blob: f609ec1de36d0d2c29243259a520b2505427c2f9 [file] [log] [blame]
/* SPDX-License-Identifier: GPL-2.0 */
/*
* include/asm-m68k/dma.h
*
* Copyright 1995 (C) David S. Miller (davem@caip.rutgers.edu)
*
* Hacked to fit Sun3x needs by Thomas Bogendoerfer
*/
#ifndef __M68K_DVMA_H
#define __M68K_DVMA_H
#define DVMA_PAGE_SHIFT 13
#define DVMA_PAGE_SIZE (1UL << DVMA_PAGE_SHIFT)
#define DVMA_PAGE_MASK (~(DVMA_PAGE_SIZE-1))
#define DVMA_PAGE_ALIGN(addr) ALIGN(addr, DVMA_PAGE_SIZE)
extern void dvma_init(void);
extern int dvma_map_iommu(unsigned long kaddr, unsigned long baddr,
int len);
#define dvma_malloc(x) dvma_malloc_align(x, 0)
#define dvma_map(x, y) dvma_map_align(x, y, 0)
#define dvma_map_vme(x, y) (dvma_map(x, y) & 0xfffff)
#define dvma_map_align_vme(x, y, z) (dvma_map_align (x, y, z) & 0xfffff)
extern unsigned long dvma_map_align(unsigned long kaddr, int len,
int align);
extern void *dvma_malloc_align(unsigned long len, unsigned long align);
extern void dvma_unmap(void *baddr);
extern void dvma_free(void *vaddr);
#ifdef CONFIG_SUN3
/* sun3 dvma page support */
/* memory and pmegs potentially reserved for dvma */
#define DVMA_PMEG_START 10
#define DVMA_PMEG_END 16
#define DVMA_START 0xf00000
#define DVMA_END 0xfe0000
#define DVMA_SIZE (DVMA_END-DVMA_START)
#define IOMMU_TOTAL_ENTRIES 128
#define IOMMU_ENTRIES 120
/* empirical kludge -- dvma regions only seem to work right on 0x10000
byte boundaries */
#define DVMA_REGION_SIZE 0x10000
#define DVMA_ALIGN(addr) (((addr)+DVMA_REGION_SIZE-1) & \
~(DVMA_REGION_SIZE-1))
/* virt <-> phys conversions */
#define dvma_vtop(x) ((unsigned long)(x) & 0xffffff)
#define dvma_ptov(x) ((unsigned long)(x) | 0xf000000)
#define dvma_vtovme(x) ((unsigned long)(x) & 0x00fffff)
#define dvma_vmetov(x) ((unsigned long)(x) | 0xff00000)
#define dvma_vtob(x) dvma_vtop(x)
#define dvma_btov(x) dvma_ptov(x)
static inline int dvma_map_cpu(unsigned long kaddr, unsigned long vaddr,
int len)
{
return 0;
}
#else /* Sun3x */
/* sun3x dvma page support */
#define DVMA_START 0x0
#define DVMA_END 0xf00000
#define DVMA_SIZE (DVMA_END-DVMA_START)
#define IOMMU_TOTAL_ENTRIES 2048
/* the prom takes the top meg */
#define IOMMU_ENTRIES (IOMMU_TOTAL_ENTRIES - 0x80)
#define dvma_vtob(x) ((unsigned long)(x) & 0x00ffffff)
#define dvma_btov(x) ((unsigned long)(x) | 0xff000000)
extern int dvma_map_cpu(unsigned long kaddr, unsigned long vaddr, int len);
/* everything below this line is specific to dma used for the onboard
ESP scsi on sun3x */
/* Structure to describe the current status of DMA registers on the Sparc */
struct sparc_dma_registers {
__volatile__ unsigned long cond_reg; /* DMA condition register */
__volatile__ unsigned long st_addr; /* Start address of this transfer */
__volatile__ unsigned long cnt; /* How many bytes to transfer */
__volatile__ unsigned long dma_test; /* DMA test register */
};
/* DVMA chip revisions */
enum dvma_rev {
dvmarev0,
dvmaesc1,
dvmarev1,
dvmarev2,
dvmarev3,
dvmarevplus,
dvmahme
};
#define DMA_HASCOUNT(rev) ((rev)==dvmaesc1)
/* Linux DMA information structure, filled during probe. */
struct Linux_SBus_DMA {
struct Linux_SBus_DMA *next;
struct linux_sbus_device *SBus_dev;
struct sparc_dma_registers *regs;
/* Status, misc info */
int node; /* Prom node for this DMA device */
int running; /* Are we doing DMA now? */
int allocated; /* Are we "owned" by anyone yet? */
/* Transfer information. */
unsigned long addr; /* Start address of current transfer */
int nbytes; /* Size of current transfer */
int realbytes; /* For splitting up large transfers, etc. */
/* DMA revision */
enum dvma_rev revision;
};
extern struct Linux_SBus_DMA *dma_chain;
/* Broken hardware... */
#define DMA_ISBROKEN(dma) ((dma)->revision == dvmarev1)
#define DMA_ISESC1(dma) ((dma)->revision == dvmaesc1)
/* Fields in the cond_reg register */
/* First, the version identification bits */
#define DMA_DEVICE_ID 0xf0000000 /* Device identification bits */
#define DMA_VERS0 0x00000000 /* Sunray DMA version */
#define DMA_ESCV1 0x40000000 /* DMA ESC Version 1 */
#define DMA_VERS1 0x80000000 /* DMA rev 1 */
#define DMA_VERS2 0xa0000000 /* DMA rev 2 */
#define DMA_VERHME 0xb0000000 /* DMA hme gate array */
#define DMA_VERSPLUS 0x90000000 /* DMA rev 1 PLUS */
#define DMA_HNDL_INTR 0x00000001 /* An IRQ needs to be handled */
#define DMA_HNDL_ERROR 0x00000002 /* We need to take an error */
#define DMA_FIFO_ISDRAIN 0x0000000c /* The DMA FIFO is draining */
#define DMA_INT_ENAB 0x00000010 /* Turn on interrupts */
#define DMA_FIFO_INV 0x00000020 /* Invalidate the FIFO */
#define DMA_ACC_SZ_ERR 0x00000040 /* The access size was bad */
#define DMA_FIFO_STDRAIN 0x00000040 /* DMA_VERS1 Drain the FIFO */
#define DMA_RST_SCSI 0x00000080 /* Reset the SCSI controller */
#define DMA_RST_ENET DMA_RST_SCSI /* Reset the ENET controller */
#define DMA_ST_WRITE 0x00000100 /* write from device to memory */
#define DMA_ENABLE 0x00000200 /* Fire up DMA, handle requests */
#define DMA_PEND_READ 0x00000400 /* DMA_VERS1/0/PLUS Pending Read */
#define DMA_ESC_BURST 0x00000800 /* 1=16byte 0=32byte */
#define DMA_READ_AHEAD 0x00001800 /* DMA read ahead partial longword */
#define DMA_DSBL_RD_DRN 0x00001000 /* No EC drain on slave reads */
#define DMA_BCNT_ENAB 0x00002000 /* If on, use the byte counter */
#define DMA_TERM_CNTR 0x00004000 /* Terminal counter */
#define DMA_CSR_DISAB 0x00010000 /* No FIFO drains during csr */
#define DMA_SCSI_DISAB 0x00020000 /* No FIFO drains during reg */
#define DMA_DSBL_WR_INV 0x00020000 /* No EC inval. on slave writes */
#define DMA_ADD_ENABLE 0x00040000 /* Special ESC DVMA optimization */
#define DMA_E_BURST8 0x00040000 /* ENET: SBUS r/w burst size */
#define DMA_BRST_SZ 0x000c0000 /* SCSI: SBUS r/w burst size */
#define DMA_BRST64 0x00080000 /* SCSI: 64byte bursts (HME on UltraSparc only) */
#define DMA_BRST32 0x00040000 /* SCSI: 32byte bursts */
#define DMA_BRST16 0x00000000 /* SCSI: 16byte bursts */
#define DMA_BRST0 0x00080000 /* SCSI: no bursts (non-HME gate arrays) */
#define DMA_ADDR_DISAB 0x00100000 /* No FIFO drains during addr */
#define DMA_2CLKS 0x00200000 /* Each transfer = 2 clock ticks */
#define DMA_3CLKS 0x00400000 /* Each transfer = 3 clock ticks */
#define DMA_EN_ENETAUI DMA_3CLKS /* Put lance into AUI-cable mode */
#define DMA_CNTR_DISAB 0x00800000 /* No IRQ when DMA_TERM_CNTR set */
#define DMA_AUTO_NADDR 0x01000000 /* Use "auto nxt addr" feature */
#define DMA_SCSI_ON 0x02000000 /* Enable SCSI dma */
#define DMA_PARITY_OFF 0x02000000 /* HME: disable parity checking */
#define DMA_LOADED_ADDR 0x04000000 /* Address has been loaded */
#define DMA_LOADED_NADDR 0x08000000 /* Next address has been loaded */
/* Values describing the burst-size property from the PROM */
#define DMA_BURST1 0x01
#define DMA_BURST2 0x02
#define DMA_BURST4 0x04
#define DMA_BURST8 0x08
#define DMA_BURST16 0x10
#define DMA_BURST32 0x20
#define DMA_BURST64 0x40
#define DMA_BURSTBITS 0x7f
/* Determine highest possible final transfer address given a base */
#define DMA_MAXEND(addr) (0x01000000UL-(((unsigned long)(addr))&0x00ffffffUL))
/* Yes, I hack a lot of elisp in my spare time... */
#define DMA_ERROR_P(regs) ((((regs)->cond_reg) & DMA_HNDL_ERROR))
#define DMA_IRQ_P(regs) ((((regs)->cond_reg) & (DMA_HNDL_INTR | DMA_HNDL_ERROR)))
#define DMA_WRITE_P(regs) ((((regs)->cond_reg) & DMA_ST_WRITE))
#define DMA_OFF(regs) ((((regs)->cond_reg) &= (~DMA_ENABLE)))
#define DMA_INTSOFF(regs) ((((regs)->cond_reg) &= (~DMA_INT_ENAB)))
#define DMA_INTSON(regs) ((((regs)->cond_reg) |= (DMA_INT_ENAB)))
#define DMA_PUNTFIFO(regs) ((((regs)->cond_reg) |= DMA_FIFO_INV))
#define DMA_SETSTART(regs, addr) ((((regs)->st_addr) = (char *) addr))
#define DMA_BEGINDMA_W(regs) \
((((regs)->cond_reg |= (DMA_ST_WRITE|DMA_ENABLE|DMA_INT_ENAB))))
#define DMA_BEGINDMA_R(regs) \
((((regs)->cond_reg |= ((DMA_ENABLE|DMA_INT_ENAB)&(~DMA_ST_WRITE)))))
/* For certain DMA chips, we need to disable ints upon irq entry
* and turn them back on when we are done. So in any ESP interrupt
* handler you *must* call DMA_IRQ_ENTRY upon entry and DMA_IRQ_EXIT
* when leaving the handler. You have been warned...
*/
#define DMA_IRQ_ENTRY(dma, dregs) do { \
if(DMA_ISBROKEN(dma)) DMA_INTSOFF(dregs); \
} while (0)
#define DMA_IRQ_EXIT(dma, dregs) do { \
if(DMA_ISBROKEN(dma)) DMA_INTSON(dregs); \
} while(0)
/* Reset the friggin' thing... */
#define DMA_RESET(dma) do { \
struct sparc_dma_registers *regs = dma->regs; \
/* Let the current FIFO drain itself */ \
sparc_dma_pause(regs, (DMA_FIFO_ISDRAIN)); \
/* Reset the logic */ \
regs->cond_reg |= (DMA_RST_SCSI); /* assert */ \
__delay(400); /* let the bits set ;) */ \
regs->cond_reg &= ~(DMA_RST_SCSI); /* de-assert */ \
sparc_dma_enable_interrupts(regs); /* Re-enable interrupts */ \
/* Enable FAST transfers if available */ \
if(dma->revision>dvmarev1) regs->cond_reg |= DMA_3CLKS; \
dma->running = 0; \
} while(0)
#endif /* !CONFIG_SUN3 */
#endif /* !(__M68K_DVMA_H) */