| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * linux/drivers/mmc/core/core.c |
| * |
| * Copyright (C) 2003-2004 Russell King, All Rights Reserved. |
| * SD support Copyright (C) 2004 Ian Molton, All Rights Reserved. |
| * Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved. |
| * MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved. |
| */ |
| #include <linux/module.h> |
| #include <linux/init.h> |
| #include <linux/interrupt.h> |
| #include <linux/completion.h> |
| #include <linux/device.h> |
| #include <linux/delay.h> |
| #include <linux/pagemap.h> |
| #include <linux/err.h> |
| #include <linux/leds.h> |
| #include <linux/scatterlist.h> |
| #include <linux/log2.h> |
| #include <linux/pm_runtime.h> |
| #include <linux/pm_wakeup.h> |
| #include <linux/suspend.h> |
| #include <linux/fault-inject.h> |
| #include <linux/random.h> |
| #include <linux/slab.h> |
| #include <linux/of.h> |
| |
| #include <linux/mmc/card.h> |
| #include <linux/mmc/host.h> |
| #include <linux/mmc/mmc.h> |
| #include <linux/mmc/sd.h> |
| #include <linux/mmc/slot-gpio.h> |
| |
| #define CREATE_TRACE_POINTS |
| #include <trace/events/mmc.h> |
| |
| #include "core.h" |
| #include "card.h" |
| #include "bus.h" |
| #include "host.h" |
| #include "sdio_bus.h" |
| #include "pwrseq.h" |
| |
| #include "mmc_ops.h" |
| #include "sd_ops.h" |
| #include "sdio_ops.h" |
| |
| /* The max erase timeout, used when host->max_busy_timeout isn't specified */ |
| #define MMC_ERASE_TIMEOUT_MS (60 * 1000) /* 60 s */ |
| #define SD_DISCARD_TIMEOUT_MS (250) |
| |
| static const unsigned freqs[] = { 400000, 300000, 200000, 100000 }; |
| |
| /* |
| * Enabling software CRCs on the data blocks can be a significant (30%) |
| * performance cost, and for other reasons may not always be desired. |
| * So we allow it it to be disabled. |
| */ |
| bool use_spi_crc = 1; |
| module_param(use_spi_crc, bool, 0); |
| |
| static int mmc_schedule_delayed_work(struct delayed_work *work, |
| unsigned long delay) |
| { |
| /* |
| * We use the system_freezable_wq, because of two reasons. |
| * First, it allows several works (not the same work item) to be |
| * executed simultaneously. Second, the queue becomes frozen when |
| * userspace becomes frozen during system PM. |
| */ |
| return queue_delayed_work(system_freezable_wq, work, delay); |
| } |
| |
| #ifdef CONFIG_FAIL_MMC_REQUEST |
| |
| /* |
| * Internal function. Inject random data errors. |
| * If mmc_data is NULL no errors are injected. |
| */ |
| static void mmc_should_fail_request(struct mmc_host *host, |
| struct mmc_request *mrq) |
| { |
| struct mmc_command *cmd = mrq->cmd; |
| struct mmc_data *data = mrq->data; |
| static const int data_errors[] = { |
| -ETIMEDOUT, |
| -EILSEQ, |
| -EIO, |
| }; |
| |
| if (!data) |
| return; |
| |
| if ((cmd && cmd->error) || data->error || |
| !should_fail(&host->fail_mmc_request, data->blksz * data->blocks)) |
| return; |
| |
| data->error = data_errors[prandom_u32() % ARRAY_SIZE(data_errors)]; |
| data->bytes_xfered = (prandom_u32() % (data->bytes_xfered >> 9)) << 9; |
| } |
| |
| #else /* CONFIG_FAIL_MMC_REQUEST */ |
| |
| static inline void mmc_should_fail_request(struct mmc_host *host, |
| struct mmc_request *mrq) |
| { |
| } |
| |
| #endif /* CONFIG_FAIL_MMC_REQUEST */ |
| |
| static inline void mmc_complete_cmd(struct mmc_request *mrq) |
| { |
| if (mrq->cap_cmd_during_tfr && !completion_done(&mrq->cmd_completion)) |
| complete_all(&mrq->cmd_completion); |
| } |
| |
| void mmc_command_done(struct mmc_host *host, struct mmc_request *mrq) |
| { |
| if (!mrq->cap_cmd_during_tfr) |
| return; |
| |
| mmc_complete_cmd(mrq); |
| |
| pr_debug("%s: cmd done, tfr ongoing (CMD%u)\n", |
| mmc_hostname(host), mrq->cmd->opcode); |
| } |
| EXPORT_SYMBOL(mmc_command_done); |
| |
| /** |
| * mmc_request_done - finish processing an MMC request |
| * @host: MMC host which completed request |
| * @mrq: MMC request which request |
| * |
| * MMC drivers should call this function when they have completed |
| * their processing of a request. |
| */ |
| void mmc_request_done(struct mmc_host *host, struct mmc_request *mrq) |
| { |
| struct mmc_command *cmd = mrq->cmd; |
| int err = cmd->error; |
| |
| /* Flag re-tuning needed on CRC errors */ |
| if (cmd->opcode != MMC_SEND_TUNING_BLOCK && |
| cmd->opcode != MMC_SEND_TUNING_BLOCK_HS200 && |
| !host->retune_crc_disable && |
| (err == -EILSEQ || (mrq->sbc && mrq->sbc->error == -EILSEQ) || |
| (mrq->data && mrq->data->error == -EILSEQ) || |
| (mrq->stop && mrq->stop->error == -EILSEQ))) |
| mmc_retune_needed(host); |
| |
| if (err && cmd->retries && mmc_host_is_spi(host)) { |
| if (cmd->resp[0] & R1_SPI_ILLEGAL_COMMAND) |
| cmd->retries = 0; |
| } |
| |
| if (host->ongoing_mrq == mrq) |
| host->ongoing_mrq = NULL; |
| |
| mmc_complete_cmd(mrq); |
| |
| trace_mmc_request_done(host, mrq); |
| |
| /* |
| * We list various conditions for the command to be considered |
| * properly done: |
| * |
| * - There was no error, OK fine then |
| * - We are not doing some kind of retry |
| * - The card was removed (...so just complete everything no matter |
| * if there are errors or retries) |
| */ |
| if (!err || !cmd->retries || mmc_card_removed(host->card)) { |
| mmc_should_fail_request(host, mrq); |
| |
| if (!host->ongoing_mrq) |
| led_trigger_event(host->led, LED_OFF); |
| |
| if (mrq->sbc) { |
| pr_debug("%s: req done <CMD%u>: %d: %08x %08x %08x %08x\n", |
| mmc_hostname(host), mrq->sbc->opcode, |
| mrq->sbc->error, |
| mrq->sbc->resp[0], mrq->sbc->resp[1], |
| mrq->sbc->resp[2], mrq->sbc->resp[3]); |
| } |
| |
| pr_debug("%s: req done (CMD%u): %d: %08x %08x %08x %08x\n", |
| mmc_hostname(host), cmd->opcode, err, |
| cmd->resp[0], cmd->resp[1], |
| cmd->resp[2], cmd->resp[3]); |
| |
| if (mrq->data) { |
| pr_debug("%s: %d bytes transferred: %d\n", |
| mmc_hostname(host), |
| mrq->data->bytes_xfered, mrq->data->error); |
| } |
| |
| if (mrq->stop) { |
| pr_debug("%s: (CMD%u): %d: %08x %08x %08x %08x\n", |
| mmc_hostname(host), mrq->stop->opcode, |
| mrq->stop->error, |
| mrq->stop->resp[0], mrq->stop->resp[1], |
| mrq->stop->resp[2], mrq->stop->resp[3]); |
| } |
| } |
| /* |
| * Request starter must handle retries - see |
| * mmc_wait_for_req_done(). |
| */ |
| if (mrq->done) |
| mrq->done(mrq); |
| } |
| |
| EXPORT_SYMBOL(mmc_request_done); |
| |
| static void __mmc_start_request(struct mmc_host *host, struct mmc_request *mrq) |
| { |
| int err; |
| |
| /* Assumes host controller has been runtime resumed by mmc_claim_host */ |
| err = mmc_retune(host); |
| if (err) { |
| mrq->cmd->error = err; |
| mmc_request_done(host, mrq); |
| return; |
| } |
| |
| /* |
| * For sdio rw commands we must wait for card busy otherwise some |
| * sdio devices won't work properly. |
| * And bypass I/O abort, reset and bus suspend operations. |
| */ |
| if (sdio_is_io_busy(mrq->cmd->opcode, mrq->cmd->arg) && |
| host->ops->card_busy) { |
| int tries = 500; /* Wait aprox 500ms at maximum */ |
| |
| while (host->ops->card_busy(host) && --tries) |
| mmc_delay(1); |
| |
| if (tries == 0) { |
| mrq->cmd->error = -EBUSY; |
| mmc_request_done(host, mrq); |
| return; |
| } |
| } |
| |
| if (mrq->cap_cmd_during_tfr) { |
| host->ongoing_mrq = mrq; |
| /* |
| * Retry path could come through here without having waiting on |
| * cmd_completion, so ensure it is reinitialised. |
| */ |
| reinit_completion(&mrq->cmd_completion); |
| } |
| |
| trace_mmc_request_start(host, mrq); |
| |
| if (host->cqe_on) |
| host->cqe_ops->cqe_off(host); |
| |
| host->ops->request(host, mrq); |
| } |
| |
| static void mmc_mrq_pr_debug(struct mmc_host *host, struct mmc_request *mrq, |
| bool cqe) |
| { |
| if (mrq->sbc) { |
| pr_debug("<%s: starting CMD%u arg %08x flags %08x>\n", |
| mmc_hostname(host), mrq->sbc->opcode, |
| mrq->sbc->arg, mrq->sbc->flags); |
| } |
| |
| if (mrq->cmd) { |
| pr_debug("%s: starting %sCMD%u arg %08x flags %08x\n", |
| mmc_hostname(host), cqe ? "CQE direct " : "", |
| mrq->cmd->opcode, mrq->cmd->arg, mrq->cmd->flags); |
| } else if (cqe) { |
| pr_debug("%s: starting CQE transfer for tag %d blkaddr %u\n", |
| mmc_hostname(host), mrq->tag, mrq->data->blk_addr); |
| } |
| |
| if (mrq->data) { |
| pr_debug("%s: blksz %d blocks %d flags %08x " |
| "tsac %d ms nsac %d\n", |
| mmc_hostname(host), mrq->data->blksz, |
| mrq->data->blocks, mrq->data->flags, |
| mrq->data->timeout_ns / 1000000, |
| mrq->data->timeout_clks); |
| } |
| |
| if (mrq->stop) { |
| pr_debug("%s: CMD%u arg %08x flags %08x\n", |
| mmc_hostname(host), mrq->stop->opcode, |
| mrq->stop->arg, mrq->stop->flags); |
| } |
| } |
| |
| static int mmc_mrq_prep(struct mmc_host *host, struct mmc_request *mrq) |
| { |
| unsigned int i, sz = 0; |
| struct scatterlist *sg; |
| |
| if (mrq->cmd) { |
| mrq->cmd->error = 0; |
| mrq->cmd->mrq = mrq; |
| mrq->cmd->data = mrq->data; |
| } |
| if (mrq->sbc) { |
| mrq->sbc->error = 0; |
| mrq->sbc->mrq = mrq; |
| } |
| if (mrq->data) { |
| if (mrq->data->blksz > host->max_blk_size || |
| mrq->data->blocks > host->max_blk_count || |
| mrq->data->blocks * mrq->data->blksz > host->max_req_size) |
| return -EINVAL; |
| |
| for_each_sg(mrq->data->sg, sg, mrq->data->sg_len, i) |
| sz += sg->length; |
| if (sz != mrq->data->blocks * mrq->data->blksz) |
| return -EINVAL; |
| |
| mrq->data->error = 0; |
| mrq->data->mrq = mrq; |
| if (mrq->stop) { |
| mrq->data->stop = mrq->stop; |
| mrq->stop->error = 0; |
| mrq->stop->mrq = mrq; |
| } |
| } |
| |
| return 0; |
| } |
| |
| int mmc_start_request(struct mmc_host *host, struct mmc_request *mrq) |
| { |
| int err; |
| |
| init_completion(&mrq->cmd_completion); |
| |
| mmc_retune_hold(host); |
| |
| if (mmc_card_removed(host->card)) |
| return -ENOMEDIUM; |
| |
| mmc_mrq_pr_debug(host, mrq, false); |
| |
| WARN_ON(!host->claimed); |
| |
| err = mmc_mrq_prep(host, mrq); |
| if (err) |
| return err; |
| |
| led_trigger_event(host->led, LED_FULL); |
| __mmc_start_request(host, mrq); |
| |
| return 0; |
| } |
| EXPORT_SYMBOL(mmc_start_request); |
| |
| static void mmc_wait_done(struct mmc_request *mrq) |
| { |
| complete(&mrq->completion); |
| } |
| |
| static inline void mmc_wait_ongoing_tfr_cmd(struct mmc_host *host) |
| { |
| struct mmc_request *ongoing_mrq = READ_ONCE(host->ongoing_mrq); |
| |
| /* |
| * If there is an ongoing transfer, wait for the command line to become |
| * available. |
| */ |
| if (ongoing_mrq && !completion_done(&ongoing_mrq->cmd_completion)) |
| wait_for_completion(&ongoing_mrq->cmd_completion); |
| } |
| |
| static int __mmc_start_req(struct mmc_host *host, struct mmc_request *mrq) |
| { |
| int err; |
| |
| mmc_wait_ongoing_tfr_cmd(host); |
| |
| init_completion(&mrq->completion); |
| mrq->done = mmc_wait_done; |
| |
| err = mmc_start_request(host, mrq); |
| if (err) { |
| mrq->cmd->error = err; |
| mmc_complete_cmd(mrq); |
| complete(&mrq->completion); |
| } |
| |
| return err; |
| } |
| |
| void mmc_wait_for_req_done(struct mmc_host *host, struct mmc_request *mrq) |
| { |
| struct mmc_command *cmd; |
| |
| while (1) { |
| wait_for_completion(&mrq->completion); |
| |
| cmd = mrq->cmd; |
| |
| /* |
| * If host has timed out waiting for the sanitize |
| * to complete, card might be still in programming state |
| * so let's try to bring the card out of programming |
| * state. |
| */ |
| if (cmd->sanitize_busy && cmd->error == -ETIMEDOUT) { |
| if (!mmc_interrupt_hpi(host->card)) { |
| pr_warn("%s: %s: Interrupted sanitize\n", |
| mmc_hostname(host), __func__); |
| cmd->error = 0; |
| break; |
| } else { |
| pr_err("%s: %s: Failed to interrupt sanitize\n", |
| mmc_hostname(host), __func__); |
| } |
| } |
| if (!cmd->error || !cmd->retries || |
| mmc_card_removed(host->card)) |
| break; |
| |
| mmc_retune_recheck(host); |
| |
| pr_debug("%s: req failed (CMD%u): %d, retrying...\n", |
| mmc_hostname(host), cmd->opcode, cmd->error); |
| cmd->retries--; |
| cmd->error = 0; |
| __mmc_start_request(host, mrq); |
| } |
| |
| mmc_retune_release(host); |
| } |
| EXPORT_SYMBOL(mmc_wait_for_req_done); |
| |
| /* |
| * mmc_cqe_start_req - Start a CQE request. |
| * @host: MMC host to start the request |
| * @mrq: request to start |
| * |
| * Start the request, re-tuning if needed and it is possible. Returns an error |
| * code if the request fails to start or -EBUSY if CQE is busy. |
| */ |
| int mmc_cqe_start_req(struct mmc_host *host, struct mmc_request *mrq) |
| { |
| int err; |
| |
| /* |
| * CQE cannot process re-tuning commands. Caller must hold retuning |
| * while CQE is in use. Re-tuning can happen here only when CQE has no |
| * active requests i.e. this is the first. Note, re-tuning will call |
| * ->cqe_off(). |
| */ |
| err = mmc_retune(host); |
| if (err) |
| goto out_err; |
| |
| mrq->host = host; |
| |
| mmc_mrq_pr_debug(host, mrq, true); |
| |
| err = mmc_mrq_prep(host, mrq); |
| if (err) |
| goto out_err; |
| |
| err = host->cqe_ops->cqe_request(host, mrq); |
| if (err) |
| goto out_err; |
| |
| trace_mmc_request_start(host, mrq); |
| |
| return 0; |
| |
| out_err: |
| if (mrq->cmd) { |
| pr_debug("%s: failed to start CQE direct CMD%u, error %d\n", |
| mmc_hostname(host), mrq->cmd->opcode, err); |
| } else { |
| pr_debug("%s: failed to start CQE transfer for tag %d, error %d\n", |
| mmc_hostname(host), mrq->tag, err); |
| } |
| return err; |
| } |
| EXPORT_SYMBOL(mmc_cqe_start_req); |
| |
| /** |
| * mmc_cqe_request_done - CQE has finished processing an MMC request |
| * @host: MMC host which completed request |
| * @mrq: MMC request which completed |
| * |
| * CQE drivers should call this function when they have completed |
| * their processing of a request. |
| */ |
| void mmc_cqe_request_done(struct mmc_host *host, struct mmc_request *mrq) |
| { |
| mmc_should_fail_request(host, mrq); |
| |
| /* Flag re-tuning needed on CRC errors */ |
| if ((mrq->cmd && mrq->cmd->error == -EILSEQ) || |
| (mrq->data && mrq->data->error == -EILSEQ)) |
| mmc_retune_needed(host); |
| |
| trace_mmc_request_done(host, mrq); |
| |
| if (mrq->cmd) { |
| pr_debug("%s: CQE req done (direct CMD%u): %d\n", |
| mmc_hostname(host), mrq->cmd->opcode, mrq->cmd->error); |
| } else { |
| pr_debug("%s: CQE transfer done tag %d\n", |
| mmc_hostname(host), mrq->tag); |
| } |
| |
| if (mrq->data) { |
| pr_debug("%s: %d bytes transferred: %d\n", |
| mmc_hostname(host), |
| mrq->data->bytes_xfered, mrq->data->error); |
| } |
| |
| mrq->done(mrq); |
| } |
| EXPORT_SYMBOL(mmc_cqe_request_done); |
| |
| /** |
| * mmc_cqe_post_req - CQE post process of a completed MMC request |
| * @host: MMC host |
| * @mrq: MMC request to be processed |
| */ |
| void mmc_cqe_post_req(struct mmc_host *host, struct mmc_request *mrq) |
| { |
| if (host->cqe_ops->cqe_post_req) |
| host->cqe_ops->cqe_post_req(host, mrq); |
| } |
| EXPORT_SYMBOL(mmc_cqe_post_req); |
| |
| /* Arbitrary 1 second timeout */ |
| #define MMC_CQE_RECOVERY_TIMEOUT 1000 |
| |
| /* |
| * mmc_cqe_recovery - Recover from CQE errors. |
| * @host: MMC host to recover |
| * |
| * Recovery consists of stopping CQE, stopping eMMC, discarding the queue in |
| * in eMMC, and discarding the queue in CQE. CQE must call |
| * mmc_cqe_request_done() on all requests. An error is returned if the eMMC |
| * fails to discard its queue. |
| */ |
| int mmc_cqe_recovery(struct mmc_host *host) |
| { |
| struct mmc_command cmd; |
| int err; |
| |
| mmc_retune_hold_now(host); |
| |
| /* |
| * Recovery is expected seldom, if at all, but it reduces performance, |
| * so make sure it is not completely silent. |
| */ |
| pr_warn("%s: running CQE recovery\n", mmc_hostname(host)); |
| |
| host->cqe_ops->cqe_recovery_start(host); |
| |
| memset(&cmd, 0, sizeof(cmd)); |
| cmd.opcode = MMC_STOP_TRANSMISSION, |
| cmd.flags = MMC_RSP_R1B | MMC_CMD_AC, |
| cmd.flags &= ~MMC_RSP_CRC; /* Ignore CRC */ |
| cmd.busy_timeout = MMC_CQE_RECOVERY_TIMEOUT, |
| mmc_wait_for_cmd(host, &cmd, 0); |
| |
| memset(&cmd, 0, sizeof(cmd)); |
| cmd.opcode = MMC_CMDQ_TASK_MGMT; |
| cmd.arg = 1; /* Discard entire queue */ |
| cmd.flags = MMC_RSP_R1B | MMC_CMD_AC; |
| cmd.flags &= ~MMC_RSP_CRC; /* Ignore CRC */ |
| cmd.busy_timeout = MMC_CQE_RECOVERY_TIMEOUT, |
| err = mmc_wait_for_cmd(host, &cmd, 0); |
| |
| host->cqe_ops->cqe_recovery_finish(host); |
| |
| mmc_retune_release(host); |
| |
| return err; |
| } |
| EXPORT_SYMBOL(mmc_cqe_recovery); |
| |
| /** |
| * mmc_is_req_done - Determine if a 'cap_cmd_during_tfr' request is done |
| * @host: MMC host |
| * @mrq: MMC request |
| * |
| * mmc_is_req_done() is used with requests that have |
| * mrq->cap_cmd_during_tfr = true. mmc_is_req_done() must be called after |
| * starting a request and before waiting for it to complete. That is, |
| * either in between calls to mmc_start_req(), or after mmc_wait_for_req() |
| * and before mmc_wait_for_req_done(). If it is called at other times the |
| * result is not meaningful. |
| */ |
| bool mmc_is_req_done(struct mmc_host *host, struct mmc_request *mrq) |
| { |
| return completion_done(&mrq->completion); |
| } |
| EXPORT_SYMBOL(mmc_is_req_done); |
| |
| /** |
| * mmc_wait_for_req - start a request and wait for completion |
| * @host: MMC host to start command |
| * @mrq: MMC request to start |
| * |
| * Start a new MMC custom command request for a host, and wait |
| * for the command to complete. In the case of 'cap_cmd_during_tfr' |
| * requests, the transfer is ongoing and the caller can issue further |
| * commands that do not use the data lines, and then wait by calling |
| * mmc_wait_for_req_done(). |
| * Does not attempt to parse the response. |
| */ |
| void mmc_wait_for_req(struct mmc_host *host, struct mmc_request *mrq) |
| { |
| __mmc_start_req(host, mrq); |
| |
| if (!mrq->cap_cmd_during_tfr) |
| mmc_wait_for_req_done(host, mrq); |
| } |
| EXPORT_SYMBOL(mmc_wait_for_req); |
| |
| /** |
| * mmc_wait_for_cmd - start a command and wait for completion |
| * @host: MMC host to start command |
| * @cmd: MMC command to start |
| * @retries: maximum number of retries |
| * |
| * Start a new MMC command for a host, and wait for the command |
| * to complete. Return any error that occurred while the command |
| * was executing. Do not attempt to parse the response. |
| */ |
| int mmc_wait_for_cmd(struct mmc_host *host, struct mmc_command *cmd, int retries) |
| { |
| struct mmc_request mrq = {}; |
| |
| WARN_ON(!host->claimed); |
| |
| memset(cmd->resp, 0, sizeof(cmd->resp)); |
| cmd->retries = retries; |
| |
| mrq.cmd = cmd; |
| cmd->data = NULL; |
| |
| mmc_wait_for_req(host, &mrq); |
| |
| return cmd->error; |
| } |
| |
| EXPORT_SYMBOL(mmc_wait_for_cmd); |
| |
| /** |
| * mmc_set_data_timeout - set the timeout for a data command |
| * @data: data phase for command |
| * @card: the MMC card associated with the data transfer |
| * |
| * Computes the data timeout parameters according to the |
| * correct algorithm given the card type. |
| */ |
| void mmc_set_data_timeout(struct mmc_data *data, const struct mmc_card *card) |
| { |
| unsigned int mult; |
| |
| /* |
| * SDIO cards only define an upper 1 s limit on access. |
| */ |
| if (mmc_card_sdio(card)) { |
| data->timeout_ns = 1000000000; |
| data->timeout_clks = 0; |
| return; |
| } |
| |
| /* |
| * SD cards use a 100 multiplier rather than 10 |
| */ |
| mult = mmc_card_sd(card) ? 100 : 10; |
| |
| /* |
| * Scale up the multiplier (and therefore the timeout) by |
| * the r2w factor for writes. |
| */ |
| if (data->flags & MMC_DATA_WRITE) |
| mult <<= card->csd.r2w_factor; |
| |
| data->timeout_ns = card->csd.taac_ns * mult; |
| data->timeout_clks = card->csd.taac_clks * mult; |
| |
| /* |
| * SD cards also have an upper limit on the timeout. |
| */ |
| if (mmc_card_sd(card)) { |
| unsigned int timeout_us, limit_us; |
| |
| timeout_us = data->timeout_ns / 1000; |
| if (card->host->ios.clock) |
| timeout_us += data->timeout_clks * 1000 / |
| (card->host->ios.clock / 1000); |
| |
| if (data->flags & MMC_DATA_WRITE) |
| /* |
| * The MMC spec "It is strongly recommended |
| * for hosts to implement more than 500ms |
| * timeout value even if the card indicates |
| * the 250ms maximum busy length." Even the |
| * previous value of 300ms is known to be |
| * insufficient for some cards. |
| */ |
| limit_us = 3000000; |
| else |
| limit_us = 100000; |
| |
| /* |
| * SDHC cards always use these fixed values. |
| */ |
| if (timeout_us > limit_us) { |
| data->timeout_ns = limit_us * 1000; |
| data->timeout_clks = 0; |
| } |
| |
| /* assign limit value if invalid */ |
| if (timeout_us == 0) |
| data->timeout_ns = limit_us * 1000; |
| } |
| |
| /* |
| * Some cards require longer data read timeout than indicated in CSD. |
| * Address this by setting the read timeout to a "reasonably high" |
| * value. For the cards tested, 600ms has proven enough. If necessary, |
| * this value can be increased if other problematic cards require this. |
| */ |
| if (mmc_card_long_read_time(card) && data->flags & MMC_DATA_READ) { |
| data->timeout_ns = 600000000; |
| data->timeout_clks = 0; |
| } |
| |
| /* |
| * Some cards need very high timeouts if driven in SPI mode. |
| * The worst observed timeout was 900ms after writing a |
| * continuous stream of data until the internal logic |
| * overflowed. |
| */ |
| if (mmc_host_is_spi(card->host)) { |
| if (data->flags & MMC_DATA_WRITE) { |
| if (data->timeout_ns < 1000000000) |
| data->timeout_ns = 1000000000; /* 1s */ |
| } else { |
| if (data->timeout_ns < 100000000) |
| data->timeout_ns = 100000000; /* 100ms */ |
| } |
| } |
| } |
| EXPORT_SYMBOL(mmc_set_data_timeout); |
| |
| /* |
| * Allow claiming an already claimed host if the context is the same or there is |
| * no context but the task is the same. |
| */ |
| static inline bool mmc_ctx_matches(struct mmc_host *host, struct mmc_ctx *ctx, |
| struct task_struct *task) |
| { |
| return host->claimer == ctx || |
| (!ctx && task && host->claimer->task == task); |
| } |
| |
| static inline void mmc_ctx_set_claimer(struct mmc_host *host, |
| struct mmc_ctx *ctx, |
| struct task_struct *task) |
| { |
| if (!host->claimer) { |
| if (ctx) |
| host->claimer = ctx; |
| else |
| host->claimer = &host->default_ctx; |
| } |
| if (task) |
| host->claimer->task = task; |
| } |
| |
| /** |
| * __mmc_claim_host - exclusively claim a host |
| * @host: mmc host to claim |
| * @ctx: context that claims the host or NULL in which case the default |
| * context will be used |
| * @abort: whether or not the operation should be aborted |
| * |
| * Claim a host for a set of operations. If @abort is non null and |
| * dereference a non-zero value then this will return prematurely with |
| * that non-zero value without acquiring the lock. Returns zero |
| * with the lock held otherwise. |
| */ |
| int __mmc_claim_host(struct mmc_host *host, struct mmc_ctx *ctx, |
| atomic_t *abort) |
| { |
| struct task_struct *task = ctx ? NULL : current; |
| DECLARE_WAITQUEUE(wait, current); |
| unsigned long flags; |
| int stop; |
| bool pm = false; |
| |
| might_sleep(); |
| |
| add_wait_queue(&host->wq, &wait); |
| spin_lock_irqsave(&host->lock, flags); |
| while (1) { |
| set_current_state(TASK_UNINTERRUPTIBLE); |
| stop = abort ? atomic_read(abort) : 0; |
| if (stop || !host->claimed || mmc_ctx_matches(host, ctx, task)) |
| break; |
| spin_unlock_irqrestore(&host->lock, flags); |
| schedule(); |
| spin_lock_irqsave(&host->lock, flags); |
| } |
| set_current_state(TASK_RUNNING); |
| if (!stop) { |
| host->claimed = 1; |
| mmc_ctx_set_claimer(host, ctx, task); |
| host->claim_cnt += 1; |
| if (host->claim_cnt == 1) |
| pm = true; |
| } else |
| wake_up(&host->wq); |
| spin_unlock_irqrestore(&host->lock, flags); |
| remove_wait_queue(&host->wq, &wait); |
| |
| if (pm) |
| pm_runtime_get_sync(mmc_dev(host)); |
| |
| return stop; |
| } |
| EXPORT_SYMBOL(__mmc_claim_host); |
| |
| /** |
| * mmc_release_host - release a host |
| * @host: mmc host to release |
| * |
| * Release a MMC host, allowing others to claim the host |
| * for their operations. |
| */ |
| void mmc_release_host(struct mmc_host *host) |
| { |
| unsigned long flags; |
| |
| WARN_ON(!host->claimed); |
| |
| spin_lock_irqsave(&host->lock, flags); |
| if (--host->claim_cnt) { |
| /* Release for nested claim */ |
| spin_unlock_irqrestore(&host->lock, flags); |
| } else { |
| host->claimed = 0; |
| host->claimer->task = NULL; |
| host->claimer = NULL; |
| spin_unlock_irqrestore(&host->lock, flags); |
| wake_up(&host->wq); |
| pm_runtime_mark_last_busy(mmc_dev(host)); |
| if (host->caps & MMC_CAP_SYNC_RUNTIME_PM) |
| pm_runtime_put_sync_suspend(mmc_dev(host)); |
| else |
| pm_runtime_put_autosuspend(mmc_dev(host)); |
| } |
| } |
| EXPORT_SYMBOL(mmc_release_host); |
| |
| /* |
| * This is a helper function, which fetches a runtime pm reference for the |
| * card device and also claims the host. |
| */ |
| void mmc_get_card(struct mmc_card *card, struct mmc_ctx *ctx) |
| { |
| pm_runtime_get_sync(&card->dev); |
| __mmc_claim_host(card->host, ctx, NULL); |
| } |
| EXPORT_SYMBOL(mmc_get_card); |
| |
| /* |
| * This is a helper function, which releases the host and drops the runtime |
| * pm reference for the card device. |
| */ |
| void mmc_put_card(struct mmc_card *card, struct mmc_ctx *ctx) |
| { |
| struct mmc_host *host = card->host; |
| |
| WARN_ON(ctx && host->claimer != ctx); |
| |
| mmc_release_host(host); |
| pm_runtime_mark_last_busy(&card->dev); |
| pm_runtime_put_autosuspend(&card->dev); |
| } |
| EXPORT_SYMBOL(mmc_put_card); |
| |
| /* |
| * Internal function that does the actual ios call to the host driver, |
| * optionally printing some debug output. |
| */ |
| static inline void mmc_set_ios(struct mmc_host *host) |
| { |
| struct mmc_ios *ios = &host->ios; |
| |
| pr_debug("%s: clock %uHz busmode %u powermode %u cs %u Vdd %u " |
| "width %u timing %u\n", |
| mmc_hostname(host), ios->clock, ios->bus_mode, |
| ios->power_mode, ios->chip_select, ios->vdd, |
| 1 << ios->bus_width, ios->timing); |
| |
| host->ops->set_ios(host, ios); |
| } |
| |
| /* |
| * Control chip select pin on a host. |
| */ |
| void mmc_set_chip_select(struct mmc_host *host, int mode) |
| { |
| host->ios.chip_select = mode; |
| mmc_set_ios(host); |
| } |
| |
| /* |
| * Sets the host clock to the highest possible frequency that |
| * is below "hz". |
| */ |
| void mmc_set_clock(struct mmc_host *host, unsigned int hz) |
| { |
| WARN_ON(hz && hz < host->f_min); |
| |
| if (hz > host->f_max) |
| hz = host->f_max; |
| |
| host->ios.clock = hz; |
| mmc_set_ios(host); |
| } |
| |
| int mmc_execute_tuning(struct mmc_card *card) |
| { |
| struct mmc_host *host = card->host; |
| u32 opcode; |
| int err; |
| |
| if (!host->ops->execute_tuning) |
| return 0; |
| |
| if (host->cqe_on) |
| host->cqe_ops->cqe_off(host); |
| |
| if (mmc_card_mmc(card)) |
| opcode = MMC_SEND_TUNING_BLOCK_HS200; |
| else |
| opcode = MMC_SEND_TUNING_BLOCK; |
| |
| err = host->ops->execute_tuning(host, opcode); |
| |
| if (err) { |
| pr_err("%s: tuning execution failed: %d\n", |
| mmc_hostname(host), err); |
| } else { |
| host->retune_now = 0; |
| host->need_retune = 0; |
| mmc_retune_enable(host); |
| } |
| |
| return err; |
| } |
| |
| /* |
| * Change the bus mode (open drain/push-pull) of a host. |
| */ |
| void mmc_set_bus_mode(struct mmc_host *host, unsigned int mode) |
| { |
| host->ios.bus_mode = mode; |
| mmc_set_ios(host); |
| } |
| |
| /* |
| * Change data bus width of a host. |
| */ |
| void mmc_set_bus_width(struct mmc_host *host, unsigned int width) |
| { |
| host->ios.bus_width = width; |
| mmc_set_ios(host); |
| } |
| |
| /* |
| * Set initial state after a power cycle or a hw_reset. |
| */ |
| void mmc_set_initial_state(struct mmc_host *host) |
| { |
| if (host->cqe_on) |
| host->cqe_ops->cqe_off(host); |
| |
| mmc_retune_disable(host); |
| |
| if (mmc_host_is_spi(host)) |
| host->ios.chip_select = MMC_CS_HIGH; |
| else |
| host->ios.chip_select = MMC_CS_DONTCARE; |
| host->ios.bus_mode = MMC_BUSMODE_PUSHPULL; |
| host->ios.bus_width = MMC_BUS_WIDTH_1; |
| host->ios.timing = MMC_TIMING_LEGACY; |
| host->ios.drv_type = 0; |
| host->ios.enhanced_strobe = false; |
| |
| /* |
| * Make sure we are in non-enhanced strobe mode before we |
| * actually enable it in ext_csd. |
| */ |
| if ((host->caps2 & MMC_CAP2_HS400_ES) && |
| host->ops->hs400_enhanced_strobe) |
| host->ops->hs400_enhanced_strobe(host, &host->ios); |
| |
| mmc_set_ios(host); |
| } |
| |
| /** |
| * mmc_vdd_to_ocrbitnum - Convert a voltage to the OCR bit number |
| * @vdd: voltage (mV) |
| * @low_bits: prefer low bits in boundary cases |
| * |
| * This function returns the OCR bit number according to the provided @vdd |
| * value. If conversion is not possible a negative errno value returned. |
| * |
| * Depending on the @low_bits flag the function prefers low or high OCR bits |
| * on boundary voltages. For example, |
| * with @low_bits = true, 3300 mV translates to ilog2(MMC_VDD_32_33); |
| * with @low_bits = false, 3300 mV translates to ilog2(MMC_VDD_33_34); |
| * |
| * Any value in the [1951:1999] range translates to the ilog2(MMC_VDD_20_21). |
| */ |
| static int mmc_vdd_to_ocrbitnum(int vdd, bool low_bits) |
| { |
| const int max_bit = ilog2(MMC_VDD_35_36); |
| int bit; |
| |
| if (vdd < 1650 || vdd > 3600) |
| return -EINVAL; |
| |
| if (vdd >= 1650 && vdd <= 1950) |
| return ilog2(MMC_VDD_165_195); |
| |
| if (low_bits) |
| vdd -= 1; |
| |
| /* Base 2000 mV, step 100 mV, bit's base 8. */ |
| bit = (vdd - 2000) / 100 + 8; |
| if (bit > max_bit) |
| return max_bit; |
| return bit; |
| } |
| |
| /** |
| * mmc_vddrange_to_ocrmask - Convert a voltage range to the OCR mask |
| * @vdd_min: minimum voltage value (mV) |
| * @vdd_max: maximum voltage value (mV) |
| * |
| * This function returns the OCR mask bits according to the provided @vdd_min |
| * and @vdd_max values. If conversion is not possible the function returns 0. |
| * |
| * Notes wrt boundary cases: |
| * This function sets the OCR bits for all boundary voltages, for example |
| * [3300:3400] range is translated to MMC_VDD_32_33 | MMC_VDD_33_34 | |
| * MMC_VDD_34_35 mask. |
| */ |
| u32 mmc_vddrange_to_ocrmask(int vdd_min, int vdd_max) |
| { |
| u32 mask = 0; |
| |
| if (vdd_max < vdd_min) |
| return 0; |
| |
| /* Prefer high bits for the boundary vdd_max values. */ |
| vdd_max = mmc_vdd_to_ocrbitnum(vdd_max, false); |
| if (vdd_max < 0) |
| return 0; |
| |
| /* Prefer low bits for the boundary vdd_min values. */ |
| vdd_min = mmc_vdd_to_ocrbitnum(vdd_min, true); |
| if (vdd_min < 0) |
| return 0; |
| |
| /* Fill the mask, from max bit to min bit. */ |
| while (vdd_max >= vdd_min) |
| mask |= 1 << vdd_max--; |
| |
| return mask; |
| } |
| |
| static int mmc_of_get_func_num(struct device_node *node) |
| { |
| u32 reg; |
| int ret; |
| |
| ret = of_property_read_u32(node, "reg", ®); |
| if (ret < 0) |
| return ret; |
| |
| return reg; |
| } |
| |
| struct device_node *mmc_of_find_child_device(struct mmc_host *host, |
| unsigned func_num) |
| { |
| struct device_node *node; |
| |
| if (!host->parent || !host->parent->of_node) |
| return NULL; |
| |
| for_each_child_of_node(host->parent->of_node, node) { |
| if (mmc_of_get_func_num(node) == func_num) |
| return node; |
| } |
| |
| return NULL; |
| } |
| |
| /* |
| * Mask off any voltages we don't support and select |
| * the lowest voltage |
| */ |
| u32 mmc_select_voltage(struct mmc_host *host, u32 ocr) |
| { |
| int bit; |
| |
| /* |
| * Sanity check the voltages that the card claims to |
| * support. |
| */ |
| if (ocr & 0x7F) { |
| dev_warn(mmc_dev(host), |
| "card claims to support voltages below defined range\n"); |
| ocr &= ~0x7F; |
| } |
| |
| ocr &= host->ocr_avail; |
| if (!ocr) { |
| dev_warn(mmc_dev(host), "no support for card's volts\n"); |
| return 0; |
| } |
| |
| if (host->caps2 & MMC_CAP2_FULL_PWR_CYCLE) { |
| bit = ffs(ocr) - 1; |
| ocr &= 3 << bit; |
| mmc_power_cycle(host, ocr); |
| } else { |
| bit = fls(ocr) - 1; |
| ocr &= 3 << bit; |
| if (bit != host->ios.vdd) |
| dev_warn(mmc_dev(host), "exceeding card's volts\n"); |
| } |
| |
| return ocr; |
| } |
| |
| int mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage) |
| { |
| int err = 0; |
| int old_signal_voltage = host->ios.signal_voltage; |
| |
| host->ios.signal_voltage = signal_voltage; |
| if (host->ops->start_signal_voltage_switch) |
| err = host->ops->start_signal_voltage_switch(host, &host->ios); |
| |
| if (err) |
| host->ios.signal_voltage = old_signal_voltage; |
| |
| return err; |
| |
| } |
| |
| void mmc_set_initial_signal_voltage(struct mmc_host *host) |
| { |
| /* Try to set signal voltage to 3.3V but fall back to 1.8v or 1.2v */ |
| if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330)) |
| dev_dbg(mmc_dev(host), "Initial signal voltage of 3.3v\n"); |
| else if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180)) |
| dev_dbg(mmc_dev(host), "Initial signal voltage of 1.8v\n"); |
| else if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120)) |
| dev_dbg(mmc_dev(host), "Initial signal voltage of 1.2v\n"); |
| } |
| |
| int mmc_host_set_uhs_voltage(struct mmc_host *host) |
| { |
| u32 clock; |
| |
| /* |
| * During a signal voltage level switch, the clock must be gated |
| * for 5 ms according to the SD spec |
| */ |
| clock = host->ios.clock; |
| host->ios.clock = 0; |
| mmc_set_ios(host); |
| |
| if (mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180)) |
| return -EAGAIN; |
| |
| /* Keep clock gated for at least 10 ms, though spec only says 5 ms */ |
| mmc_delay(10); |
| host->ios.clock = clock; |
| mmc_set_ios(host); |
| |
| return 0; |
| } |
| |
| int mmc_set_uhs_voltage(struct mmc_host *host, u32 ocr) |
| { |
| struct mmc_command cmd = {}; |
| int err = 0; |
| |
| /* |
| * If we cannot switch voltages, return failure so the caller |
| * can continue without UHS mode |
| */ |
| if (!host->ops->start_signal_voltage_switch) |
| return -EPERM; |
| if (!host->ops->card_busy) |
| pr_warn("%s: cannot verify signal voltage switch\n", |
| mmc_hostname(host)); |
| |
| cmd.opcode = SD_SWITCH_VOLTAGE; |
| cmd.arg = 0; |
| cmd.flags = MMC_RSP_R1 | MMC_CMD_AC; |
| |
| err = mmc_wait_for_cmd(host, &cmd, 0); |
| if (err) |
| goto power_cycle; |
| |
| if (!mmc_host_is_spi(host) && (cmd.resp[0] & R1_ERROR)) |
| return -EIO; |
| |
| /* |
| * The card should drive cmd and dat[0:3] low immediately |
| * after the response of cmd11, but wait 1 ms to be sure |
| */ |
| mmc_delay(1); |
| if (host->ops->card_busy && !host->ops->card_busy(host)) { |
| err = -EAGAIN; |
| goto power_cycle; |
| } |
| |
| if (mmc_host_set_uhs_voltage(host)) { |
| /* |
| * Voltages may not have been switched, but we've already |
| * sent CMD11, so a power cycle is required anyway |
| */ |
| err = -EAGAIN; |
| goto power_cycle; |
| } |
| |
| /* Wait for at least 1 ms according to spec */ |
| mmc_delay(1); |
| |
| /* |
| * Failure to switch is indicated by the card holding |
| * dat[0:3] low |
| */ |
| if (host->ops->card_busy && host->ops->card_busy(host)) |
| err = -EAGAIN; |
| |
| power_cycle: |
| if (err) { |
| pr_debug("%s: Signal voltage switch failed, " |
| "power cycling card\n", mmc_hostname(host)); |
| mmc_power_cycle(host, ocr); |
| } |
| |
| return err; |
| } |
| |
| /* |
| * Select timing parameters for host. |
| */ |
| void mmc_set_timing(struct mmc_host *host, unsigned int timing) |
| { |
| host->ios.timing = timing; |
| mmc_set_ios(host); |
| } |
| |
| /* |
| * Select appropriate driver type for host. |
| */ |
| void mmc_set_driver_type(struct mmc_host *host, unsigned int drv_type) |
| { |
| host->ios.drv_type = drv_type; |
| mmc_set_ios(host); |
| } |
| |
| int mmc_select_drive_strength(struct mmc_card *card, unsigned int max_dtr, |
| int card_drv_type, int *drv_type) |
| { |
| struct mmc_host *host = card->host; |
| int host_drv_type = SD_DRIVER_TYPE_B; |
| |
| *drv_type = 0; |
| |
| if (!host->ops->select_drive_strength) |
| return 0; |
| |
| /* Use SD definition of driver strength for hosts */ |
| if (host->caps & MMC_CAP_DRIVER_TYPE_A) |
| host_drv_type |= SD_DRIVER_TYPE_A; |
| |
| if (host->caps & MMC_CAP_DRIVER_TYPE_C) |
| host_drv_type |= SD_DRIVER_TYPE_C; |
| |
| if (host->caps & MMC_CAP_DRIVER_TYPE_D) |
| host_drv_type |= SD_DRIVER_TYPE_D; |
| |
| /* |
| * The drive strength that the hardware can support |
| * depends on the board design. Pass the appropriate |
| * information and let the hardware specific code |
| * return what is possible given the options |
| */ |
| return host->ops->select_drive_strength(card, max_dtr, |
| host_drv_type, |
| card_drv_type, |
| drv_type); |
| } |
| |
| /* |
| * Apply power to the MMC stack. This is a two-stage process. |
| * First, we enable power to the card without the clock running. |
| * We then wait a bit for the power to stabilise. Finally, |
| * enable the bus drivers and clock to the card. |
| * |
| * We must _NOT_ enable the clock prior to power stablising. |
| * |
| * If a host does all the power sequencing itself, ignore the |
| * initial MMC_POWER_UP stage. |
| */ |
| void mmc_power_up(struct mmc_host *host, u32 ocr) |
| { |
| if (host->ios.power_mode == MMC_POWER_ON) |
| return; |
| |
| mmc_pwrseq_pre_power_on(host); |
| |
| host->ios.vdd = fls(ocr) - 1; |
| host->ios.power_mode = MMC_POWER_UP; |
| /* Set initial state and call mmc_set_ios */ |
| mmc_set_initial_state(host); |
| |
| mmc_set_initial_signal_voltage(host); |
| |
| /* |
| * This delay should be sufficient to allow the power supply |
| * to reach the minimum voltage. |
| */ |
| mmc_delay(host->ios.power_delay_ms); |
| |
| mmc_pwrseq_post_power_on(host); |
| |
| host->ios.clock = host->f_init; |
| |
| host->ios.power_mode = MMC_POWER_ON; |
| mmc_set_ios(host); |
| |
| /* |
| * This delay must be at least 74 clock sizes, or 1 ms, or the |
| * time required to reach a stable voltage. |
| */ |
| mmc_delay(host->ios.power_delay_ms); |
| } |
| |
| void mmc_power_off(struct mmc_host *host) |
| { |
| if (host->ios.power_mode == MMC_POWER_OFF) |
| return; |
| |
| mmc_pwrseq_power_off(host); |
| |
| host->ios.clock = 0; |
| host->ios.vdd = 0; |
| |
| host->ios.power_mode = MMC_POWER_OFF; |
| /* Set initial state and call mmc_set_ios */ |
| mmc_set_initial_state(host); |
| |
| /* |
| * Some configurations, such as the 802.11 SDIO card in the OLPC |
| * XO-1.5, require a short delay after poweroff before the card |
| * can be successfully turned on again. |
| */ |
| mmc_delay(1); |
| } |
| |
| void mmc_power_cycle(struct mmc_host *host, u32 ocr) |
| { |
| mmc_power_off(host); |
| /* Wait at least 1 ms according to SD spec */ |
| mmc_delay(1); |
| mmc_power_up(host, ocr); |
| } |
| |
| /* |
| * Cleanup when the last reference to the bus operator is dropped. |
| */ |
| static void __mmc_release_bus(struct mmc_host *host) |
| { |
| WARN_ON(!host->bus_dead); |
| |
| host->bus_ops = NULL; |
| } |
| |
| /* |
| * Increase reference count of bus operator |
| */ |
| static inline void mmc_bus_get(struct mmc_host *host) |
| { |
| unsigned long flags; |
| |
| spin_lock_irqsave(&host->lock, flags); |
| host->bus_refs++; |
| spin_unlock_irqrestore(&host->lock, flags); |
| } |
| |
| /* |
| * Decrease reference count of bus operator and free it if |
| * it is the last reference. |
| */ |
| static inline void mmc_bus_put(struct mmc_host *host) |
| { |
| unsigned long flags; |
| |
| spin_lock_irqsave(&host->lock, flags); |
| host->bus_refs--; |
| if ((host->bus_refs == 0) && host->bus_ops) |
| __mmc_release_bus(host); |
| spin_unlock_irqrestore(&host->lock, flags); |
| } |
| |
| /* |
| * Assign a mmc bus handler to a host. Only one bus handler may control a |
| * host at any given time. |
| */ |
| void mmc_attach_bus(struct mmc_host *host, const struct mmc_bus_ops *ops) |
| { |
| unsigned long flags; |
| |
| WARN_ON(!host->claimed); |
| |
| spin_lock_irqsave(&host->lock, flags); |
| |
| WARN_ON(host->bus_ops); |
| WARN_ON(host->bus_refs); |
| |
| host->bus_ops = ops; |
| host->bus_refs = 1; |
| host->bus_dead = 0; |
| |
| spin_unlock_irqrestore(&host->lock, flags); |
| } |
| |
| /* |
| * Remove the current bus handler from a host. |
| */ |
| void mmc_detach_bus(struct mmc_host *host) |
| { |
| unsigned long flags; |
| |
| WARN_ON(!host->claimed); |
| WARN_ON(!host->bus_ops); |
| |
| spin_lock_irqsave(&host->lock, flags); |
| |
| host->bus_dead = 1; |
| |
| spin_unlock_irqrestore(&host->lock, flags); |
| |
| mmc_bus_put(host); |
| } |
| |
| void _mmc_detect_change(struct mmc_host *host, unsigned long delay, bool cd_irq) |
| { |
| /* |
| * If the device is configured as wakeup, we prevent a new sleep for |
| * 5 s to give provision for user space to consume the event. |
| */ |
| if (cd_irq && !(host->caps & MMC_CAP_NEEDS_POLL) && |
| device_can_wakeup(mmc_dev(host))) |
| pm_wakeup_event(mmc_dev(host), 5000); |
| |
| host->detect_change = 1; |
| mmc_schedule_delayed_work(&host->detect, delay); |
| } |
| |
| /** |
| * mmc_detect_change - process change of state on a MMC socket |
| * @host: host which changed state. |
| * @delay: optional delay to wait before detection (jiffies) |
| * |
| * MMC drivers should call this when they detect a card has been |
| * inserted or removed. The MMC layer will confirm that any |
| * present card is still functional, and initialize any newly |
| * inserted. |
| */ |
| void mmc_detect_change(struct mmc_host *host, unsigned long delay) |
| { |
| _mmc_detect_change(host, delay, true); |
| } |
| EXPORT_SYMBOL(mmc_detect_change); |
| |
| void mmc_init_erase(struct mmc_card *card) |
| { |
| unsigned int sz; |
| |
| if (is_power_of_2(card->erase_size)) |
| card->erase_shift = ffs(card->erase_size) - 1; |
| else |
| card->erase_shift = 0; |
| |
| /* |
| * It is possible to erase an arbitrarily large area of an SD or MMC |
| * card. That is not desirable because it can take a long time |
| * (minutes) potentially delaying more important I/O, and also the |
| * timeout calculations become increasingly hugely over-estimated. |
| * Consequently, 'pref_erase' is defined as a guide to limit erases |
| * to that size and alignment. |
| * |
| * For SD cards that define Allocation Unit size, limit erases to one |
| * Allocation Unit at a time. |
| * For MMC, have a stab at ai good value and for modern cards it will |
| * end up being 4MiB. Note that if the value is too small, it can end |
| * up taking longer to erase. Also note, erase_size is already set to |
| * High Capacity Erase Size if available when this function is called. |
| */ |
| if (mmc_card_sd(card) && card->ssr.au) { |
| card->pref_erase = card->ssr.au; |
| card->erase_shift = ffs(card->ssr.au) - 1; |
| } else if (card->erase_size) { |
| sz = (card->csd.capacity << (card->csd.read_blkbits - 9)) >> 11; |
| if (sz < 128) |
| card->pref_erase = 512 * 1024 / 512; |
| else if (sz < 512) |
| card->pref_erase = 1024 * 1024 / 512; |
| else if (sz < 1024) |
| card->pref_erase = 2 * 1024 * 1024 / 512; |
| else |
| card->pref_erase = 4 * 1024 * 1024 / 512; |
| if (card->pref_erase < card->erase_size) |
| card->pref_erase = card->erase_size; |
| else { |
| sz = card->pref_erase % card->erase_size; |
| if (sz) |
| card->pref_erase += card->erase_size - sz; |
| } |
| } else |
| card->pref_erase = 0; |
| } |
| |
| static unsigned int mmc_mmc_erase_timeout(struct mmc_card *card, |
| unsigned int arg, unsigned int qty) |
| { |
| unsigned int erase_timeout; |
| |
| if (arg == MMC_DISCARD_ARG || |
| (arg == MMC_TRIM_ARG && card->ext_csd.rev >= 6)) { |
| erase_timeout = card->ext_csd.trim_timeout; |
| } else if (card->ext_csd.erase_group_def & 1) { |
| /* High Capacity Erase Group Size uses HC timeouts */ |
| if (arg == MMC_TRIM_ARG) |
| erase_timeout = card->ext_csd.trim_timeout; |
| else |
| erase_timeout = card->ext_csd.hc_erase_timeout; |
| } else { |
| /* CSD Erase Group Size uses write timeout */ |
| unsigned int mult = (10 << card->csd.r2w_factor); |
| unsigned int timeout_clks = card->csd.taac_clks * mult; |
| unsigned int timeout_us; |
| |
| /* Avoid overflow: e.g. taac_ns=80000000 mult=1280 */ |
| if (card->csd.taac_ns < 1000000) |
| timeout_us = (card->csd.taac_ns * mult) / 1000; |
| else |
| timeout_us = (card->csd.taac_ns / 1000) * mult; |
| |
| /* |
| * ios.clock is only a target. The real clock rate might be |
| * less but not that much less, so fudge it by multiplying by 2. |
| */ |
| timeout_clks <<= 1; |
| timeout_us += (timeout_clks * 1000) / |
| (card->host->ios.clock / 1000); |
| |
| erase_timeout = timeout_us / 1000; |
| |
| /* |
| * Theoretically, the calculation could underflow so round up |
| * to 1ms in that case. |
| */ |
| if (!erase_timeout) |
| erase_timeout = 1; |
| } |
| |
| /* Multiplier for secure operations */ |
| if (arg & MMC_SECURE_ARGS) { |
| if (arg == MMC_SECURE_ERASE_ARG) |
| erase_timeout *= card->ext_csd.sec_erase_mult; |
| else |
| erase_timeout *= card->ext_csd.sec_trim_mult; |
| } |
| |
| erase_timeout *= qty; |
| |
| /* |
| * Ensure at least a 1 second timeout for SPI as per |
| * 'mmc_set_data_timeout()' |
| */ |
| if (mmc_host_is_spi(card->host) && erase_timeout < 1000) |
| erase_timeout = 1000; |
| |
| return erase_timeout; |
| } |
| |
| static unsigned int mmc_sd_erase_timeout(struct mmc_card *card, |
| unsigned int arg, |
| unsigned int qty) |
| { |
| unsigned int erase_timeout; |
| |
| /* for DISCARD none of the below calculation applies. |
| * the busy timeout is 250msec per discard command. |
| */ |
| if (arg == SD_DISCARD_ARG) |
| return SD_DISCARD_TIMEOUT_MS; |
| |
| if (card->ssr.erase_timeout) { |
| /* Erase timeout specified in SD Status Register (SSR) */ |
| erase_timeout = card->ssr.erase_timeout * qty + |
| card->ssr.erase_offset; |
| } else { |
| /* |
| * Erase timeout not specified in SD Status Register (SSR) so |
| * use 250ms per write block. |
| */ |
| erase_timeout = 250 * qty; |
| } |
| |
| /* Must not be less than 1 second */ |
| if (erase_timeout < 1000) |
| erase_timeout = 1000; |
| |
| return erase_timeout; |
| } |
| |
| static unsigned int mmc_erase_timeout(struct mmc_card *card, |
| unsigned int arg, |
| unsigned int qty) |
| { |
| if (mmc_card_sd(card)) |
| return mmc_sd_erase_timeout(card, arg, qty); |
| else |
| return mmc_mmc_erase_timeout(card, arg, qty); |
| } |
| |
| static int mmc_do_erase(struct mmc_card *card, unsigned int from, |
| unsigned int to, unsigned int arg) |
| { |
| struct mmc_command cmd = {}; |
| unsigned int qty = 0, busy_timeout = 0; |
| bool use_r1b_resp = false; |
| unsigned long timeout; |
| int loop_udelay=64, udelay_max=32768; |
| int err; |
| |
| mmc_retune_hold(card->host); |
| |
| /* |
| * qty is used to calculate the erase timeout which depends on how many |
| * erase groups (or allocation units in SD terminology) are affected. |
| * We count erasing part of an erase group as one erase group. |
| * For SD, the allocation units are always a power of 2. For MMC, the |
| * erase group size is almost certainly also power of 2, but it does not |
| * seem to insist on that in the JEDEC standard, so we fall back to |
| * division in that case. SD may not specify an allocation unit size, |
| * in which case the timeout is based on the number of write blocks. |
| * |
| * Note that the timeout for secure trim 2 will only be correct if the |
| * number of erase groups specified is the same as the total of all |
| * preceding secure trim 1 commands. Since the power may have been |
| * lost since the secure trim 1 commands occurred, it is generally |
| * impossible to calculate the secure trim 2 timeout correctly. |
| */ |
| if (card->erase_shift) |
| qty += ((to >> card->erase_shift) - |
| (from >> card->erase_shift)) + 1; |
| else if (mmc_card_sd(card)) |
| qty += to - from + 1; |
| else |
| qty += ((to / card->erase_size) - |
| (from / card->erase_size)) + 1; |
| |
| if (!mmc_card_blockaddr(card)) { |
| from <<= 9; |
| to <<= 9; |
| } |
| |
| if (mmc_card_sd(card)) |
| cmd.opcode = SD_ERASE_WR_BLK_START; |
| else |
| cmd.opcode = MMC_ERASE_GROUP_START; |
| cmd.arg = from; |
| cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC; |
| err = mmc_wait_for_cmd(card->host, &cmd, 0); |
| if (err) { |
| pr_err("mmc_erase: group start error %d, " |
| "status %#x\n", err, cmd.resp[0]); |
| err = -EIO; |
| goto out; |
| } |
| |
| memset(&cmd, 0, sizeof(struct mmc_command)); |
| if (mmc_card_sd(card)) |
| cmd.opcode = SD_ERASE_WR_BLK_END; |
| else |
| cmd.opcode = MMC_ERASE_GROUP_END; |
| cmd.arg = to; |
| cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC; |
| err = mmc_wait_for_cmd(card->host, &cmd, 0); |
| if (err) { |
| pr_err("mmc_erase: group end error %d, status %#x\n", |
| err, cmd.resp[0]); |
| err = -EIO; |
| goto out; |
| } |
| |
| memset(&cmd, 0, sizeof(struct mmc_command)); |
| cmd.opcode = MMC_ERASE; |
| cmd.arg = arg; |
| busy_timeout = mmc_erase_timeout(card, arg, qty); |
| /* |
| * If the host controller supports busy signalling and the timeout for |
| * the erase operation does not exceed the max_busy_timeout, we should |
| * use R1B response. Or we need to prevent the host from doing hw busy |
| * detection, which is done by converting to a R1 response instead. |
| * Note, some hosts requires R1B, which also means they are on their own |
| * when it comes to deal with the busy timeout. |
| */ |
| if (!(card->host->caps & MMC_CAP_NEED_RSP_BUSY) && |
| card->host->max_busy_timeout && |
| busy_timeout > card->host->max_busy_timeout) { |
| cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC; |
| } else { |
| cmd.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC; |
| cmd.busy_timeout = busy_timeout; |
| use_r1b_resp = true; |
| } |
| |
| err = mmc_wait_for_cmd(card->host, &cmd, 0); |
| if (err) { |
| pr_err("mmc_erase: erase error %d, status %#x\n", |
| err, cmd.resp[0]); |
| err = -EIO; |
| goto out; |
| } |
| |
| if (mmc_host_is_spi(card->host)) |
| goto out; |
| |
| /* |
| * In case of when R1B + MMC_CAP_WAIT_WHILE_BUSY is used, the polling |
| * shall be avoided. |
| */ |
| if ((card->host->caps & MMC_CAP_WAIT_WHILE_BUSY) && use_r1b_resp) |
| goto out; |
| |
| timeout = jiffies + msecs_to_jiffies(busy_timeout); |
| do { |
| memset(&cmd, 0, sizeof(struct mmc_command)); |
| cmd.opcode = MMC_SEND_STATUS; |
| cmd.arg = card->rca << 16; |
| cmd.flags = MMC_RSP_R1 | MMC_CMD_AC; |
| /* Do not retry else we can't see errors */ |
| err = mmc_wait_for_cmd(card->host, &cmd, 0); |
| if (err || R1_STATUS(cmd.resp[0])) { |
| pr_err("error %d requesting status %#x\n", |
| err, cmd.resp[0]); |
| err = -EIO; |
| goto out; |
| } |
| |
| /* Timeout if the device never becomes ready for data and |
| * never leaves the program state. |
| */ |
| if (time_after(jiffies, timeout)) { |
| pr_err("%s: Card stuck in programming state! %s\n", |
| mmc_hostname(card->host), __func__); |
| err = -EIO; |
| goto out; |
| } |
| if ((cmd.resp[0] & R1_READY_FOR_DATA) && |
| R1_CURRENT_STATE(cmd.resp[0]) != R1_STATE_PRG) |
| break; |
| |
| usleep_range(loop_udelay, loop_udelay*2); |
| if (loop_udelay < udelay_max) |
| loop_udelay *= 2; |
| } while (1); |
| |
| out: |
| mmc_retune_release(card->host); |
| return err; |
| } |
| |
| static unsigned int mmc_align_erase_size(struct mmc_card *card, |
| unsigned int *from, |
| unsigned int *to, |
| unsigned int nr) |
| { |
| unsigned int from_new = *from, nr_new = nr, rem; |
| |
| /* |
| * When the 'card->erase_size' is power of 2, we can use round_up/down() |
| * to align the erase size efficiently. |
| */ |
| if (is_power_of_2(card->erase_size)) { |
| unsigned int temp = from_new; |
| |
| from_new = round_up(temp, card->erase_size); |
| rem = from_new - temp; |
| |
| if (nr_new > rem) |
| nr_new -= rem; |
| else |
| return 0; |
| |
| nr_new = round_down(nr_new, card->erase_size); |
| } else { |
| rem = from_new % card->erase_size; |
| if (rem) { |
| rem = card->erase_size - rem; |
| from_new += rem; |
| if (nr_new > rem) |
| nr_new -= rem; |
| else |
| return 0; |
| } |
| |
| rem = nr_new % card->erase_size; |
| if (rem) |
| nr_new -= rem; |
| } |
| |
| if (nr_new == 0) |
| return 0; |
| |
| *to = from_new + nr_new; |
| *from = from_new; |
| |
| return nr_new; |
| } |
| |
| /** |
| * mmc_erase - erase sectors. |
| * @card: card to erase |
| * @from: first sector to erase |
| * @nr: number of sectors to erase |
| * @arg: erase command argument |
| * |
| * Caller must claim host before calling this function. |
| */ |
| int mmc_erase(struct mmc_card *card, unsigned int from, unsigned int nr, |
| unsigned int arg) |
| { |
| unsigned int rem, to = from + nr; |
| int err; |
| |
| if (!(card->host->caps & MMC_CAP_ERASE) || |
| !(card->csd.cmdclass & CCC_ERASE)) |
| return -EOPNOTSUPP; |
| |
| if (!card->erase_size) |
| return -EOPNOTSUPP; |
| |
| if (mmc_card_sd(card) && arg != SD_ERASE_ARG && arg != SD_DISCARD_ARG) |
| return -EOPNOTSUPP; |
| |
| if (mmc_card_mmc(card) && (arg & MMC_SECURE_ARGS) && |
| !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN)) |
| return -EOPNOTSUPP; |
| |
| if (mmc_card_mmc(card) && (arg & MMC_TRIM_ARGS) && |
| !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN)) |
| return -EOPNOTSUPP; |
| |
| if (arg == MMC_SECURE_ERASE_ARG) { |
| if (from % card->erase_size || nr % card->erase_size) |
| return -EINVAL; |
| } |
| |
| if (arg == MMC_ERASE_ARG) |
| nr = mmc_align_erase_size(card, &from, &to, nr); |
| |
| if (nr == 0) |
| return 0; |
| |
| if (to <= from) |
| return -EINVAL; |
| |
| /* 'from' and 'to' are inclusive */ |
| to -= 1; |
| |
| /* |
| * Special case where only one erase-group fits in the timeout budget: |
| * If the region crosses an erase-group boundary on this particular |
| * case, we will be trimming more than one erase-group which, does not |
| * fit in the timeout budget of the controller, so we need to split it |
| * and call mmc_do_erase() twice if necessary. This special case is |
| * identified by the card->eg_boundary flag. |
| */ |
| rem = card->erase_size - (from % card->erase_size); |
| if ((arg & MMC_TRIM_ARGS) && (card->eg_boundary) && (nr > rem)) { |
| err = mmc_do_erase(card, from, from + rem - 1, arg); |
| from += rem; |
| if ((err) || (to <= from)) |
| return err; |
| } |
| |
| return mmc_do_erase(card, from, to, arg); |
| } |
| EXPORT_SYMBOL(mmc_erase); |
| |
| int mmc_can_erase(struct mmc_card *card) |
| { |
| if ((card->host->caps & MMC_CAP_ERASE) && |
| (card->csd.cmdclass & CCC_ERASE) && card->erase_size) |
| return 1; |
| return 0; |
| } |
| EXPORT_SYMBOL(mmc_can_erase); |
| |
| int mmc_can_trim(struct mmc_card *card) |
| { |
| if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN) && |
| (!(card->quirks & MMC_QUIRK_TRIM_BROKEN))) |
| return 1; |
| return 0; |
| } |
| EXPORT_SYMBOL(mmc_can_trim); |
| |
| int mmc_can_discard(struct mmc_card *card) |
| { |
| /* |
| * As there's no way to detect the discard support bit at v4.5 |
| * use the s/w feature support filed. |
| */ |
| if (card->ext_csd.feature_support & MMC_DISCARD_FEATURE) |
| return 1; |
| return 0; |
| } |
| EXPORT_SYMBOL(mmc_can_discard); |
| |
| int mmc_can_sanitize(struct mmc_card *card) |
| { |
| if (!mmc_can_trim(card) && !mmc_can_erase(card)) |
| return 0; |
| if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_SANITIZE) |
| return 1; |
| return 0; |
| } |
| EXPORT_SYMBOL(mmc_can_sanitize); |
| |
| int mmc_can_secure_erase_trim(struct mmc_card *card) |
| { |
| if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN) && |
| !(card->quirks & MMC_QUIRK_SEC_ERASE_TRIM_BROKEN)) |
| return 1; |
| return 0; |
| } |
| EXPORT_SYMBOL(mmc_can_secure_erase_trim); |
| |
| int mmc_erase_group_aligned(struct mmc_card *card, unsigned int from, |
| unsigned int nr) |
| { |
| if (!card->erase_size) |
| return 0; |
| if (from % card->erase_size || nr % card->erase_size) |
| return 0; |
| return 1; |
| } |
| EXPORT_SYMBOL(mmc_erase_group_aligned); |
| |
| static unsigned int mmc_do_calc_max_discard(struct mmc_card *card, |
| unsigned int arg) |
| { |
| struct mmc_host *host = card->host; |
| unsigned int max_discard, x, y, qty = 0, max_qty, min_qty, timeout; |
| unsigned int last_timeout = 0; |
| unsigned int max_busy_timeout = host->max_busy_timeout ? |
| host->max_busy_timeout : MMC_ERASE_TIMEOUT_MS; |
| |
| if (card->erase_shift) { |
| max_qty = UINT_MAX >> card->erase_shift; |
| min_qty = card->pref_erase >> card->erase_shift; |
| } else if (mmc_card_sd(card)) { |
| max_qty = UINT_MAX; |
| min_qty = card->pref_erase; |
| } else { |
| max_qty = UINT_MAX / card->erase_size; |
| min_qty = card->pref_erase / card->erase_size; |
| } |
| |
| /* |
| * We should not only use 'host->max_busy_timeout' as the limitation |
| * when deciding the max discard sectors. We should set a balance value |
| * to improve the erase speed, and it can not get too long timeout at |
| * the same time. |
| * |
| * Here we set 'card->pref_erase' as the minimal discard sectors no |
| * matter what size of 'host->max_busy_timeout', but if the |
| * 'host->max_busy_timeout' is large enough for more discard sectors, |
| * then we can continue to increase the max discard sectors until we |
| * get a balance value. In cases when the 'host->max_busy_timeout' |
| * isn't specified, use the default max erase timeout. |
| */ |
| do { |
| y = 0; |
| for (x = 1; x && x <= max_qty && max_qty - x >= qty; x <<= 1) { |
| timeout = mmc_erase_timeout(card, arg, qty + x); |
| |
| if (qty + x > min_qty && timeout > max_busy_timeout) |
| break; |
| |
| if (timeout < last_timeout) |
| break; |
| last_timeout = timeout; |
| y = x; |
| } |
| qty += y; |
| } while (y); |
| |
| if (!qty) |
| return 0; |
| |
| /* |
| * When specifying a sector range to trim, chances are we might cross |
| * an erase-group boundary even if the amount of sectors is less than |
| * one erase-group. |
| * If we can only fit one erase-group in the controller timeout budget, |
| * we have to care that erase-group boundaries are not crossed by a |
| * single trim operation. We flag that special case with "eg_boundary". |
| * In all other cases we can just decrement qty and pretend that we |
| * always touch (qty + 1) erase-groups as a simple optimization. |
| */ |
| if (qty == 1) |
| card->eg_boundary = 1; |
| else |
| qty--; |
| |
| /* Convert qty to sectors */ |
| if (card->erase_shift) |
| max_discard = qty << card->erase_shift; |
| else if (mmc_card_sd(card)) |
| max_discard = qty + 1; |
| else |
| max_discard = qty * card->erase_size; |
| |
| return max_discard; |
| } |
| |
| unsigned int mmc_calc_max_discard(struct mmc_card *card) |
| { |
| struct mmc_host *host = card->host; |
| unsigned int max_discard, max_trim; |
| |
| /* |
| * Without erase_group_def set, MMC erase timeout depends on clock |
| * frequence which can change. In that case, the best choice is |
| * just the preferred erase size. |
| */ |
| if (mmc_card_mmc(card) && !(card->ext_csd.erase_group_def & 1)) |
| return card->pref_erase; |
| |
| max_discard = mmc_do_calc_max_discard(card, MMC_ERASE_ARG); |
| if (mmc_can_trim(card)) { |
| max_trim = mmc_do_calc_max_discard(card, MMC_TRIM_ARG); |
| if (max_trim < max_discard || max_discard == 0) |
| max_discard = max_trim; |
| } else if (max_discard < card->erase_size) { |
| max_discard = 0; |
| } |
| pr_debug("%s: calculated max. discard sectors %u for timeout %u ms\n", |
| mmc_hostname(host), max_discard, host->max_busy_timeout ? |
| host->max_busy_timeout : MMC_ERASE_TIMEOUT_MS); |
| return max_discard; |
| } |
| EXPORT_SYMBOL(mmc_calc_max_discard); |
| |
| bool mmc_card_is_blockaddr(struct mmc_card *card) |
| { |
| return card ? mmc_card_blockaddr(card) : false; |
| } |
| EXPORT_SYMBOL(mmc_card_is_blockaddr); |
| |
| int mmc_set_blocklen(struct mmc_card *card, unsigned int blocklen) |
| { |
| struct mmc_command cmd = {}; |
| |
| if (mmc_card_blockaddr(card) || mmc_card_ddr52(card) || |
| mmc_card_hs400(card) || mmc_card_hs400es(card)) |
| return 0; |
| |
| cmd.opcode = MMC_SET_BLOCKLEN; |
| cmd.arg = blocklen; |
| cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC; |
| return mmc_wait_for_cmd(card->host, &cmd, 5); |
| } |
| EXPORT_SYMBOL(mmc_set_blocklen); |
| |
| static void mmc_hw_reset_for_init(struct mmc_host *host) |
| { |
| mmc_pwrseq_reset(host); |
| |
| if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->hw_reset) |
| return; |
| host->ops->hw_reset(host); |
| } |
| |
| int mmc_hw_reset(struct mmc_host *host) |
| { |
| int ret; |
| |
| if (!host->card) |
| return -EINVAL; |
| |
| mmc_bus_get(host); |
| if (!host->bus_ops || host->bus_dead || !host->bus_ops->hw_reset) { |
| mmc_bus_put(host); |
| return -EOPNOTSUPP; |
| } |
| |
| ret = host->bus_ops->hw_reset(host); |
| mmc_bus_put(host); |
| |
| if (ret < 0) |
| pr_warn("%s: tried to HW reset card, got error %d\n", |
| mmc_hostname(host), ret); |
| |
| return ret; |
| } |
| EXPORT_SYMBOL(mmc_hw_reset); |
| |
| int mmc_sw_reset(struct mmc_host *host) |
| { |
| int ret; |
| |
| if (!host->card) |
| return -EINVAL; |
| |
| mmc_bus_get(host); |
| if (!host->bus_ops || host->bus_dead || !host->bus_ops->sw_reset) { |
| mmc_bus_put(host); |
| return -EOPNOTSUPP; |
| } |
| |
| ret = host->bus_ops->sw_reset(host); |
| mmc_bus_put(host); |
| |
| if (ret) |
| pr_warn("%s: tried to SW reset card, got error %d\n", |
| mmc_hostname(host), ret); |
| |
| return ret; |
| } |
| EXPORT_SYMBOL(mmc_sw_reset); |
| |
| static int mmc_rescan_try_freq(struct mmc_host *host, unsigned freq) |
| { |
| host->f_init = freq; |
| |
| pr_debug("%s: %s: trying to init card at %u Hz\n", |
| mmc_hostname(host), __func__, host->f_init); |
| |
| mmc_power_up(host, host->ocr_avail); |
| |
| /* |
| * Some eMMCs (with VCCQ always on) may not be reset after power up, so |
| * do a hardware reset if possible. |
| */ |
| mmc_hw_reset_for_init(host); |
| |
| /* |
| * sdio_reset sends CMD52 to reset card. Since we do not know |
| * if the card is being re-initialized, just send it. CMD52 |
| * should be ignored by SD/eMMC cards. |
| * Skip it if we already know that we do not support SDIO commands |
| */ |
| if (!(host->caps2 & MMC_CAP2_NO_SDIO)) |
| sdio_reset(host); |
| |
| mmc_go_idle(host); |
| |
| if (!(host->caps2 & MMC_CAP2_NO_SD)) |
| mmc_send_if_cond(host, host->ocr_avail); |
| |
| /* Order's important: probe SDIO, then SD, then MMC */ |
| if (!(host->caps2 & MMC_CAP2_NO_SDIO)) |
| if (!mmc_attach_sdio(host)) |
| return 0; |
| |
| if (!(host->caps2 & MMC_CAP2_NO_SD)) |
| if (!mmc_attach_sd(host)) |
| return 0; |
| |
| if (!(host->caps2 & MMC_CAP2_NO_MMC)) |
| if (!mmc_attach_mmc(host)) |
| return 0; |
| |
| mmc_power_off(host); |
| return -EIO; |
| } |
| |
| int _mmc_detect_card_removed(struct mmc_host *host) |
| { |
| int ret; |
| |
| if (!host->card || mmc_card_removed(host->card)) |
| return 1; |
| |
| ret = host->bus_ops->alive(host); |
| |
| /* |
| * Card detect status and alive check may be out of sync if card is |
| * removed slowly, when card detect switch changes while card/slot |
| * pads are still contacted in hardware (refer to "SD Card Mechanical |
| * Addendum, Appendix C: Card Detection Switch"). So reschedule a |
| * detect work 200ms later for this case. |
| */ |
| if (!ret && host->ops->get_cd && !host->ops->get_cd(host)) { |
| mmc_detect_change(host, msecs_to_jiffies(200)); |
| pr_debug("%s: card removed too slowly\n", mmc_hostname(host)); |
| } |
| |
| if (ret) { |
| mmc_card_set_removed(host->card); |
| pr_debug("%s: card remove detected\n", mmc_hostname(host)); |
| } |
| |
| return ret; |
| } |
| |
| int mmc_detect_card_removed(struct mmc_host *host) |
| { |
| struct mmc_card *card = host->card; |
| int ret; |
| |
| WARN_ON(!host->claimed); |
| |
| if (!card) |
| return 1; |
| |
| if (!mmc_card_is_removable(host)) |
| return 0; |
| |
| ret = mmc_card_removed(card); |
| /* |
| * The card will be considered unchanged unless we have been asked to |
| * detect a change or host requires polling to provide card detection. |
| */ |
| if (!host->detect_change && !(host->caps & MMC_CAP_NEEDS_POLL)) |
| return ret; |
| |
| host->detect_change = 0; |
| if (!ret) { |
| ret = _mmc_detect_card_removed(host); |
| if (ret && (host->caps & MMC_CAP_NEEDS_POLL)) { |
| /* |
| * Schedule a detect work as soon as possible to let a |
| * rescan handle the card removal. |
| */ |
| cancel_delayed_work(&host->detect); |
| _mmc_detect_change(host, 0, false); |
| } |
| } |
| |
| return ret; |
| } |
| EXPORT_SYMBOL(mmc_detect_card_removed); |
| |
| void mmc_rescan(struct work_struct *work) |
| { |
| struct mmc_host *host = |
| container_of(work, struct mmc_host, detect.work); |
| int i; |
| |
| if (host->rescan_disable) |
| return; |
| |
| /* If there is a non-removable card registered, only scan once */ |
| if (!mmc_card_is_removable(host) && host->rescan_entered) |
| return; |
| host->rescan_entered = 1; |
| |
| if (host->trigger_card_event && host->ops->card_event) { |
| mmc_claim_host(host); |
| host->ops->card_event(host); |
| mmc_release_host(host); |
| host->trigger_card_event = false; |
| } |
| |
| mmc_bus_get(host); |
| |
| /* Verify a registered card to be functional, else remove it. */ |
| if (host->bus_ops && !host->bus_dead) |
| host->bus_ops->detect(host); |
| |
| host->detect_change = 0; |
| |
| /* |
| * Let mmc_bus_put() free the bus/bus_ops if we've found that |
| * the card is no longer present. |
| */ |
| mmc_bus_put(host); |
| mmc_bus_get(host); |
| |
| /* if there still is a card present, stop here */ |
| if (host->bus_ops != NULL) { |
| mmc_bus_put(host); |
| goto out; |
| } |
| |
| /* |
| * Only we can add a new handler, so it's safe to |
| * release the lock here. |
| */ |
| mmc_bus_put(host); |
| |
| mmc_claim_host(host); |
| if (mmc_card_is_removable(host) && host->ops->get_cd && |
| host->ops->get_cd(host) == 0) { |
| mmc_power_off(host); |
| mmc_release_host(host); |
| goto out; |
| } |
| |
| for (i = 0; i < ARRAY_SIZE(freqs); i++) { |
| if (!mmc_rescan_try_freq(host, max(freqs[i], host->f_min))) |
| break; |
| if (freqs[i] <= host->f_min) |
| break; |
| } |
| mmc_release_host(host); |
| |
| out: |
| if (host->caps & MMC_CAP_NEEDS_POLL) |
| mmc_schedule_delayed_work(&host->detect, HZ); |
| } |
| |
| void mmc_start_host(struct mmc_host *host) |
| { |
| host->f_init = max(freqs[0], host->f_min); |
| host->rescan_disable = 0; |
| host->ios.power_mode = MMC_POWER_UNDEFINED; |
| |
| if (!(host->caps2 & MMC_CAP2_NO_PRESCAN_POWERUP)) { |
| mmc_claim_host(host); |
| mmc_power_up(host, host->ocr_avail); |
| mmc_release_host(host); |
| } |
| |
| mmc_gpiod_request_cd_irq(host); |
| _mmc_detect_change(host, 0, false); |
| } |
| |
| void mmc_stop_host(struct mmc_host *host) |
| { |
| if (host->slot.cd_irq >= 0) { |
| mmc_gpio_set_cd_wake(host, false); |
| disable_irq(host->slot.cd_irq); |
| } |
| |
| host->rescan_disable = 1; |
| cancel_delayed_work_sync(&host->detect); |
| |
| /* clear pm flags now and let card drivers set them as needed */ |
| host->pm_flags = 0; |
| |
| mmc_bus_get(host); |
| if (host->bus_ops && !host->bus_dead) { |
| /* Calling bus_ops->remove() with a claimed host can deadlock */ |
| host->bus_ops->remove(host); |
| mmc_claim_host(host); |
| mmc_detach_bus(host); |
| mmc_power_off(host); |
| mmc_release_host(host); |
| mmc_bus_put(host); |
| return; |
| } |
| mmc_bus_put(host); |
| |
| mmc_claim_host(host); |
| mmc_power_off(host); |
| mmc_release_host(host); |
| } |
| |
| static int __init mmc_init(void) |
| { |
| int ret; |
| |
| ret = mmc_register_bus(); |
| if (ret) |
| return ret; |
| |
| ret = mmc_register_host_class(); |
| if (ret) |
| goto unregister_bus; |
| |
| ret = sdio_register_bus(); |
| if (ret) |
| goto unregister_host_class; |
| |
| return 0; |
| |
| unregister_host_class: |
| mmc_unregister_host_class(); |
| unregister_bus: |
| mmc_unregister_bus(); |
| return ret; |
| } |
| |
| static void __exit mmc_exit(void) |
| { |
| sdio_unregister_bus(); |
| mmc_unregister_host_class(); |
| mmc_unregister_bus(); |
| } |
| |
| subsys_initcall(mmc_init); |
| module_exit(mmc_exit); |
| |
| MODULE_LICENSE("GPL"); |