->memcg, MEMCG_RSS, -ug->nr_anon);
__mod_memcg_state(ug->memcg, MEMCG_CACHE, -ug->nr_file);
__mod_memcg_state(ug->memcg, MEMCG_RSS_HUGE, -ug->nr_huge);
__mod_memcg_state(ug->memcg, NR_SHMEM, -ug->nr_shmem);
__count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
__this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, nr_pages);
memcg_check_events(ug->memcg, ug->dummy_page);
local_irq_restore(flags);
if (!mem_cgroup_is_root(ug->memcg))
css_put_many(&ug->memcg->css, nr_pages);
}
static void uncharge_page(struct page *page, struct uncharge_gather *ug)
{
VM_BUG_ON_PAGE(PageLRU(page), page);
VM_BUG_ON_PAGE(page_count(page) && !is_zone_device_page(page) &&
!PageHWPoison(page) , page);
if (!page->mem_cgroup)
return;
/*
* Nobody should be changing or seriously looking at
* page->mem_cgroup at this point, we have fully
* exclusive access to the page.
*/
if (ug->memcg != page->mem_cgroup) {
if (ug->memcg) {
uncharge_batch(ug);
uncharge_gather_clear(ug);
}
ug->memcg = page->mem_cgroup;
}
if (!PageKmemcg(page)) {
unsigned int nr_pages = 1;
if (PageTransHuge(page)) {
nr_pages = compound_nr(page);
ug->nr_huge += nr_pages;
}
if (PageAnon(page))
ug->nr_anon += nr_pages;
else {
ug->nr_file += nr_pages;
if (PageSwapBacked(page))
ug->nr_shmem += nr_pages;
}
ug->pgpgout++;
} else {
ug->nr_kmem += compound_nr(page);
__ClearPageKmemcg(page);
}
ug->dummy_page = page;
page->mem_cgroup = NULL;
}
static void uncharge_list(struct list_head *page_list)
{
struct uncharge_gather ug;
struct list_head *next;
uncharge_gather_clear(&ug);
/*
* Note that the list can be a single page->lru; hence the
* do-while loop instead of a simple list_for_each_entry().
*/
next = page_list->next;
do {
struct page *page;
page = list_entry(next, struct page, lru);
next = page->lru.next;
uncharge_page(page, &ug);
} while (next != page_list);
if (ug.memcg)
uncharge_batch(&ug);
}
/**
* mem_cgroup_uncharge - uncharge a page
* @page: page to uncharge
*
* Uncharge a page previously charged with mem_cgroup_try_charge() and
* mem_cgroup_commit_charge().
*/
void mem_cgroup_uncharge(struct page *page)
{
struct uncharge_gather ug;
if (mem_cgroup_disabled())
return;
/* Don't touch page->lru of any random page, pre-check: */
if (!page->mem_cgroup)
return;
uncharge_gather_clear(&ug);
uncharge_page(page, &ug);
uncharge_batch(&ug);
}
/**
* mem_cgroup_uncharge_list - uncharge a list of page
* @page_list: list of pages to uncharge
*
* Uncharge a list of pages previously charged with
* mem_cgroup_try_charge() and mem_cgroup_commit_charge().
*/
void mem_cgroup_uncharge_list(struct list_head *page_list)
{
if (mem_cgroup_disabled())
return;
if (!list_empty(page_list))
uncharge_list(page_list);
}
/**
* mem_cgroup_migrate - charge a page's replacement
* @oldpage: currently circulating page
* @newpage: replacement page
*
* Charge @newpage as a replacement page for @oldpage. @oldpage will
* be uncharged upon free.
*
* Both pages must be locked, @newpage->mapping must be set up.
*/
void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
{
struct mem_cgroup *memcg;
unsigned int nr_pages;
bool compound;
unsigned long flags;
VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
newpage);
if (mem_cgroup_disabled())
return;
/* Page cache replacement: new page already charged? */
if (newpage->mem_cgroup)
return;
/* Swapcache readahead pages can get replaced before being charged */
memcg = oldpage->mem_cgroup;
if (!memcg)
return;
/* Force-charge the new page. The old one will be freed soon */
compound = PageTransHuge(newpage);
nr_pages = compound ? hpage_nr_pages(newpage) : 1;
page_counter_charge(&memcg->memory, nr_pages);
if (do_memsw_account())
page_counter_charge(&memcg->memsw, nr_pages);
css_get_many(&memcg->css, nr_pages);
commit_charge(newpage, memcg, false);
local_irq_save(flags);
mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages);
memcg_check_events(memcg, newpage);
local_irq_restore(flags);
}
DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
EXPORT_SYMBOL(memcg_sockets_enabled_key);
void mem_cgroup_sk_alloc(struct sock *sk)
{
struct mem_cgroup *memcg;
if (!mem_cgroup_sockets_enabled)
return;
/* Do not associate the sock with unrelated interrupted task's memcg. */
if (in_interrupt())
return;
rcu_read_lock();
memcg = mem_cgroup_from_task(current);
if (memcg == root_mem_cgroup)
goto out;
if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
goto out;
if (css_tryget_online(&memcg->css))
sk->sk_memcg = memcg;
out:
rcu_read_unlock();
}
void mem_cgroup_sk_free(struct sock *sk)
{
if (sk->sk_memcg)
css_put(&sk->sk_memcg->css);
}
/**
* mem_cgroup_charge_skmem - charge socket memory
* @memcg: memcg to charge
* @nr_pages: number of pages to charge
*
* Charges @nr_pages to @memcg. Returns %true if the charge fit within
* @memcg's configured limit, %false if the charge had to be forced.
*/
bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
{
gfp_t gfp_mask = GFP_KERNEL;
if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
struct page_counter *fail;
if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
memcg->tcpmem_pressure = 0;
return true;
}
page_counter_charge(&memcg->tcpmem, nr_pages);
memcg->tcpmem_pressure = 1;
return false;
}
/* Don't block in the packet receive path */
if (in_softirq())
gfp_mask = GFP_NOWAIT;
mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
if (try_charge(memcg, gfp_mask, nr_pages) == 0)
return true;
try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
return false;
}
/**
* mem_cgroup_uncharge_skmem - uncharge socket memory
* @memcg: memcg to uncharge
* @nr_pages: number of pages to uncharge
*/
void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
{
if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
page_counter_uncharge(&memcg->tcpmem, nr_pages);
return;
}
mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
refill_stock(memcg, nr_pages);
}
static int __init cgroup_memory(char *s)
{
char *token;
while ((token = strsep(&s, ",")) != NULL) {
if (!*token)
continue;
if (!strcmp(token, "nosocket"))
cgroup_memory_nosocket = true;
if (!strcmp(token, "nokmem"))
cgroup_memory_nokmem = true;
}
return 0;
}
__setup("cgroup.memory=", cgroup_memory);
/*
* subsys_initcall() for memory controller.
*
* Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
* context because of lock dependencies (cgroup_lock -> cpu hotplug) but
* basically everything that doesn't depend on a specific mem_cgroup structure
* should be initialized from here.
*/
static int __init mem_cgroup_init(void)
{
int cpu, node;
#ifdef CONFIG_MEMCG_KMEM
/*
* Kmem cache creation is mostly done with the slab_mutex held,
* so use a workqueue with limited concurrency to avoid stalling
* all worker threads in case lots of cgroups are created and
* destroyed simultaneously.
*/
memcg_kmem_cache_wq = alloc_workqueue("memcg_kmem_cache", 0, 1);
BUG_ON(!memcg_kmem_cache_wq);
#endif
cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
memcg_hotplug_cpu_dead);
for_each_possible_cpu(cpu)
INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
drain_local_stock);
for_each_node(node) {
struct mem_cgroup_tree_per_node *rtpn;
rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
node_online(node) ? node : NUMA_NO_NODE);
rtpn->rb_root = RB_ROOT;
rtpn->rb_rightmost = NULL;
spin_lock_init(&rtpn->lock);
soft_limit_tree.rb_tree_per_node[node] = rtpn;
}
return 0;
}
subsys_initcall(mem_cgroup_init);
#ifdef CONFIG_MEMCG_SWAP
static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
{
while (!refcount_inc_not_zero(&memcg->id.ref)) {
/*
* The root cgroup cannot be destroyed, so it's refcount must
* always be >= 1.
*/
if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
VM_BUG_ON(1);
break;
}
memcg = parent_mem_cgroup(memcg);
if (!memcg)
memcg = root_mem_cgroup;
}
return memcg;
}
/**
* mem_cgroup_swapout - transfer a memsw charge to swap
* @page: page whose memsw charge to transfer
* @entry: swap entry to move the charge to
*
* Transfer the memsw charge of @page to @entry.
*/
void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
{
struct mem_cgroup *memcg, *swap_memcg;
unsigned int nr_entries;
unsigned short oldid;
VM_BUG_ON_PAGE(PageLRU(page), page);
VM_BUG_ON_PAGE(page_count(page), page);
if (!do_memsw_account())
return;
memcg = page->mem_cgroup;
/* Readahead page, never charged */
if (!memcg)
return;
/*
* In case the memcg owning these pages has been offlined and doesn't
* have an ID allocated to it anymore, charge the closest online
* ancestor for the swap instead and transfer the memory+swap charge.
*/
swap_memcg = mem_cgroup_id_get_online(memcg);
nr_entries = hpage_nr_pages(page);
/* Get references for the tail pages, too */
if (nr_entries > 1)
mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
nr_entries);
VM_BUG_ON_PAGE(oldid, page);
mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
page->mem_cgroup = NULL;
if (!mem_cgroup_is_root(memcg))
page_counter_uncharge(&memcg->memory, nr_entries);
if (memcg != swap_memcg) {
if (!mem_cgroup_is_root(swap_memcg))
page_counter_charge(&swap_memcg->memsw, nr_entries);
page_counter_uncharge(&memcg->memsw, nr_entries);
}
/*
* Interrupts should be disabled here because the caller holds the
* i_pages lock which is taken with interrupts-off. It is
* important here to have the interrupts disabled because it is the
* only synchronisation we have for updating the per-CPU variables.
*/
VM_BUG_ON(!irqs_disabled());
mem_cgroup_charge_statistics(memcg, page, PageTransHuge(page),
-nr_entries);
memcg_check_events(memcg, page);
if (!mem_cgroup_is_root(memcg))
css_put_many(&memcg->css, nr_entries);
}
/**
* mem_cgroup_try_charge_swap - try charging swap space for a page
* @page: page being added to swap
* @entry: swap entry to charge
*
* Try to charge @page's memcg for the swap space at @entry.
*
* Returns 0 on success, -ENOMEM on failure.
*/
int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
{
unsigned int nr_pages = hpage_nr_pages(page);
struct page_counter *counter;
struct mem_cgroup *memcg;
unsigned short oldid;
if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
return 0;
memcg = page->mem_cgroup;
/* Readahead page, never charged */
if (!memcg)
return 0;
if (!entry.val) {
memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
return 0;
}
memcg = mem_cgroup_id_get_online(memcg);
if (!mem_cgroup_is_root(memcg) &&
!page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
memcg_memory_event(memcg, MEMCG_SWAP_MAX);
memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
mem_cgroup_id_put(memcg);
return -ENOMEM;
}
/* Get references for the tail pages, too */
if (nr_pages > 1)
mem_cgroup_id_get_many(memcg, nr_pages - 1);
oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
VM_BUG_ON_PAGE(oldid, page);
mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
return 0;
}
/**
* mem_cgroup_uncharge_swap - uncharge swap space
* @entry: swap entry to uncharge
* @nr_pages: the amount of swap space to uncharge
*/
void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
{
struct mem_cgroup *memcg;
unsigned short id;
if (!do_swap_account)
return;
id = swap_cgroup_record(entry, 0, nr_pages);
rcu_read_lock();
memcg = mem_cgroup_from_id(id);
if (memcg) {
if (!mem_cgroup_is_root(memcg)) {
if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
page_counter_uncharge(&memcg->swap, nr_pages);
else
page_counter_uncharge(&memcg->memsw, nr_pages);
}
mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
mem_cgroup_id_put_many(memcg, nr_pages);
}
rcu_read_unlock();
}
long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
{
long nr_swap_pages = get_nr_swap_pages();
if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
return nr_swap_pages;
for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
nr_swap_pages = min_t(long, nr_swap_pages,
READ_ONCE(memcg->swap.max) -
page_counter_read(&memcg->swap));
return nr_swap_pages;
}
bool mem_cgroup_swap_full(struct page *page)
{
struct mem_cgroup *memcg;
VM_BUG_ON_PAGE(!PageLocked(page), page);
if (vm_swap_full())
return true;
if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
return false;
memcg = page->mem_cgroup;
if (!memcg)
return false;
for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.max)
return true;
return false;
}
/* for remember boot option*/
#ifdef CONFIG_MEMCG_SWAP_ENABLED
static int really_do_swap_account __initdata = 1;
#else
static int really_do_swap_account __initdata;
#endif
static int __init enable_swap_account(char *s)
{
if (!strcmp(s, "1"))
really_do_swap_account = 1;
else if (!strcmp(s, "0"))
really_do_swap_account = 0;
return 1;
}
__setup("swapaccount=", enable_swap_account);
static u64 swap_current_read(struct cgroup_subsys_state *css,
struct cftype *cft)
{
struct mem_cgroup *memcg = mem_cgroup_from_css(css);
return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
}
static int swap_max_show(struct seq_file *m, void *v)
{
return seq_puts_memcg_tunable(m,
READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
}
static ssize_t swap_max_write(struct kernfs_open_file *of,
char *buf, size_t nbytes, loff_t off)
{
struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
unsigned long max;
int err;
buf = strstrip(buf);
err = page_counter_memparse(buf, "max", &max);
if (err)
return err;
xchg(&memcg->swap.max, max);
return nbytes;
}
static int swap_events_show(struct seq_file *m, void *v)
{
struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
seq_printf(m, "max %lu\n",
atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
seq_printf(m, "fail %lu\n",
atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
return 0;
}
static struct cftype swap_files[] = {
{
.name = "swap.current",
.flags = CFTYPE_NOT_ON_ROOT,
.read_u64 = swap_current_read,
},
{
.name = "swap.max",
.flags = CFTYPE_NOT_ON_ROOT,
.seq_show = swap_max_show,
.write = swap_max_write,
},
{
.name = "swap.events",
.flags = CFTYPE_NOT_ON_ROOT,
.file_offset = offsetof(struct mem_cgroup, swap_events_file),
.seq_show = swap_events_show,
},
{ } /* terminate */
};
static struct cftype memsw_cgroup_files[] = {
{
.name = "memsw.usage_in_bytes",
.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
.read_u64 = mem_cgroup_read_u64,
},
{
.name = "memsw.max_usage_in_bytes",
.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
.write = mem_cgroup_reset,
.read_u64 = mem_cgroup_read_u64,
},
{
.name = "memsw.limit_in_bytes",
.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
.write = mem_cgroup_write,
.read_u64 = mem_cgroup_read_u64,
},
{
.name = "memsw.failcnt",
.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
.write = mem_cgroup_reset,
.read_u64 = mem_cgroup_read_u64,
},
{ }, /* terminate */
};
static int __init mem_cgroup_swap_init(void)
{
if (!mem_cgroup_disabled() && really_do_swap_account) {
do_swap_account = 1;
WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
swap_files));
WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
memsw_cgroup_files));
}
return 0;
}
subsys_initcall(mem_cgroup_swap_init);
#endif /* CONFIG_MEMCG_SWAP */