| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * Copyright(C) 2016 Linaro Limited. All rights reserved. |
| * Author: Mathieu Poirier <mathieu.poirier@linaro.org> |
| */ |
| |
| #include <linux/atomic.h> |
| #include <linux/coresight.h> |
| #include <linux/dma-mapping.h> |
| #include <linux/iommu.h> |
| #include <linux/idr.h> |
| #include <linux/mutex.h> |
| #include <linux/refcount.h> |
| #include <linux/slab.h> |
| #include <linux/types.h> |
| #include <linux/vmalloc.h> |
| #include "coresight-catu.h" |
| #include "coresight-etm-perf.h" |
| #include "coresight-priv.h" |
| #include "coresight-tmc.h" |
| |
| struct etr_flat_buf { |
| struct device *dev; |
| dma_addr_t daddr; |
| void *vaddr; |
| size_t size; |
| }; |
| |
| /* |
| * etr_perf_buffer - Perf buffer used for ETR |
| * @drvdata - The ETR drvdaga this buffer has been allocated for. |
| * @etr_buf - Actual buffer used by the ETR |
| * @pid - The PID this etr_perf_buffer belongs to. |
| * @snaphost - Perf session mode |
| * @head - handle->head at the beginning of the session. |
| * @nr_pages - Number of pages in the ring buffer. |
| * @pages - Array of Pages in the ring buffer. |
| */ |
| struct etr_perf_buffer { |
| struct tmc_drvdata *drvdata; |
| struct etr_buf *etr_buf; |
| pid_t pid; |
| bool snapshot; |
| unsigned long head; |
| int nr_pages; |
| void **pages; |
| }; |
| |
| /* Convert the perf index to an offset within the ETR buffer */ |
| #define PERF_IDX2OFF(idx, buf) ((idx) % ((buf)->nr_pages << PAGE_SHIFT)) |
| |
| /* Lower limit for ETR hardware buffer */ |
| #define TMC_ETR_PERF_MIN_BUF_SIZE SZ_1M |
| |
| /* |
| * The TMC ETR SG has a page size of 4K. The SG table contains pointers |
| * to 4KB buffers. However, the OS may use a PAGE_SIZE different from |
| * 4K (i.e, 16KB or 64KB). This implies that a single OS page could |
| * contain more than one SG buffer and tables. |
| * |
| * A table entry has the following format: |
| * |
| * ---Bit31------------Bit4-------Bit1-----Bit0-- |
| * | Address[39:12] | SBZ | Entry Type | |
| * ---------------------------------------------- |
| * |
| * Address: Bits [39:12] of a physical page address. Bits [11:0] are |
| * always zero. |
| * |
| * Entry type: |
| * b00 - Reserved. |
| * b01 - Last entry in the tables, points to 4K page buffer. |
| * b10 - Normal entry, points to 4K page buffer. |
| * b11 - Link. The address points to the base of next table. |
| */ |
| |
| typedef u32 sgte_t; |
| |
| #define ETR_SG_PAGE_SHIFT 12 |
| #define ETR_SG_PAGE_SIZE (1UL << ETR_SG_PAGE_SHIFT) |
| #define ETR_SG_PAGES_PER_SYSPAGE (PAGE_SIZE / ETR_SG_PAGE_SIZE) |
| #define ETR_SG_PTRS_PER_PAGE (ETR_SG_PAGE_SIZE / sizeof(sgte_t)) |
| #define ETR_SG_PTRS_PER_SYSPAGE (PAGE_SIZE / sizeof(sgte_t)) |
| |
| #define ETR_SG_ET_MASK 0x3 |
| #define ETR_SG_ET_LAST 0x1 |
| #define ETR_SG_ET_NORMAL 0x2 |
| #define ETR_SG_ET_LINK 0x3 |
| |
| #define ETR_SG_ADDR_SHIFT 4 |
| |
| #define ETR_SG_ENTRY(addr, type) \ |
| (sgte_t)((((addr) >> ETR_SG_PAGE_SHIFT) << ETR_SG_ADDR_SHIFT) | \ |
| (type & ETR_SG_ET_MASK)) |
| |
| #define ETR_SG_ADDR(entry) \ |
| (((dma_addr_t)(entry) >> ETR_SG_ADDR_SHIFT) << ETR_SG_PAGE_SHIFT) |
| #define ETR_SG_ET(entry) ((entry) & ETR_SG_ET_MASK) |
| |
| /* |
| * struct etr_sg_table : ETR SG Table |
| * @sg_table: Generic SG Table holding the data/table pages. |
| * @hwaddr: hwaddress used by the TMC, which is the base |
| * address of the table. |
| */ |
| struct etr_sg_table { |
| struct tmc_sg_table *sg_table; |
| dma_addr_t hwaddr; |
| }; |
| |
| /* |
| * tmc_etr_sg_table_entries: Total number of table entries required to map |
| * @nr_pages system pages. |
| * |
| * We need to map @nr_pages * ETR_SG_PAGES_PER_SYSPAGE data pages. |
| * Each TMC page can map (ETR_SG_PTRS_PER_PAGE - 1) buffer pointers, |
| * with the last entry pointing to another page of table entries. |
| * If we spill over to a new page for mapping 1 entry, we could as |
| * well replace the link entry of the previous page with the last entry. |
| */ |
| static inline unsigned long __attribute_const__ |
| tmc_etr_sg_table_entries(int nr_pages) |
| { |
| unsigned long nr_sgpages = nr_pages * ETR_SG_PAGES_PER_SYSPAGE; |
| unsigned long nr_sglinks = nr_sgpages / (ETR_SG_PTRS_PER_PAGE - 1); |
| /* |
| * If we spill over to a new page for 1 entry, we could as well |
| * make it the LAST entry in the previous page, skipping the Link |
| * address. |
| */ |
| if (nr_sglinks && (nr_sgpages % (ETR_SG_PTRS_PER_PAGE - 1) < 2)) |
| nr_sglinks--; |
| return nr_sgpages + nr_sglinks; |
| } |
| |
| /* |
| * tmc_pages_get_offset: Go through all the pages in the tmc_pages |
| * and map the device address @addr to an offset within the virtual |
| * contiguous buffer. |
| */ |
| static long |
| tmc_pages_get_offset(struct tmc_pages *tmc_pages, dma_addr_t addr) |
| { |
| int i; |
| dma_addr_t page_start; |
| |
| for (i = 0; i < tmc_pages->nr_pages; i++) { |
| page_start = tmc_pages->daddrs[i]; |
| if (addr >= page_start && addr < (page_start + PAGE_SIZE)) |
| return i * PAGE_SIZE + (addr - page_start); |
| } |
| |
| return -EINVAL; |
| } |
| |
| /* |
| * tmc_pages_free : Unmap and free the pages used by tmc_pages. |
| * If the pages were not allocated in tmc_pages_alloc(), we would |
| * simply drop the refcount. |
| */ |
| static void tmc_pages_free(struct tmc_pages *tmc_pages, |
| struct device *dev, enum dma_data_direction dir) |
| { |
| int i; |
| struct device *real_dev = dev->parent; |
| |
| for (i = 0; i < tmc_pages->nr_pages; i++) { |
| if (tmc_pages->daddrs && tmc_pages->daddrs[i]) |
| dma_unmap_page(real_dev, tmc_pages->daddrs[i], |
| PAGE_SIZE, dir); |
| if (tmc_pages->pages && tmc_pages->pages[i]) |
| __free_page(tmc_pages->pages[i]); |
| } |
| |
| kfree(tmc_pages->pages); |
| kfree(tmc_pages->daddrs); |
| tmc_pages->pages = NULL; |
| tmc_pages->daddrs = NULL; |
| tmc_pages->nr_pages = 0; |
| } |
| |
| /* |
| * tmc_pages_alloc : Allocate and map pages for a given @tmc_pages. |
| * If @pages is not NULL, the list of page virtual addresses are |
| * used as the data pages. The pages are then dma_map'ed for @dev |
| * with dma_direction @dir. |
| * |
| * Returns 0 upon success, else the error number. |
| */ |
| static int tmc_pages_alloc(struct tmc_pages *tmc_pages, |
| struct device *dev, int node, |
| enum dma_data_direction dir, void **pages) |
| { |
| int i, nr_pages; |
| dma_addr_t paddr; |
| struct page *page; |
| struct device *real_dev = dev->parent; |
| |
| nr_pages = tmc_pages->nr_pages; |
| tmc_pages->daddrs = kcalloc(nr_pages, sizeof(*tmc_pages->daddrs), |
| GFP_KERNEL); |
| if (!tmc_pages->daddrs) |
| return -ENOMEM; |
| tmc_pages->pages = kcalloc(nr_pages, sizeof(*tmc_pages->pages), |
| GFP_KERNEL); |
| if (!tmc_pages->pages) { |
| kfree(tmc_pages->daddrs); |
| tmc_pages->daddrs = NULL; |
| return -ENOMEM; |
| } |
| |
| for (i = 0; i < nr_pages; i++) { |
| if (pages && pages[i]) { |
| page = virt_to_page(pages[i]); |
| /* Hold a refcount on the page */ |
| get_page(page); |
| } else { |
| page = alloc_pages_node(node, |
| GFP_KERNEL | __GFP_ZERO, 0); |
| if (!page) |
| goto err; |
| } |
| paddr = dma_map_page(real_dev, page, 0, PAGE_SIZE, dir); |
| if (dma_mapping_error(real_dev, paddr)) |
| goto err; |
| tmc_pages->daddrs[i] = paddr; |
| tmc_pages->pages[i] = page; |
| } |
| return 0; |
| err: |
| tmc_pages_free(tmc_pages, dev, dir); |
| return -ENOMEM; |
| } |
| |
| static inline long |
| tmc_sg_get_data_page_offset(struct tmc_sg_table *sg_table, dma_addr_t addr) |
| { |
| return tmc_pages_get_offset(&sg_table->data_pages, addr); |
| } |
| |
| static inline void tmc_free_table_pages(struct tmc_sg_table *sg_table) |
| { |
| if (sg_table->table_vaddr) |
| vunmap(sg_table->table_vaddr); |
| tmc_pages_free(&sg_table->table_pages, sg_table->dev, DMA_TO_DEVICE); |
| } |
| |
| static void tmc_free_data_pages(struct tmc_sg_table *sg_table) |
| { |
| if (sg_table->data_vaddr) |
| vunmap(sg_table->data_vaddr); |
| tmc_pages_free(&sg_table->data_pages, sg_table->dev, DMA_FROM_DEVICE); |
| } |
| |
| void tmc_free_sg_table(struct tmc_sg_table *sg_table) |
| { |
| tmc_free_table_pages(sg_table); |
| tmc_free_data_pages(sg_table); |
| } |
| |
| /* |
| * Alloc pages for the table. Since this will be used by the device, |
| * allocate the pages closer to the device (i.e, dev_to_node(dev) |
| * rather than the CPU node). |
| */ |
| static int tmc_alloc_table_pages(struct tmc_sg_table *sg_table) |
| { |
| int rc; |
| struct tmc_pages *table_pages = &sg_table->table_pages; |
| |
| rc = tmc_pages_alloc(table_pages, sg_table->dev, |
| dev_to_node(sg_table->dev), |
| DMA_TO_DEVICE, NULL); |
| if (rc) |
| return rc; |
| sg_table->table_vaddr = vmap(table_pages->pages, |
| table_pages->nr_pages, |
| VM_MAP, |
| PAGE_KERNEL); |
| if (!sg_table->table_vaddr) |
| rc = -ENOMEM; |
| else |
| sg_table->table_daddr = table_pages->daddrs[0]; |
| return rc; |
| } |
| |
| static int tmc_alloc_data_pages(struct tmc_sg_table *sg_table, void **pages) |
| { |
| int rc; |
| |
| /* Allocate data pages on the node requested by the caller */ |
| rc = tmc_pages_alloc(&sg_table->data_pages, |
| sg_table->dev, sg_table->node, |
| DMA_FROM_DEVICE, pages); |
| if (!rc) { |
| sg_table->data_vaddr = vmap(sg_table->data_pages.pages, |
| sg_table->data_pages.nr_pages, |
| VM_MAP, |
| PAGE_KERNEL); |
| if (!sg_table->data_vaddr) |
| rc = -ENOMEM; |
| } |
| return rc; |
| } |
| |
| /* |
| * tmc_alloc_sg_table: Allocate and setup dma pages for the TMC SG table |
| * and data buffers. TMC writes to the data buffers and reads from the SG |
| * Table pages. |
| * |
| * @dev - Coresight device to which page should be DMA mapped. |
| * @node - Numa node for mem allocations |
| * @nr_tpages - Number of pages for the table entries. |
| * @nr_dpages - Number of pages for Data buffer. |
| * @pages - Optional list of virtual address of pages. |
| */ |
| struct tmc_sg_table *tmc_alloc_sg_table(struct device *dev, |
| int node, |
| int nr_tpages, |
| int nr_dpages, |
| void **pages) |
| { |
| long rc; |
| struct tmc_sg_table *sg_table; |
| |
| sg_table = kzalloc(sizeof(*sg_table), GFP_KERNEL); |
| if (!sg_table) |
| return ERR_PTR(-ENOMEM); |
| sg_table->data_pages.nr_pages = nr_dpages; |
| sg_table->table_pages.nr_pages = nr_tpages; |
| sg_table->node = node; |
| sg_table->dev = dev; |
| |
| rc = tmc_alloc_data_pages(sg_table, pages); |
| if (!rc) |
| rc = tmc_alloc_table_pages(sg_table); |
| if (rc) { |
| tmc_free_sg_table(sg_table); |
| kfree(sg_table); |
| return ERR_PTR(rc); |
| } |
| |
| return sg_table; |
| } |
| |
| /* |
| * tmc_sg_table_sync_data_range: Sync the data buffer written |
| * by the device from @offset upto a @size bytes. |
| */ |
| void tmc_sg_table_sync_data_range(struct tmc_sg_table *table, |
| u64 offset, u64 size) |
| { |
| int i, index, start; |
| int npages = DIV_ROUND_UP(size, PAGE_SIZE); |
| struct device *real_dev = table->dev->parent; |
| struct tmc_pages *data = &table->data_pages; |
| |
| start = offset >> PAGE_SHIFT; |
| for (i = start; i < (start + npages); i++) { |
| index = i % data->nr_pages; |
| dma_sync_single_for_cpu(real_dev, data->daddrs[index], |
| PAGE_SIZE, DMA_FROM_DEVICE); |
| } |
| } |
| |
| /* tmc_sg_sync_table: Sync the page table */ |
| void tmc_sg_table_sync_table(struct tmc_sg_table *sg_table) |
| { |
| int i; |
| struct device *real_dev = sg_table->dev->parent; |
| struct tmc_pages *table_pages = &sg_table->table_pages; |
| |
| for (i = 0; i < table_pages->nr_pages; i++) |
| dma_sync_single_for_device(real_dev, table_pages->daddrs[i], |
| PAGE_SIZE, DMA_TO_DEVICE); |
| } |
| |
| /* |
| * tmc_sg_table_get_data: Get the buffer pointer for data @offset |
| * in the SG buffer. The @bufpp is updated to point to the buffer. |
| * Returns : |
| * the length of linear data available at @offset. |
| * or |
| * <= 0 if no data is available. |
| */ |
| ssize_t tmc_sg_table_get_data(struct tmc_sg_table *sg_table, |
| u64 offset, size_t len, char **bufpp) |
| { |
| size_t size; |
| int pg_idx = offset >> PAGE_SHIFT; |
| int pg_offset = offset & (PAGE_SIZE - 1); |
| struct tmc_pages *data_pages = &sg_table->data_pages; |
| |
| size = tmc_sg_table_buf_size(sg_table); |
| if (offset >= size) |
| return -EINVAL; |
| |
| /* Make sure we don't go beyond the end */ |
| len = (len < (size - offset)) ? len : size - offset; |
| /* Respect the page boundaries */ |
| len = (len < (PAGE_SIZE - pg_offset)) ? len : (PAGE_SIZE - pg_offset); |
| if (len > 0) |
| *bufpp = page_address(data_pages->pages[pg_idx]) + pg_offset; |
| return len; |
| } |
| |
| #ifdef ETR_SG_DEBUG |
| /* Map a dma address to virtual address */ |
| static unsigned long |
| tmc_sg_daddr_to_vaddr(struct tmc_sg_table *sg_table, |
| dma_addr_t addr, bool table) |
| { |
| long offset; |
| unsigned long base; |
| struct tmc_pages *tmc_pages; |
| |
| if (table) { |
| tmc_pages = &sg_table->table_pages; |
| base = (unsigned long)sg_table->table_vaddr; |
| } else { |
| tmc_pages = &sg_table->data_pages; |
| base = (unsigned long)sg_table->data_vaddr; |
| } |
| |
| offset = tmc_pages_get_offset(tmc_pages, addr); |
| if (offset < 0) |
| return 0; |
| return base + offset; |
| } |
| |
| /* Dump the given sg_table */ |
| static void tmc_etr_sg_table_dump(struct etr_sg_table *etr_table) |
| { |
| sgte_t *ptr; |
| int i = 0; |
| dma_addr_t addr; |
| struct tmc_sg_table *sg_table = etr_table->sg_table; |
| |
| ptr = (sgte_t *)tmc_sg_daddr_to_vaddr(sg_table, |
| etr_table->hwaddr, true); |
| while (ptr) { |
| addr = ETR_SG_ADDR(*ptr); |
| switch (ETR_SG_ET(*ptr)) { |
| case ETR_SG_ET_NORMAL: |
| dev_dbg(sg_table->dev, |
| "%05d: %p\t:[N] 0x%llx\n", i, ptr, addr); |
| ptr++; |
| break; |
| case ETR_SG_ET_LINK: |
| dev_dbg(sg_table->dev, |
| "%05d: *** %p\t:{L} 0x%llx ***\n", |
| i, ptr, addr); |
| ptr = (sgte_t *)tmc_sg_daddr_to_vaddr(sg_table, |
| addr, true); |
| break; |
| case ETR_SG_ET_LAST: |
| dev_dbg(sg_table->dev, |
| "%05d: ### %p\t:[L] 0x%llx ###\n", |
| i, ptr, addr); |
| return; |
| default: |
| dev_dbg(sg_table->dev, |
| "%05d: xxx %p\t:[INVALID] 0x%llx xxx\n", |
| i, ptr, addr); |
| return; |
| } |
| i++; |
| } |
| dev_dbg(sg_table->dev, "******* End of Table *****\n"); |
| } |
| #else |
| static inline void tmc_etr_sg_table_dump(struct etr_sg_table *etr_table) {} |
| #endif |
| |
| /* |
| * Populate the SG Table page table entries from table/data |
| * pages allocated. Each Data page has ETR_SG_PAGES_PER_SYSPAGE SG pages. |
| * So does a Table page. So we keep track of indices of the tables |
| * in each system page and move the pointers accordingly. |
| */ |
| #define INC_IDX_ROUND(idx, size) ((idx) = ((idx) + 1) % (size)) |
| static void tmc_etr_sg_table_populate(struct etr_sg_table *etr_table) |
| { |
| dma_addr_t paddr; |
| int i, type, nr_entries; |
| int tpidx = 0; /* index to the current system table_page */ |
| int sgtidx = 0; /* index to the sg_table within the current syspage */ |
| int sgtentry = 0; /* the entry within the sg_table */ |
| int dpidx = 0; /* index to the current system data_page */ |
| int spidx = 0; /* index to the SG page within the current data page */ |
| sgte_t *ptr; /* pointer to the table entry to fill */ |
| struct tmc_sg_table *sg_table = etr_table->sg_table; |
| dma_addr_t *table_daddrs = sg_table->table_pages.daddrs; |
| dma_addr_t *data_daddrs = sg_table->data_pages.daddrs; |
| |
| nr_entries = tmc_etr_sg_table_entries(sg_table->data_pages.nr_pages); |
| /* |
| * Use the contiguous virtual address of the table to update entries. |
| */ |
| ptr = sg_table->table_vaddr; |
| /* |
| * Fill all the entries, except the last entry to avoid special |
| * checks within the loop. |
| */ |
| for (i = 0; i < nr_entries - 1; i++) { |
| if (sgtentry == ETR_SG_PTRS_PER_PAGE - 1) { |
| /* |
| * Last entry in a sg_table page is a link address to |
| * the next table page. If this sg_table is the last |
| * one in the system page, it links to the first |
| * sg_table in the next system page. Otherwise, it |
| * links to the next sg_table page within the system |
| * page. |
| */ |
| if (sgtidx == ETR_SG_PAGES_PER_SYSPAGE - 1) { |
| paddr = table_daddrs[tpidx + 1]; |
| } else { |
| paddr = table_daddrs[tpidx] + |
| (ETR_SG_PAGE_SIZE * (sgtidx + 1)); |
| } |
| type = ETR_SG_ET_LINK; |
| } else { |
| /* |
| * Update the indices to the data_pages to point to the |
| * next sg_page in the data buffer. |
| */ |
| type = ETR_SG_ET_NORMAL; |
| paddr = data_daddrs[dpidx] + spidx * ETR_SG_PAGE_SIZE; |
| if (!INC_IDX_ROUND(spidx, ETR_SG_PAGES_PER_SYSPAGE)) |
| dpidx++; |
| } |
| *ptr++ = ETR_SG_ENTRY(paddr, type); |
| /* |
| * Move to the next table pointer, moving the table page index |
| * if necessary |
| */ |
| if (!INC_IDX_ROUND(sgtentry, ETR_SG_PTRS_PER_PAGE)) { |
| if (!INC_IDX_ROUND(sgtidx, ETR_SG_PAGES_PER_SYSPAGE)) |
| tpidx++; |
| } |
| } |
| |
| /* Set up the last entry, which is always a data pointer */ |
| paddr = data_daddrs[dpidx] + spidx * ETR_SG_PAGE_SIZE; |
| *ptr++ = ETR_SG_ENTRY(paddr, ETR_SG_ET_LAST); |
| } |
| |
| /* |
| * tmc_init_etr_sg_table: Allocate a TMC ETR SG table, data buffer of @size and |
| * populate the table. |
| * |
| * @dev - Device pointer for the TMC |
| * @node - NUMA node where the memory should be allocated |
| * @size - Total size of the data buffer |
| * @pages - Optional list of page virtual address |
| */ |
| static struct etr_sg_table * |
| tmc_init_etr_sg_table(struct device *dev, int node, |
| unsigned long size, void **pages) |
| { |
| int nr_entries, nr_tpages; |
| int nr_dpages = size >> PAGE_SHIFT; |
| struct tmc_sg_table *sg_table; |
| struct etr_sg_table *etr_table; |
| |
| etr_table = kzalloc(sizeof(*etr_table), GFP_KERNEL); |
| if (!etr_table) |
| return ERR_PTR(-ENOMEM); |
| nr_entries = tmc_etr_sg_table_entries(nr_dpages); |
| nr_tpages = DIV_ROUND_UP(nr_entries, ETR_SG_PTRS_PER_SYSPAGE); |
| |
| sg_table = tmc_alloc_sg_table(dev, node, nr_tpages, nr_dpages, pages); |
| if (IS_ERR(sg_table)) { |
| kfree(etr_table); |
| return ERR_CAST(sg_table); |
| } |
| |
| etr_table->sg_table = sg_table; |
| /* TMC should use table base address for DBA */ |
| etr_table->hwaddr = sg_table->table_daddr; |
| tmc_etr_sg_table_populate(etr_table); |
| /* Sync the table pages for the HW */ |
| tmc_sg_table_sync_table(sg_table); |
| tmc_etr_sg_table_dump(etr_table); |
| |
| return etr_table; |
| } |
| |
| /* |
| * tmc_etr_alloc_flat_buf: Allocate a contiguous DMA buffer. |
| */ |
| static int tmc_etr_alloc_flat_buf(struct tmc_drvdata *drvdata, |
| struct etr_buf *etr_buf, int node, |
| void **pages) |
| { |
| struct etr_flat_buf *flat_buf; |
| struct device *real_dev = drvdata->csdev->dev.parent; |
| |
| /* We cannot reuse existing pages for flat buf */ |
| if (pages) |
| return -EINVAL; |
| |
| flat_buf = kzalloc(sizeof(*flat_buf), GFP_KERNEL); |
| if (!flat_buf) |
| return -ENOMEM; |
| |
| flat_buf->vaddr = dma_alloc_coherent(real_dev, etr_buf->size, |
| &flat_buf->daddr, GFP_KERNEL); |
| if (!flat_buf->vaddr) { |
| kfree(flat_buf); |
| return -ENOMEM; |
| } |
| |
| flat_buf->size = etr_buf->size; |
| flat_buf->dev = &drvdata->csdev->dev; |
| etr_buf->hwaddr = flat_buf->daddr; |
| etr_buf->mode = ETR_MODE_FLAT; |
| etr_buf->private = flat_buf; |
| return 0; |
| } |
| |
| static void tmc_etr_free_flat_buf(struct etr_buf *etr_buf) |
| { |
| struct etr_flat_buf *flat_buf = etr_buf->private; |
| |
| if (flat_buf && flat_buf->daddr) { |
| struct device *real_dev = flat_buf->dev->parent; |
| |
| dma_free_coherent(real_dev, flat_buf->size, |
| flat_buf->vaddr, flat_buf->daddr); |
| } |
| kfree(flat_buf); |
| } |
| |
| static void tmc_etr_sync_flat_buf(struct etr_buf *etr_buf, u64 rrp, u64 rwp) |
| { |
| /* |
| * Adjust the buffer to point to the beginning of the trace data |
| * and update the available trace data. |
| */ |
| etr_buf->offset = rrp - etr_buf->hwaddr; |
| if (etr_buf->full) |
| etr_buf->len = etr_buf->size; |
| else |
| etr_buf->len = rwp - rrp; |
| } |
| |
| static ssize_t tmc_etr_get_data_flat_buf(struct etr_buf *etr_buf, |
| u64 offset, size_t len, char **bufpp) |
| { |
| struct etr_flat_buf *flat_buf = etr_buf->private; |
| |
| *bufpp = (char *)flat_buf->vaddr + offset; |
| /* |
| * tmc_etr_buf_get_data already adjusts the length to handle |
| * buffer wrapping around. |
| */ |
| return len; |
| } |
| |
| static const struct etr_buf_operations etr_flat_buf_ops = { |
| .alloc = tmc_etr_alloc_flat_buf, |
| .free = tmc_etr_free_flat_buf, |
| .sync = tmc_etr_sync_flat_buf, |
| .get_data = tmc_etr_get_data_flat_buf, |
| }; |
| |
| /* |
| * tmc_etr_alloc_sg_buf: Allocate an SG buf @etr_buf. Setup the parameters |
| * appropriately. |
| */ |
| static int tmc_etr_alloc_sg_buf(struct tmc_drvdata *drvdata, |
| struct etr_buf *etr_buf, int node, |
| void **pages) |
| { |
| struct etr_sg_table *etr_table; |
| struct device *dev = &drvdata->csdev->dev; |
| |
| etr_table = tmc_init_etr_sg_table(dev, node, |
| etr_buf->size, pages); |
| if (IS_ERR(etr_table)) |
| return -ENOMEM; |
| etr_buf->hwaddr = etr_table->hwaddr; |
| etr_buf->mode = ETR_MODE_ETR_SG; |
| etr_buf->private = etr_table; |
| return 0; |
| } |
| |
| static void tmc_etr_free_sg_buf(struct etr_buf *etr_buf) |
| { |
| struct etr_sg_table *etr_table = etr_buf->private; |
| |
| if (etr_table) { |
| tmc_free_sg_table(etr_table->sg_table); |
| kfree(etr_table); |
| } |
| } |
| |
| static ssize_t tmc_etr_get_data_sg_buf(struct etr_buf *etr_buf, u64 offset, |
| size_t len, char **bufpp) |
| { |
| struct etr_sg_table *etr_table = etr_buf->private; |
| |
| return tmc_sg_table_get_data(etr_table->sg_table, offset, len, bufpp); |
| } |
| |
| static void tmc_etr_sync_sg_buf(struct etr_buf *etr_buf, u64 rrp, u64 rwp) |
| { |
| long r_offset, w_offset; |
| struct etr_sg_table *etr_table = etr_buf->private; |
| struct tmc_sg_table *table = etr_table->sg_table; |
| |
| /* Convert hw address to offset in the buffer */ |
| r_offset = tmc_sg_get_data_page_offset(table, rrp); |
| if (r_offset < 0) { |
| dev_warn(table->dev, |
| "Unable to map RRP %llx to offset\n", rrp); |
| etr_buf->len = 0; |
| return; |
| } |
| |
| w_offset = tmc_sg_get_data_page_offset(table, rwp); |
| if (w_offset < 0) { |
| dev_warn(table->dev, |
| "Unable to map RWP %llx to offset\n", rwp); |
| etr_buf->len = 0; |
| return; |
| } |
| |
| etr_buf->offset = r_offset; |
| if (etr_buf->full) |
| etr_buf->len = etr_buf->size; |
| else |
| etr_buf->len = ((w_offset < r_offset) ? etr_buf->size : 0) + |
| w_offset - r_offset; |
| tmc_sg_table_sync_data_range(table, r_offset, etr_buf->len); |
| } |
| |
| static const struct etr_buf_operations etr_sg_buf_ops = { |
| .alloc = tmc_etr_alloc_sg_buf, |
| .free = tmc_etr_free_sg_buf, |
| .sync = tmc_etr_sync_sg_buf, |
| .get_data = tmc_etr_get_data_sg_buf, |
| }; |
| |
| /* |
| * TMC ETR could be connected to a CATU device, which can provide address |
| * translation service. This is represented by the Output port of the TMC |
| * (ETR) connected to the input port of the CATU. |
| * |
| * Returns : coresight_device ptr for the CATU device if a CATU is found. |
| * : NULL otherwise. |
| */ |
| struct coresight_device * |
| tmc_etr_get_catu_device(struct tmc_drvdata *drvdata) |
| { |
| int i; |
| struct coresight_device *tmp, *etr = drvdata->csdev; |
| |
| if (!IS_ENABLED(CONFIG_CORESIGHT_CATU)) |
| return NULL; |
| |
| for (i = 0; i < etr->pdata->nr_outport; i++) { |
| tmp = etr->pdata->conns[i].child_dev; |
| if (tmp && coresight_is_catu_device(tmp)) |
| return tmp; |
| } |
| |
| return NULL; |
| } |
| |
| static inline int tmc_etr_enable_catu(struct tmc_drvdata *drvdata, |
| struct etr_buf *etr_buf) |
| { |
| struct coresight_device *catu = tmc_etr_get_catu_device(drvdata); |
| |
| if (catu && helper_ops(catu)->enable) |
| return helper_ops(catu)->enable(catu, etr_buf); |
| return 0; |
| } |
| |
| static inline void tmc_etr_disable_catu(struct tmc_drvdata *drvdata) |
| { |
| struct coresight_device *catu = tmc_etr_get_catu_device(drvdata); |
| |
| if (catu && helper_ops(catu)->disable) |
| helper_ops(catu)->disable(catu, drvdata->etr_buf); |
| } |
| |
| static const struct etr_buf_operations *etr_buf_ops[] = { |
| [ETR_MODE_FLAT] = &etr_flat_buf_ops, |
| [ETR_MODE_ETR_SG] = &etr_sg_buf_ops, |
| [ETR_MODE_CATU] = IS_ENABLED(CONFIG_CORESIGHT_CATU) |
| ? &etr_catu_buf_ops : NULL, |
| }; |
| |
| static inline int tmc_etr_mode_alloc_buf(int mode, |
| struct tmc_drvdata *drvdata, |
| struct etr_buf *etr_buf, int node, |
| void **pages) |
| { |
| int rc = -EINVAL; |
| |
| switch (mode) { |
| case ETR_MODE_FLAT: |
| case ETR_MODE_ETR_SG: |
| case ETR_MODE_CATU: |
| if (etr_buf_ops[mode] && etr_buf_ops[mode]->alloc) |
| rc = etr_buf_ops[mode]->alloc(drvdata, etr_buf, |
| node, pages); |
| if (!rc) |
| etr_buf->ops = etr_buf_ops[mode]; |
| return rc; |
| default: |
| return -EINVAL; |
| } |
| } |
| |
| /* |
| * tmc_alloc_etr_buf: Allocate a buffer use by ETR. |
| * @drvdata : ETR device details. |
| * @size : size of the requested buffer. |
| * @flags : Required properties for the buffer. |
| * @node : Node for memory allocations. |
| * @pages : An optional list of pages. |
| */ |
| static struct etr_buf *tmc_alloc_etr_buf(struct tmc_drvdata *drvdata, |
| ssize_t size, int flags, |
| int node, void **pages) |
| { |
| int rc = -ENOMEM; |
| bool has_etr_sg, has_iommu; |
| bool has_sg, has_catu; |
| struct etr_buf *etr_buf; |
| struct device *dev = &drvdata->csdev->dev; |
| |
| has_etr_sg = tmc_etr_has_cap(drvdata, TMC_ETR_SG); |
| has_iommu = iommu_get_domain_for_dev(dev->parent); |
| has_catu = !!tmc_etr_get_catu_device(drvdata); |
| |
| has_sg = has_catu || has_etr_sg; |
| |
| etr_buf = kzalloc(sizeof(*etr_buf), GFP_KERNEL); |
| if (!etr_buf) |
| return ERR_PTR(-ENOMEM); |
| |
| etr_buf->size = size; |
| |
| /* |
| * If we have to use an existing list of pages, we cannot reliably |
| * use a contiguous DMA memory (even if we have an IOMMU). Otherwise, |
| * we use the contiguous DMA memory if at least one of the following |
| * conditions is true: |
| * a) The ETR cannot use Scatter-Gather. |
| * b) we have a backing IOMMU |
| * c) The requested memory size is smaller (< 1M). |
| * |
| * Fallback to available mechanisms. |
| * |
| */ |
| if (!pages && |
| (!has_sg || has_iommu || size < SZ_1M)) |
| rc = tmc_etr_mode_alloc_buf(ETR_MODE_FLAT, drvdata, |
| etr_buf, node, pages); |
| if (rc && has_etr_sg) |
| rc = tmc_etr_mode_alloc_buf(ETR_MODE_ETR_SG, drvdata, |
| etr_buf, node, pages); |
| if (rc && has_catu) |
| rc = tmc_etr_mode_alloc_buf(ETR_MODE_CATU, drvdata, |
| etr_buf, node, pages); |
| if (rc) { |
| kfree(etr_buf); |
| return ERR_PTR(rc); |
| } |
| |
| refcount_set(&etr_buf->refcount, 1); |
| dev_dbg(dev, "allocated buffer of size %ldKB in mode %d\n", |
| (unsigned long)size >> 10, etr_buf->mode); |
| return etr_buf; |
| } |
| |
| static void tmc_free_etr_buf(struct etr_buf *etr_buf) |
| { |
| WARN_ON(!etr_buf->ops || !etr_buf->ops->free); |
| etr_buf->ops->free(etr_buf); |
| kfree(etr_buf); |
| } |
| |
| /* |
| * tmc_etr_buf_get_data: Get the pointer the trace data at @offset |
| * with a maximum of @len bytes. |
| * Returns: The size of the linear data available @pos, with *bufpp |
| * updated to point to the buffer. |
| */ |
| static ssize_t tmc_etr_buf_get_data(struct etr_buf *etr_buf, |
| u64 offset, size_t len, char **bufpp) |
| { |
| /* Adjust the length to limit this transaction to end of buffer */ |
| len = (len < (etr_buf->size - offset)) ? len : etr_buf->size - offset; |
| |
| return etr_buf->ops->get_data(etr_buf, (u64)offset, len, bufpp); |
| } |
| |
| static inline s64 |
| tmc_etr_buf_insert_barrier_packet(struct etr_buf *etr_buf, u64 offset) |
| { |
| ssize_t len; |
| char *bufp; |
| |
| len = tmc_etr_buf_get_data(etr_buf, offset, |
| CORESIGHT_BARRIER_PKT_SIZE, &bufp); |
| if (WARN_ON(len < CORESIGHT_BARRIER_PKT_SIZE)) |
| return -EINVAL; |
| coresight_insert_barrier_packet(bufp); |
| return offset + CORESIGHT_BARRIER_PKT_SIZE; |
| } |
| |
| /* |
| * tmc_sync_etr_buf: Sync the trace buffer availability with drvdata. |
| * Makes sure the trace data is synced to the memory for consumption. |
| * @etr_buf->offset will hold the offset to the beginning of the trace data |
| * within the buffer, with @etr_buf->len bytes to consume. |
| */ |
| static void tmc_sync_etr_buf(struct tmc_drvdata *drvdata) |
| { |
| struct etr_buf *etr_buf = drvdata->etr_buf; |
| u64 rrp, rwp; |
| u32 status; |
| |
| rrp = tmc_read_rrp(drvdata); |
| rwp = tmc_read_rwp(drvdata); |
| status = readl_relaxed(drvdata->base + TMC_STS); |
| |
| /* |
| * If there were memory errors in the session, truncate the |
| * buffer. |
| */ |
| if (WARN_ON_ONCE(status & TMC_STS_MEMERR)) { |
| dev_dbg(&drvdata->csdev->dev, |
| "tmc memory error detected, truncating buffer\n"); |
| etr_buf->len = 0; |
| etr_buf->full = 0; |
| return; |
| } |
| |
| etr_buf->full = status & TMC_STS_FULL; |
| |
| WARN_ON(!etr_buf->ops || !etr_buf->ops->sync); |
| |
| etr_buf->ops->sync(etr_buf, rrp, rwp); |
| } |
| |
| static void __tmc_etr_enable_hw(struct tmc_drvdata *drvdata) |
| { |
| u32 axictl, sts; |
| struct etr_buf *etr_buf = drvdata->etr_buf; |
| |
| CS_UNLOCK(drvdata->base); |
| |
| /* Wait for TMCSReady bit to be set */ |
| tmc_wait_for_tmcready(drvdata); |
| |
| writel_relaxed(etr_buf->size / 4, drvdata->base + TMC_RSZ); |
| writel_relaxed(TMC_MODE_CIRCULAR_BUFFER, drvdata->base + TMC_MODE); |
| |
| axictl = readl_relaxed(drvdata->base + TMC_AXICTL); |
| axictl &= ~TMC_AXICTL_CLEAR_MASK; |
| axictl |= (TMC_AXICTL_PROT_CTL_B1 | TMC_AXICTL_WR_BURST_16); |
| axictl |= TMC_AXICTL_AXCACHE_OS; |
| |
| if (tmc_etr_has_cap(drvdata, TMC_ETR_AXI_ARCACHE)) { |
| axictl &= ~TMC_AXICTL_ARCACHE_MASK; |
| axictl |= TMC_AXICTL_ARCACHE_OS; |
| } |
| |
| if (etr_buf->mode == ETR_MODE_ETR_SG) |
| axictl |= TMC_AXICTL_SCT_GAT_MODE; |
| |
| writel_relaxed(axictl, drvdata->base + TMC_AXICTL); |
| tmc_write_dba(drvdata, etr_buf->hwaddr); |
| /* |
| * If the TMC pointers must be programmed before the session, |
| * we have to set it properly (i.e, RRP/RWP to base address and |
| * STS to "not full"). |
| */ |
| if (tmc_etr_has_cap(drvdata, TMC_ETR_SAVE_RESTORE)) { |
| tmc_write_rrp(drvdata, etr_buf->hwaddr); |
| tmc_write_rwp(drvdata, etr_buf->hwaddr); |
| sts = readl_relaxed(drvdata->base + TMC_STS) & ~TMC_STS_FULL; |
| writel_relaxed(sts, drvdata->base + TMC_STS); |
| } |
| |
| writel_relaxed(TMC_FFCR_EN_FMT | TMC_FFCR_EN_TI | |
| TMC_FFCR_FON_FLIN | TMC_FFCR_FON_TRIG_EVT | |
| TMC_FFCR_TRIGON_TRIGIN, |
| drvdata->base + TMC_FFCR); |
| writel_relaxed(drvdata->trigger_cntr, drvdata->base + TMC_TRG); |
| tmc_enable_hw(drvdata); |
| |
| CS_LOCK(drvdata->base); |
| } |
| |
| static int tmc_etr_enable_hw(struct tmc_drvdata *drvdata, |
| struct etr_buf *etr_buf) |
| { |
| int rc; |
| |
| /* Callers should provide an appropriate buffer for use */ |
| if (WARN_ON(!etr_buf)) |
| return -EINVAL; |
| |
| if ((etr_buf->mode == ETR_MODE_ETR_SG) && |
| WARN_ON(!tmc_etr_has_cap(drvdata, TMC_ETR_SG))) |
| return -EINVAL; |
| |
| if (WARN_ON(drvdata->etr_buf)) |
| return -EBUSY; |
| |
| /* |
| * If this ETR is connected to a CATU, enable it before we turn |
| * this on. |
| */ |
| rc = tmc_etr_enable_catu(drvdata, etr_buf); |
| if (rc) |
| return rc; |
| rc = coresight_claim_device(drvdata->base); |
| if (!rc) { |
| drvdata->etr_buf = etr_buf; |
| __tmc_etr_enable_hw(drvdata); |
| } |
| |
| return rc; |
| } |
| |
| /* |
| * Return the available trace data in the buffer (starts at etr_buf->offset, |
| * limited by etr_buf->len) from @pos, with a maximum limit of @len, |
| * also updating the @bufpp on where to find it. Since the trace data |
| * starts at anywhere in the buffer, depending on the RRP, we adjust the |
| * @len returned to handle buffer wrapping around. |
| * |
| * We are protected here by drvdata->reading != 0, which ensures the |
| * sysfs_buf stays alive. |
| */ |
| ssize_t tmc_etr_get_sysfs_trace(struct tmc_drvdata *drvdata, |
| loff_t pos, size_t len, char **bufpp) |
| { |
| s64 offset; |
| ssize_t actual = len; |
| struct etr_buf *etr_buf = drvdata->sysfs_buf; |
| |
| if (pos + actual > etr_buf->len) |
| actual = etr_buf->len - pos; |
| if (actual <= 0) |
| return actual; |
| |
| /* Compute the offset from which we read the data */ |
| offset = etr_buf->offset + pos; |
| if (offset >= etr_buf->size) |
| offset -= etr_buf->size; |
| return tmc_etr_buf_get_data(etr_buf, offset, actual, bufpp); |
| } |
| |
| static struct etr_buf * |
| tmc_etr_setup_sysfs_buf(struct tmc_drvdata *drvdata) |
| { |
| return tmc_alloc_etr_buf(drvdata, drvdata->size, |
| 0, cpu_to_node(0), NULL); |
| } |
| |
| static void |
| tmc_etr_free_sysfs_buf(struct etr_buf *buf) |
| { |
| if (buf) |
| tmc_free_etr_buf(buf); |
| } |
| |
| static void tmc_etr_sync_sysfs_buf(struct tmc_drvdata *drvdata) |
| { |
| struct etr_buf *etr_buf = drvdata->etr_buf; |
| |
| if (WARN_ON(drvdata->sysfs_buf != etr_buf)) { |
| tmc_etr_free_sysfs_buf(drvdata->sysfs_buf); |
| drvdata->sysfs_buf = NULL; |
| } else { |
| tmc_sync_etr_buf(drvdata); |
| /* |
| * Insert barrier packets at the beginning, if there was |
| * an overflow. |
| */ |
| if (etr_buf->full) |
| tmc_etr_buf_insert_barrier_packet(etr_buf, |
| etr_buf->offset); |
| } |
| } |
| |
| static void __tmc_etr_disable_hw(struct tmc_drvdata *drvdata) |
| { |
| CS_UNLOCK(drvdata->base); |
| |
| tmc_flush_and_stop(drvdata); |
| /* |
| * When operating in sysFS mode the content of the buffer needs to be |
| * read before the TMC is disabled. |
| */ |
| if (drvdata->mode == CS_MODE_SYSFS) |
| tmc_etr_sync_sysfs_buf(drvdata); |
| |
| tmc_disable_hw(drvdata); |
| |
| CS_LOCK(drvdata->base); |
| |
| } |
| |
| static void tmc_etr_disable_hw(struct tmc_drvdata *drvdata) |
| { |
| __tmc_etr_disable_hw(drvdata); |
| /* Disable CATU device if this ETR is connected to one */ |
| tmc_etr_disable_catu(drvdata); |
| coresight_disclaim_device(drvdata->base); |
| /* Reset the ETR buf used by hardware */ |
| drvdata->etr_buf = NULL; |
| } |
| |
| static int tmc_enable_etr_sink_sysfs(struct coresight_device *csdev) |
| { |
| int ret = 0; |
| unsigned long flags; |
| struct tmc_drvdata *drvdata = dev_get_drvdata(csdev->dev.parent); |
| struct etr_buf *sysfs_buf = NULL, *new_buf = NULL, *free_buf = NULL; |
| |
| /* |
| * If we are enabling the ETR from disabled state, we need to make |
| * sure we have a buffer with the right size. The etr_buf is not reset |
| * immediately after we stop the tracing in SYSFS mode as we wait for |
| * the user to collect the data. We may be able to reuse the existing |
| * buffer, provided the size matches. Any allocation has to be done |
| * with the lock released. |
| */ |
| spin_lock_irqsave(&drvdata->spinlock, flags); |
| sysfs_buf = READ_ONCE(drvdata->sysfs_buf); |
| if (!sysfs_buf || (sysfs_buf->size != drvdata->size)) { |
| spin_unlock_irqrestore(&drvdata->spinlock, flags); |
| |
| /* Allocate memory with the locks released */ |
| free_buf = new_buf = tmc_etr_setup_sysfs_buf(drvdata); |
| if (IS_ERR(new_buf)) |
| return PTR_ERR(new_buf); |
| |
| /* Let's try again */ |
| spin_lock_irqsave(&drvdata->spinlock, flags); |
| } |
| |
| if (drvdata->reading || drvdata->mode == CS_MODE_PERF) { |
| ret = -EBUSY; |
| goto out; |
| } |
| |
| /* |
| * In sysFS mode we can have multiple writers per sink. Since this |
| * sink is already enabled no memory is needed and the HW need not be |
| * touched, even if the buffer size has changed. |
| */ |
| if (drvdata->mode == CS_MODE_SYSFS) { |
| atomic_inc(csdev->refcnt); |
| goto out; |
| } |
| |
| /* |
| * If we don't have a buffer or it doesn't match the requested size, |
| * use the buffer allocated above. Otherwise reuse the existing buffer. |
| */ |
| sysfs_buf = READ_ONCE(drvdata->sysfs_buf); |
| if (!sysfs_buf || (new_buf && sysfs_buf->size != new_buf->size)) { |
| free_buf = sysfs_buf; |
| drvdata->sysfs_buf = new_buf; |
| } |
| |
| ret = tmc_etr_enable_hw(drvdata, drvdata->sysfs_buf); |
| if (!ret) { |
| drvdata->mode = CS_MODE_SYSFS; |
| atomic_inc(csdev->refcnt); |
| } |
| out: |
| spin_unlock_irqrestore(&drvdata->spinlock, flags); |
| |
| /* Free memory outside the spinlock if need be */ |
| if (free_buf) |
| tmc_etr_free_sysfs_buf(free_buf); |
| |
| if (!ret) |
| dev_dbg(&csdev->dev, "TMC-ETR enabled\n"); |
| |
| return ret; |
| } |
| |
| /* |
| * alloc_etr_buf: Allocate ETR buffer for use by perf. |
| * The size of the hardware buffer is dependent on the size configured |
| * via sysfs and the perf ring buffer size. We prefer to allocate the |
| * largest possible size, scaling down the size by half until it |
| * reaches a minimum limit (1M), beyond which we give up. |
| */ |
| static struct etr_buf * |
| alloc_etr_buf(struct tmc_drvdata *drvdata, struct perf_event *event, |
| int nr_pages, void **pages, bool snapshot) |
| { |
| int node; |
| struct etr_buf *etr_buf; |
| unsigned long size; |
| |
| node = (event->cpu == -1) ? NUMA_NO_NODE : cpu_to_node(event->cpu); |
| /* |
| * Try to match the perf ring buffer size if it is larger |
| * than the size requested via sysfs. |
| */ |
| if ((nr_pages << PAGE_SHIFT) > drvdata->size) { |
| etr_buf = tmc_alloc_etr_buf(drvdata, (nr_pages << PAGE_SHIFT), |
| 0, node, NULL); |
| if (!IS_ERR(etr_buf)) |
| goto done; |
| } |
| |
| /* |
| * Else switch to configured size for this ETR |
| * and scale down until we hit the minimum limit. |
| */ |
| size = drvdata->size; |
| do { |
| etr_buf = tmc_alloc_etr_buf(drvdata, size, 0, node, NULL); |
| if (!IS_ERR(etr_buf)) |
| goto done; |
| size /= 2; |
| } while (size >= TMC_ETR_PERF_MIN_BUF_SIZE); |
| |
| return ERR_PTR(-ENOMEM); |
| |
| done: |
| return etr_buf; |
| } |
| |
| static struct etr_buf * |
| get_perf_etr_buf_cpu_wide(struct tmc_drvdata *drvdata, |
| struct perf_event *event, int nr_pages, |
| void **pages, bool snapshot) |
| { |
| int ret; |
| pid_t pid = task_pid_nr(event->owner); |
| struct etr_buf *etr_buf; |
| |
| retry: |
| /* |
| * An etr_perf_buffer is associated with an event and holds a reference |
| * to the AUX ring buffer that was created for that event. In CPU-wide |
| * N:1 mode multiple events (one per CPU), each with its own AUX ring |
| * buffer, share a sink. As such an etr_perf_buffer is created for each |
| * event but a single etr_buf associated with the ETR is shared between |
| * them. The last event in a trace session will copy the content of the |
| * etr_buf to its AUX ring buffer. Ring buffer associated to other |
| * events are simply not used an freed as events are destoyed. We still |
| * need to allocate a ring buffer for each event since we don't know |
| * which event will be last. |
| */ |
| |
| /* |
| * The first thing to do here is check if an etr_buf has already been |
| * allocated for this session. If so it is shared with this event, |
| * otherwise it is created. |
| */ |
| mutex_lock(&drvdata->idr_mutex); |
| etr_buf = idr_find(&drvdata->idr, pid); |
| if (etr_buf) { |
| refcount_inc(&etr_buf->refcount); |
| mutex_unlock(&drvdata->idr_mutex); |
| return etr_buf; |
| } |
| |
| /* If we made it here no buffer has been allocated, do so now. */ |
| mutex_unlock(&drvdata->idr_mutex); |
| |
| etr_buf = alloc_etr_buf(drvdata, event, nr_pages, pages, snapshot); |
| if (IS_ERR(etr_buf)) |
| return etr_buf; |
| |
| /* Now that we have a buffer, add it to the IDR. */ |
| mutex_lock(&drvdata->idr_mutex); |
| ret = idr_alloc(&drvdata->idr, etr_buf, pid, pid + 1, GFP_KERNEL); |
| mutex_unlock(&drvdata->idr_mutex); |
| |
| /* Another event with this session ID has allocated this buffer. */ |
| if (ret == -ENOSPC) { |
| tmc_free_etr_buf(etr_buf); |
| goto retry; |
| } |
| |
| /* The IDR can't allocate room for a new session, abandon ship. */ |
| if (ret == -ENOMEM) { |
| tmc_free_etr_buf(etr_buf); |
| return ERR_PTR(ret); |
| } |
| |
| |
| return etr_buf; |
| } |
| |
| static struct etr_buf * |
| get_perf_etr_buf_per_thread(struct tmc_drvdata *drvdata, |
| struct perf_event *event, int nr_pages, |
| void **pages, bool snapshot) |
| { |
| /* |
| * In per-thread mode the etr_buf isn't shared, so just go ahead |
| * with memory allocation. |
| */ |
| return alloc_etr_buf(drvdata, event, nr_pages, pages, snapshot); |
| } |
| |
| static struct etr_buf * |
| get_perf_etr_buf(struct tmc_drvdata *drvdata, struct perf_event *event, |
| int nr_pages, void **pages, bool snapshot) |
| { |
| if (event->cpu == -1) |
| return get_perf_etr_buf_per_thread(drvdata, event, nr_pages, |
| pages, snapshot); |
| |
| return get_perf_etr_buf_cpu_wide(drvdata, event, nr_pages, |
| pages, snapshot); |
| } |
| |
| static struct etr_perf_buffer * |
| tmc_etr_setup_perf_buf(struct tmc_drvdata *drvdata, struct perf_event *event, |
| int nr_pages, void **pages, bool snapshot) |
| { |
| int node; |
| struct etr_buf *etr_buf; |
| struct etr_perf_buffer *etr_perf; |
| |
| node = (event->cpu == -1) ? NUMA_NO_NODE : cpu_to_node(event->cpu); |
| |
| etr_perf = kzalloc_node(sizeof(*etr_perf), GFP_KERNEL, node); |
| if (!etr_perf) |
| return ERR_PTR(-ENOMEM); |
| |
| etr_buf = get_perf_etr_buf(drvdata, event, nr_pages, pages, snapshot); |
| if (!IS_ERR(etr_buf)) |
| goto done; |
| |
| kfree(etr_perf); |
| return ERR_PTR(-ENOMEM); |
| |
| done: |
| /* |
| * Keep a reference to the ETR this buffer has been allocated for |
| * in order to have access to the IDR in tmc_free_etr_buffer(). |
| */ |
| etr_perf->drvdata = drvdata; |
| etr_perf->etr_buf = etr_buf; |
| |
| return etr_perf; |
| } |
| |
| |
| static void *tmc_alloc_etr_buffer(struct coresight_device *csdev, |
| struct perf_event *event, void **pages, |
| int nr_pages, bool snapshot) |
| { |
| struct etr_perf_buffer *etr_perf; |
| struct tmc_drvdata *drvdata = dev_get_drvdata(csdev->dev.parent); |
| |
| etr_perf = tmc_etr_setup_perf_buf(drvdata, event, |
| nr_pages, pages, snapshot); |
| if (IS_ERR(etr_perf)) { |
| dev_dbg(&csdev->dev, "Unable to allocate ETR buffer\n"); |
| return NULL; |
| } |
| |
| etr_perf->pid = task_pid_nr(event->owner); |
| etr_perf->snapshot = snapshot; |
| etr_perf->nr_pages = nr_pages; |
| etr_perf->pages = pages; |
| |
| return etr_perf; |
| } |
| |
| static void tmc_free_etr_buffer(void *config) |
| { |
| struct etr_perf_buffer *etr_perf = config; |
| struct tmc_drvdata *drvdata = etr_perf->drvdata; |
| struct etr_buf *buf, *etr_buf = etr_perf->etr_buf; |
| |
| if (!etr_buf) |
| goto free_etr_perf_buffer; |
| |
| mutex_lock(&drvdata->idr_mutex); |
| /* If we are not the last one to use the buffer, don't touch it. */ |
| if (!refcount_dec_and_test(&etr_buf->refcount)) { |
| mutex_unlock(&drvdata->idr_mutex); |
| goto free_etr_perf_buffer; |
| } |
| |
| /* We are the last one, remove from the IDR and free the buffer. */ |
| buf = idr_remove(&drvdata->idr, etr_perf->pid); |
| mutex_unlock(&drvdata->idr_mutex); |
| |
| /* |
| * Something went very wrong if the buffer associated with this ID |
| * is not the same in the IDR. Leak to avoid use after free. |
| */ |
| if (buf && WARN_ON(buf != etr_buf)) |
| goto free_etr_perf_buffer; |
| |
| tmc_free_etr_buf(etr_perf->etr_buf); |
| |
| free_etr_perf_buffer: |
| kfree(etr_perf); |
| } |
| |
| /* |
| * tmc_etr_sync_perf_buffer: Copy the actual trace data from the hardware |
| * buffer to the perf ring buffer. |
| */ |
| static void tmc_etr_sync_perf_buffer(struct etr_perf_buffer *etr_perf, |
| unsigned long src_offset, |
| unsigned long to_copy) |
| { |
| long bytes; |
| long pg_idx, pg_offset; |
| unsigned long head = etr_perf->head; |
| char **dst_pages, *src_buf; |
| struct etr_buf *etr_buf = etr_perf->etr_buf; |
| |
| head = etr_perf->head; |
| pg_idx = head >> PAGE_SHIFT; |
| pg_offset = head & (PAGE_SIZE - 1); |
| dst_pages = (char **)etr_perf->pages; |
| |
| while (to_copy > 0) { |
| /* |
| * In one iteration, we can copy minimum of : |
| * 1) what is available in the source buffer, |
| * 2) what is available in the source buffer, before it |
| * wraps around. |
| * 3) what is available in the destination page. |
| * in one iteration. |
| */ |
| if (src_offset >= etr_buf->size) |
| src_offset -= etr_buf->size; |
| bytes = tmc_etr_buf_get_data(etr_buf, src_offset, to_copy, |
| &src_buf); |
| if (WARN_ON_ONCE(bytes <= 0)) |
| break; |
| bytes = min(bytes, (long)(PAGE_SIZE - pg_offset)); |
| |
| memcpy(dst_pages[pg_idx] + pg_offset, src_buf, bytes); |
| |
| to_copy -= bytes; |
| |
| /* Move destination pointers */ |
| pg_offset += bytes; |
| if (pg_offset == PAGE_SIZE) { |
| pg_offset = 0; |
| if (++pg_idx == etr_perf->nr_pages) |
| pg_idx = 0; |
| } |
| |
| /* Move source pointers */ |
| src_offset += bytes; |
| } |
| } |
| |
| /* |
| * tmc_update_etr_buffer : Update the perf ring buffer with the |
| * available trace data. We use software double buffering at the moment. |
| * |
| * TODO: Add support for reusing the perf ring buffer. |
| */ |
| static unsigned long |
| tmc_update_etr_buffer(struct coresight_device *csdev, |
| struct perf_output_handle *handle, |
| void *config) |
| { |
| bool lost = false; |
| unsigned long flags, offset, size = 0; |
| struct tmc_drvdata *drvdata = dev_get_drvdata(csdev->dev.parent); |
| struct etr_perf_buffer *etr_perf = config; |
| struct etr_buf *etr_buf = etr_perf->etr_buf; |
| |
| spin_lock_irqsave(&drvdata->spinlock, flags); |
| |
| /* Don't do anything if another tracer is using this sink */ |
| if (atomic_read(csdev->refcnt) != 1) { |
| spin_unlock_irqrestore(&drvdata->spinlock, flags); |
| goto out; |
| } |
| |
| if (WARN_ON(drvdata->perf_buf != etr_buf)) { |
| lost = true; |
| spin_unlock_irqrestore(&drvdata->spinlock, flags); |
| goto out; |
| } |
| |
| CS_UNLOCK(drvdata->base); |
| |
| tmc_flush_and_stop(drvdata); |
| tmc_sync_etr_buf(drvdata); |
| |
| CS_LOCK(drvdata->base); |
| spin_unlock_irqrestore(&drvdata->spinlock, flags); |
| |
| lost = etr_buf->full; |
| offset = etr_buf->offset; |
| size = etr_buf->len; |
| |
| /* |
| * The ETR buffer may be bigger than the space available in the |
| * perf ring buffer (handle->size). If so advance the offset so that we |
| * get the latest trace data. In snapshot mode none of that matters |
| * since we are expected to clobber stale data in favour of the latest |
| * traces. |
| */ |
| if (!etr_perf->snapshot && size > handle->size) { |
| u32 mask = tmc_get_memwidth_mask(drvdata); |
| |
| /* |
| * Make sure the new size is aligned in accordance with the |
| * requirement explained in function tmc_get_memwidth_mask(). |
| */ |
| size = handle->size & mask; |
| offset = etr_buf->offset + etr_buf->len - size; |
| |
| if (offset >= etr_buf->size) |
| offset -= etr_buf->size; |
| lost = true; |
| } |
| |
| /* Insert barrier packets at the beginning, if there was an overflow */ |
| if (lost) |
| tmc_etr_buf_insert_barrier_packet(etr_buf, offset); |
| tmc_etr_sync_perf_buffer(etr_perf, offset, size); |
| |
| /* |
| * In snapshot mode we simply increment the head by the number of byte |
| * that were written. User space function cs_etm_find_snapshot() will |
| * figure out how many bytes to get from the AUX buffer based on the |
| * position of the head. |
| */ |
| if (etr_perf->snapshot) |
| handle->head += size; |
| out: |
| /* |
| * Don't set the TRUNCATED flag in snapshot mode because 1) the |
| * captured buffer is expected to be truncated and 2) a full buffer |
| * prevents the event from being re-enabled by the perf core, |
| * resulting in stale data being send to user space. |
| */ |
| if (!etr_perf->snapshot && lost) |
| perf_aux_output_flag(handle, PERF_AUX_FLAG_TRUNCATED); |
| return size; |
| } |
| |
| static int tmc_enable_etr_sink_perf(struct coresight_device *csdev, void *data) |
| { |
| int rc = 0; |
| pid_t pid; |
| unsigned long flags; |
| struct tmc_drvdata *drvdata = dev_get_drvdata(csdev->dev.parent); |
| struct perf_output_handle *handle = data; |
| struct etr_perf_buffer *etr_perf = etm_perf_sink_config(handle); |
| |
| spin_lock_irqsave(&drvdata->spinlock, flags); |
| /* Don't use this sink if it is already claimed by sysFS */ |
| if (drvdata->mode == CS_MODE_SYSFS) { |
| rc = -EBUSY; |
| goto unlock_out; |
| } |
| |
| if (WARN_ON(!etr_perf || !etr_perf->etr_buf)) { |
| rc = -EINVAL; |
| goto unlock_out; |
| } |
| |
| /* Get a handle on the pid of the process to monitor */ |
| pid = etr_perf->pid; |
| |
| /* Do not proceed if this device is associated with another session */ |
| if (drvdata->pid != -1 && drvdata->pid != pid) { |
| rc = -EBUSY; |
| goto unlock_out; |
| } |
| |
| etr_perf->head = PERF_IDX2OFF(handle->head, etr_perf); |
| |
| /* |
| * No HW configuration is needed if the sink is already in |
| * use for this session. |
| */ |
| if (drvdata->pid == pid) { |
| atomic_inc(csdev->refcnt); |
| goto unlock_out; |
| } |
| |
| rc = tmc_etr_enable_hw(drvdata, etr_perf->etr_buf); |
| if (!rc) { |
| /* Associate with monitored process. */ |
| drvdata->pid = pid; |
| drvdata->mode = CS_MODE_PERF; |
| drvdata->perf_buf = etr_perf->etr_buf; |
| atomic_inc(csdev->refcnt); |
| } |
| |
| unlock_out: |
| spin_unlock_irqrestore(&drvdata->spinlock, flags); |
| return rc; |
| } |
| |
| static int tmc_enable_etr_sink(struct coresight_device *csdev, |
| u32 mode, void *data) |
| { |
| switch (mode) { |
| case CS_MODE_SYSFS: |
| return tmc_enable_etr_sink_sysfs(csdev); |
| case CS_MODE_PERF: |
| return tmc_enable_etr_sink_perf(csdev, data); |
| } |
| |
| /* We shouldn't be here */ |
| return -EINVAL; |
| } |
| |
| static int tmc_disable_etr_sink(struct coresight_device *csdev) |
| { |
| unsigned long flags; |
| struct tmc_drvdata *drvdata = dev_get_drvdata(csdev->dev.parent); |
| |
| spin_lock_irqsave(&drvdata->spinlock, flags); |
| |
| if (drvdata->reading) { |
| spin_unlock_irqrestore(&drvdata->spinlock, flags); |
| return -EBUSY; |
| } |
| |
| if (atomic_dec_return(csdev->refcnt)) { |
| spin_unlock_irqrestore(&drvdata->spinlock, flags); |
| return -EBUSY; |
| } |
| |
| /* Complain if we (somehow) got out of sync */ |
| WARN_ON_ONCE(drvdata->mode == CS_MODE_DISABLED); |
| tmc_etr_disable_hw(drvdata); |
| /* Dissociate from monitored process. */ |
| drvdata->pid = -1; |
| drvdata->mode = CS_MODE_DISABLED; |
| /* Reset perf specific data */ |
| drvdata->perf_buf = NULL; |
| |
| spin_unlock_irqrestore(&drvdata->spinlock, flags); |
| |
| dev_dbg(&csdev->dev, "TMC-ETR disabled\n"); |
| return 0; |
| } |
| |
| static const struct coresight_ops_sink tmc_etr_sink_ops = { |
| .enable = tmc_enable_etr_sink, |
| .disable = tmc_disable_etr_sink, |
| .alloc_buffer = tmc_alloc_etr_buffer, |
| .update_buffer = tmc_update_etr_buffer, |
| .free_buffer = tmc_free_etr_buffer, |
| }; |
| |
| const struct coresight_ops tmc_etr_cs_ops = { |
| .sink_ops = &tmc_etr_sink_ops, |
| }; |
| |
| int tmc_read_prepare_etr(struct tmc_drvdata *drvdata) |
| { |
| int ret = 0; |
| unsigned long flags; |
| |
| /* config types are set a boot time and never change */ |
| if (WARN_ON_ONCE(drvdata->config_type != TMC_CONFIG_TYPE_ETR)) |
| return -EINVAL; |
| |
| spin_lock_irqsave(&drvdata->spinlock, flags); |
| if (drvdata->reading) { |
| ret = -EBUSY; |
| goto out; |
| } |
| |
| /* |
| * We can safely allow reads even if the ETR is operating in PERF mode, |
| * since the sysfs session is captured in mode specific data. |
| * If drvdata::sysfs_data is NULL the trace data has been read already. |
| */ |
| if (!drvdata->sysfs_buf) { |
| ret = -EINVAL; |
| goto out; |
| } |
| |
| /* Disable the TMC if we are trying to read from a running session. */ |
| if (drvdata->mode == CS_MODE_SYSFS) |
| __tmc_etr_disable_hw(drvdata); |
| |
| drvdata->reading = true; |
| out: |
| spin_unlock_irqrestore(&drvdata->spinlock, flags); |
| |
| return ret; |
| } |
| |
| int tmc_read_unprepare_etr(struct tmc_drvdata *drvdata) |
| { |
| unsigned long flags; |
| struct etr_buf *sysfs_buf = NULL; |
| |
| /* config types are set a boot time and never change */ |
| if (WARN_ON_ONCE(drvdata->config_type != TMC_CONFIG_TYPE_ETR)) |
| return -EINVAL; |
| |
| spin_lock_irqsave(&drvdata->spinlock, flags); |
| |
| /* RE-enable the TMC if need be */ |
| if (drvdata->mode == CS_MODE_SYSFS) { |
| /* |
| * The trace run will continue with the same allocated trace |
| * buffer. Since the tracer is still enabled drvdata::buf can't |
| * be NULL. |
| */ |
| __tmc_etr_enable_hw(drvdata); |
| } else { |
| /* |
| * The ETR is not tracing and the buffer was just read. |
| * As such prepare to free the trace buffer. |
| */ |
| sysfs_buf = drvdata->sysfs_buf; |
| drvdata->sysfs_buf = NULL; |
| } |
| |
| drvdata->reading = false; |
| spin_unlock_irqrestore(&drvdata->spinlock, flags); |
| |
| /* Free allocated memory out side of the spinlock */ |
| if (sysfs_buf) |
| tmc_etr_free_sysfs_buf(sysfs_buf); |
| |
| return 0; |
| } |