blob: 5a7fd89a8f2b11207b2f4a65ce08c4c52cdf6487 [file] [log] [blame]
/*
* linux/drivers/mmc/host/sdhci.c - Secure Digital Host Controller Interface driver
*
* Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or (at
* your option) any later version.
*
* Thanks to the following companies for their support:
*
* - JMicron (hardware and technical support)
*/
#include <linux/delay.h>
#include <linux/ktime.h>
#include <linux/highmem.h>
#include <linux/io.h>
#include <linux/module.h>
#include <linux/dma-mapping.h>
#include <linux/slab.h>
#include <linux/scatterlist.h>
#include <linux/sizes.h>
#include <linux/swiotlb.h>
#include <linux/regulator/consumer.h>
#include <linux/pm_runtime.h>
#include <linux/of.h>
#include <linux/leds.h>
#include <linux/mmc/mmc.h>
#include <linux/mmc/host.h>
#include <linux/mmc/card.h>
#include <linux/mmc/sdio.h>
#include <linux/mmc/slot-gpio.h>
#include "sdhci.h"
#define DRIVER_NAME "sdhci"
#define DBG(f, x...) \
pr_debug("%s: " DRIVER_NAME ": " f, mmc_hostname(host->mmc), ## x)
#define SDHCI_DUMP(f, x...) \
pr_err("%s: " DRIVER_NAME ": " f, mmc_hostname(host->mmc), ## x)
#define MAX_TUNING_LOOP 40
static unsigned int debug_quirks = 0;
static unsigned int debug_quirks2;
static void sdhci_finish_data(struct sdhci_host *);
static void sdhci_enable_preset_value(struct sdhci_host *host, bool enable);
void sdhci_dumpregs(struct sdhci_host *host)
{
SDHCI_DUMP("============ SDHCI REGISTER DUMP ===========\n");
SDHCI_DUMP("Sys addr: 0x%08x | Version: 0x%08x\n",
sdhci_readl(host, SDHCI_DMA_ADDRESS),
sdhci_readw(host, SDHCI_HOST_VERSION));
SDHCI_DUMP("Blk size: 0x%08x | Blk cnt: 0x%08x\n",
sdhci_readw(host, SDHCI_BLOCK_SIZE),
sdhci_readw(host, SDHCI_BLOCK_COUNT));
SDHCI_DUMP("Argument: 0x%08x | Trn mode: 0x%08x\n",
sdhci_readl(host, SDHCI_ARGUMENT),
sdhci_readw(host, SDHCI_TRANSFER_MODE));
SDHCI_DUMP("Present: 0x%08x | Host ctl: 0x%08x\n",
sdhci_readl(host, SDHCI_PRESENT_STATE),
sdhci_readb(host, SDHCI_HOST_CONTROL));
SDHCI_DUMP("Power: 0x%08x | Blk gap: 0x%08x\n",
sdhci_readb(host, SDHCI_POWER_CONTROL),
sdhci_readb(host, SDHCI_BLOCK_GAP_CONTROL));
SDHCI_DUMP("Wake-up: 0x%08x | Clock: 0x%08x\n",
sdhci_readb(host, SDHCI_WAKE_UP_CONTROL),
sdhci_readw(host, SDHCI_CLOCK_CONTROL));
SDHCI_DUMP("Timeout: 0x%08x | Int stat: 0x%08x\n",
sdhci_readb(host, SDHCI_TIMEOUT_CONTROL),
sdhci_readl(host, SDHCI_INT_STATUS));
SDHCI_DUMP("Int enab: 0x%08x | Sig enab: 0x%08x\n",
sdhci_readl(host, SDHCI_INT_ENABLE),
sdhci_readl(host, SDHCI_SIGNAL_ENABLE));
SDHCI_DUMP("ACmd stat: 0x%08x | Slot int: 0x%08x\n",
sdhci_readw(host, SDHCI_AUTO_CMD_STATUS),
sdhci_readw(host, SDHCI_SLOT_INT_STATUS));
SDHCI_DUMP("Caps: 0x%08x | Caps_1: 0x%08x\n",
sdhci_readl(host, SDHCI_CAPABILITIES),
sdhci_readl(host, SDHCI_CAPABILITIES_1));
SDHCI_DUMP("Cmd: 0x%08x | Max curr: 0x%08x\n",
sdhci_readw(host, SDHCI_COMMAND),
sdhci_readl(host, SDHCI_MAX_CURRENT));
SDHCI_DUMP("Resp[0]: 0x%08x | Resp[1]: 0x%08x\n",
sdhci_readl(host, SDHCI_RESPONSE),
sdhci_readl(host, SDHCI_RESPONSE + 4));
SDHCI_DUMP("Resp[2]: 0x%08x | Resp[3]: 0x%08x\n",
sdhci_readl(host, SDHCI_RESPONSE + 8),
sdhci_readl(host, SDHCI_RESPONSE + 12));
SDHCI_DUMP("Host ctl2: 0x%08x\n",
sdhci_readw(host, SDHCI_HOST_CONTROL2));
if (host->flags & SDHCI_USE_ADMA) {
if (host->flags & SDHCI_USE_64_BIT_DMA) {
SDHCI_DUMP("ADMA Err: 0x%08x | ADMA Ptr: 0x%08x%08x\n",
sdhci_readl(host, SDHCI_ADMA_ERROR),
sdhci_readl(host, SDHCI_ADMA_ADDRESS_HI),
sdhci_readl(host, SDHCI_ADMA_ADDRESS));
} else {
SDHCI_DUMP("ADMA Err: 0x%08x | ADMA Ptr: 0x%08x\n",
sdhci_readl(host, SDHCI_ADMA_ERROR),
sdhci_readl(host, SDHCI_ADMA_ADDRESS));
}
}
SDHCI_DUMP("============================================\n");
}
EXPORT_SYMBOL_GPL(sdhci_dumpregs);
/*****************************************************************************\
* *
* Low level functions *
* *
\*****************************************************************************/
static inline bool sdhci_data_line_cmd(struct mmc_command *cmd)
{
return cmd->data || cmd->flags & MMC_RSP_BUSY;
}
static void sdhci_set_card_detection(struct sdhci_host *host, bool enable)
{
u32 present;
if ((host->quirks & SDHCI_QUIRK_BROKEN_CARD_DETECTION) ||
!mmc_card_is_removable(host->mmc))
return;
if (enable) {
present = sdhci_readl(host, SDHCI_PRESENT_STATE) &
SDHCI_CARD_PRESENT;
host->ier |= present ? SDHCI_INT_CARD_REMOVE :
SDHCI_INT_CARD_INSERT;
} else {
host->ier &= ~(SDHCI_INT_CARD_REMOVE | SDHCI_INT_CARD_INSERT);
}
sdhci_writel(host, host->ier, SDHCI_INT_ENABLE);
sdhci_writel(host, host->ier, SDHCI_SIGNAL_ENABLE);
}
static void sdhci_enable_card_detection(struct sdhci_host *host)
{
sdhci_set_card_detection(host, true);
}
static void sdhci_disable_card_detection(struct sdhci_host *host)
{
sdhci_set_card_detection(host, false);
}
static void sdhci_runtime_pm_bus_on(struct sdhci_host *host)
{
if (host->bus_on)
return;
host->bus_on = true;
pm_runtime_get_noresume(host->mmc->parent);
}
static void sdhci_runtime_pm_bus_off(struct sdhci_host *host)
{
if (!host->bus_on)
return;
host->bus_on = false;
pm_runtime_put_noidle(host->mmc->parent);
}
void sdhci_reset(struct sdhci_host *host, u8 mask)
{
ktime_t timeout;
sdhci_writeb(host, mask, SDHCI_SOFTWARE_RESET);
if (mask & SDHCI_RESET_ALL) {
host->clock = 0;
/* Reset-all turns off SD Bus Power */
if (host->quirks2 & SDHCI_QUIRK2_CARD_ON_NEEDS_BUS_ON)
sdhci_runtime_pm_bus_off(host);
}
/* Wait max 100 ms */
timeout = ktime_add_ms(ktime_get(), 100);
/* hw clears the bit when it's done */
while (1) {
bool timedout = ktime_after(ktime_get(), timeout);
if (!(sdhci_readb(host, SDHCI_SOFTWARE_RESET) & mask))
break;
if (timedout) {
pr_err("%s: Reset 0x%x never completed.\n",
mmc_hostname(host->mmc), (int)mask);
sdhci_dumpregs(host);
return;
}
udelay(10);
}
}
EXPORT_SYMBOL_GPL(sdhci_reset);
static void sdhci_do_reset(struct sdhci_host *host, u8 mask)
{
if (host->quirks & SDHCI_QUIRK_NO_CARD_NO_RESET) {
struct mmc_host *mmc = host->mmc;
if (!mmc->ops->get_cd(mmc))
return;
}
host->ops->reset(host, mask);
if (mask & SDHCI_RESET_ALL) {
if (host->flags & (SDHCI_USE_SDMA | SDHCI_USE_ADMA)) {
if (host->ops->enable_dma)
host->ops->enable_dma(host);
}
/* Resetting the controller clears many */
host->preset_enabled = false;
}
}
static void sdhci_set_default_irqs(struct sdhci_host *host)
{
host->ier = SDHCI_INT_BUS_POWER | SDHCI_INT_DATA_END_BIT |
SDHCI_INT_DATA_CRC | SDHCI_INT_DATA_TIMEOUT |
SDHCI_INT_INDEX | SDHCI_INT_END_BIT | SDHCI_INT_CRC |
SDHCI_INT_TIMEOUT | SDHCI_INT_DATA_END |
SDHCI_INT_RESPONSE;
if (host->tuning_mode == SDHCI_TUNING_MODE_2 ||
host->tuning_mode == SDHCI_TUNING_MODE_3)
host->ier |= SDHCI_INT_RETUNE;
sdhci_writel(host, host->ier, SDHCI_INT_ENABLE);
sdhci_writel(host, host->ier, SDHCI_SIGNAL_ENABLE);
}
static void sdhci_init(struct sdhci_host *host, int soft)
{
struct mmc_host *mmc = host->mmc;
if (soft)
sdhci_do_reset(host, SDHCI_RESET_CMD | SDHCI_RESET_DATA);
else
sdhci_do_reset(host, SDHCI_RESET_ALL);
sdhci_set_default_irqs(host);
host->cqe_on = false;
if (soft) {
/* force clock reconfiguration */
host->clock = 0;
mmc->ops->set_ios(mmc, &mmc->ios);
}
}
static void sdhci_reinit(struct sdhci_host *host)
{
sdhci_init(host, 0);
sdhci_enable_card_detection(host);
}
static void __sdhci_led_activate(struct sdhci_host *host)
{
u8 ctrl;
ctrl = sdhci_readb(host, SDHCI_HOST_CONTROL);
ctrl |= SDHCI_CTRL_LED;
sdhci_writeb(host, ctrl, SDHCI_HOST_CONTROL);
}
static void __sdhci_led_deactivate(struct sdhci_host *host)
{
u8 ctrl;
ctrl = sdhci_readb(host, SDHCI_HOST_CONTROL);
ctrl &= ~SDHCI_CTRL_LED;
sdhci_writeb(host, ctrl, SDHCI_HOST_CONTROL);
}
#if IS_REACHABLE(CONFIG_LEDS_CLASS)
static void sdhci_led_control(struct led_classdev *led,
enum led_brightness brightness)
{
struct sdhci_host *host = container_of(led, struct sdhci_host, led);
unsigned long flags;
spin_lock_irqsave(&host->lock, flags);
if (host->runtime_suspended)
goto out;
if (brightness == LED_OFF)
__sdhci_led_deactivate(host);
else
__sdhci_led_activate(host);
out:
spin_unlock_irqrestore(&host->lock, flags);
}
static int sdhci_led_register(struct sdhci_host *host)
{
struct mmc_host *mmc = host->mmc;
snprintf(host->led_name, sizeof(host->led_name),
"%s::", mmc_hostname(mmc));
host->led.name = host->led_name;
host->led.brightness = LED_OFF;
host->led.default_trigger = mmc_hostname(mmc);
host->led.brightness_set = sdhci_led_control;
return led_classdev_register(mmc_dev(mmc), &host->led);
}
static void sdhci_led_unregister(struct sdhci_host *host)
{
led_classdev_unregister(&host->led);
}
static inline void sdhci_led_activate(struct sdhci_host *host)
{
}
static inline void sdhci_led_deactivate(struct sdhci_host *host)
{
}
#else
static inline int sdhci_led_register(struct sdhci_host *host)
{
return 0;
}
static inline void sdhci_led_unregister(struct sdhci_host *host)
{
}
static inline void sdhci_led_activate(struct sdhci_host *host)
{
__sdhci_led_activate(host);
}
static inline void sdhci_led_deactivate(struct sdhci_host *host)
{
__sdhci_led_deactivate(host);
}
#endif
/*****************************************************************************\
* *
* Core functions *
* *
\*****************************************************************************/
static void sdhci_read_block_pio(struct sdhci_host *host)
{
unsigned long flags;
size_t blksize, len, chunk;
u32 uninitialized_var(scratch);
u8 *buf;
DBG("PIO reading\n");
blksize = host->data->blksz;
chunk = 0;
local_irq_save(flags);
while (blksize) {
BUG_ON(!sg_miter_next(&host->sg_miter));
len = min(host->sg_miter.length, blksize);
blksize -= len;
host->sg_miter.consumed = len;
buf = host->sg_miter.addr;
while (len) {
if (chunk == 0) {
scratch = sdhci_readl(host, SDHCI_BUFFER);
chunk = 4;
}
*buf = scratch & 0xFF;
buf++;
scratch >>= 8;
chunk--;
len--;
}
}
sg_miter_stop(&host->sg_miter);
local_irq_restore(flags);
}
static void sdhci_write_block_pio(struct sdhci_host *host)
{
unsigned long flags;
size_t blksize, len, chunk;
u32 scratch;
u8 *buf;
DBG("PIO writing\n");
blksize = host->data->blksz;
chunk = 0;
scratch = 0;
local_irq_save(flags);
while (blksize) {
BUG_ON(!sg_miter_next(&host->sg_miter));
len = min(host->sg_miter.length, blksize);
blksize -= len;
host->sg_miter.consumed = len;
buf = host->sg_miter.addr;
while (len) {
scratch |= (u32)*buf << (chunk * 8);
buf++;
chunk++;
len--;
if ((chunk == 4) || ((len == 0) && (blksize == 0))) {
sdhci_writel(host, scratch, SDHCI_BUFFER);
chunk = 0;
scratch = 0;
}
}
}
sg_miter_stop(&host->sg_miter);
local_irq_restore(flags);
}
static void sdhci_transfer_pio(struct sdhci_host *host)
{
u32 mask;
if (host->blocks == 0)
return;
if (host->data->flags & MMC_DATA_READ)
mask = SDHCI_DATA_AVAILABLE;
else
mask = SDHCI_SPACE_AVAILABLE;
/*
* Some controllers (JMicron JMB38x) mess up the buffer bits
* for transfers < 4 bytes. As long as it is just one block,
* we can ignore the bits.
*/
if ((host->quirks & SDHCI_QUIRK_BROKEN_SMALL_PIO) &&
(host->data->blocks == 1))
mask = ~0;
while (sdhci_readl(host, SDHCI_PRESENT_STATE) & mask) {
if (host->quirks & SDHCI_QUIRK_PIO_NEEDS_DELAY)
udelay(100);
if (host->data->flags & MMC_DATA_READ)
sdhci_read_block_pio(host);
else
sdhci_write_block_pio(host);
host->blocks--;
if (host->blocks == 0)
break;
}
DBG("PIO transfer complete.\n");
}
static int sdhci_pre_dma_transfer(struct sdhci_host *host,
struct mmc_data *data, int cookie)
{
int sg_count;
/*
* If the data buffers are already mapped, return the previous
* dma_map_sg() result.
*/
if (data->host_cookie == COOKIE_PRE_MAPPED)
return data->sg_count;
/* Bounce write requests to the bounce buffer */
if (host->bounce_buffer) {
unsigned int length = data->blksz * data->blocks;
if (length > host->bounce_buffer_size) {
pr_err("%s: asked for transfer of %u bytes exceeds bounce buffer %u bytes\n",
mmc_hostname(host->mmc), length,
host->bounce_buffer_size);
return -EIO;
}
if (mmc_get_dma_dir(data) == DMA_TO_DEVICE) {
/* Copy the data to the bounce buffer */
sg_copy_to_buffer(data->sg, data->sg_len,
host->bounce_buffer,
length);
}
/* Switch ownership to the DMA */
dma_sync_single_for_device(host->mmc->parent,
host->bounce_addr,
host->bounce_buffer_size,
mmc_get_dma_dir(data));
/* Just a dummy value */
sg_count = 1;
} else {
/* Just access the data directly from memory */
sg_count = dma_map_sg(mmc_dev(host->mmc),
data->sg, data->sg_len,
mmc_get_dma_dir(data));
}
if (sg_count == 0)
return -ENOSPC;
data->sg_count = sg_count;
data->host_cookie = cookie;
return sg_count;
}
static char *sdhci_kmap_atomic(struct scatterlist *sg, unsigned long *flags)
{
local_irq_save(*flags);
return kmap_atomic(sg_page(sg)) + sg->offset;
}
static void sdhci_kunmap_atomic(void *buffer, unsigned long *flags)
{
kunmap_atomic(buffer);
local_irq_restore(*flags);
}
static void sdhci_adma_write_desc(struct sdhci_host *host, void *desc,
dma_addr_t addr, int len, unsigned cmd)
{
struct sdhci_adma2_64_desc *dma_desc = desc;
/* 32-bit and 64-bit descriptors have these members in same position */
dma_desc->cmd = cpu_to_le16(cmd);
dma_desc->len = cpu_to_le16(len);
dma_desc->addr_lo = cpu_to_le32((u32)addr);
if (host->flags & SDHCI_USE_64_BIT_DMA)
dma_desc->addr_hi = cpu_to_le32((u64)addr >> 32);
}
static void sdhci_adma_mark_end(void *desc)
{
struct sdhci_adma2_64_desc *dma_desc = desc;
/* 32-bit and 64-bit descriptors have 'cmd' in same position */
dma_desc->cmd |= cpu_to_le16(ADMA2_END);
}
static void sdhci_adma_table_pre(struct sdhci_host *host,
struct mmc_data *data, int sg_count)
{
struct scatterlist *sg;
unsigned long flags;
dma_addr_t addr, align_addr;
void *desc, *align;
char *buffer;
int len, offset, i;
/*
* The spec does not specify endianness of descriptor table.
* We currently guess that it is LE.
*/
host->sg_count = sg_count;
desc = host->adma_table;
align = host->align_buffer;
align_addr = host->align_addr;
for_each_sg(data->sg, sg, host->sg_count, i) {
addr = sg_dma_address(sg);
len = sg_dma_len(sg);
/*
* The SDHCI specification states that ADMA addresses must
* be 32-bit aligned. If they aren't, then we use a bounce
* buffer for the (up to three) bytes that screw up the
* alignment.
*/
offset = (SDHCI_ADMA2_ALIGN - (addr & SDHCI_ADMA2_MASK)) &
SDHCI_ADMA2_MASK;
if (offset) {
if (data->flags & MMC_DATA_WRITE) {
buffer = sdhci_kmap_atomic(sg, &flags);
memcpy(align, buffer, offset);
sdhci_kunmap_atomic(buffer, &flags);
}
/* tran, valid */
sdhci_adma_write_desc(host, desc, align_addr, offset,
ADMA2_TRAN_VALID);
BUG_ON(offset > 65536);
align += SDHCI_ADMA2_ALIGN;
align_addr += SDHCI_ADMA2_ALIGN;
desc += host->desc_sz;
addr += offset;
len -= offset;
}
BUG_ON(len > 65536);
if (len) {
/* tran, valid */
sdhci_adma_write_desc(host, desc, addr, len,
ADMA2_TRAN_VALID);
desc += host->desc_sz;
}
/*
* If this triggers then we have a calculation bug
* somewhere. :/
*/
WARN_ON((desc - host->adma_table) >= host->adma_table_sz);
}
if (host->quirks & SDHCI_QUIRK_NO_ENDATTR_IN_NOPDESC) {
/* Mark the last descriptor as the terminating descriptor */
if (desc != host->adma_table) {
desc -= host->desc_sz;
sdhci_adma_mark_end(desc);
}
} else {
/* Add a terminating entry - nop, end, valid */
sdhci_adma_write_desc(host, desc, 0, 0, ADMA2_NOP_END_VALID);
}
}
static void sdhci_adma_table_post(struct sdhci_host *host,
struct mmc_data *data)
{
struct scatterlist *sg;
int i, size;
void *align;
char *buffer;
unsigned long flags;
if (data->flags & MMC_DATA_READ) {
bool has_unaligned = false;
/* Do a quick scan of the SG list for any unaligned mappings */
for_each_sg(data->sg, sg, host->sg_count, i)
if (sg_dma_address(sg) & SDHCI_ADMA2_MASK) {
has_unaligned = true;
break;
}
if (has_unaligned) {
dma_sync_sg_for_cpu(mmc_dev(host->mmc), data->sg,
data->sg_len, DMA_FROM_DEVICE);
align = host->align_buffer;
for_each_sg(data->sg, sg, host->sg_count, i) {
if (sg_dma_address(sg) & SDHCI_ADMA2_MASK) {
size = SDHCI_ADMA2_ALIGN -
(sg_dma_address(sg) & SDHCI_ADMA2_MASK);
buffer = sdhci_kmap_atomic(sg, &flags);
memcpy(buffer, align, size);
sdhci_kunmap_atomic(buffer, &flags);
align += SDHCI_ADMA2_ALIGN;
}
}
}
}
}
static u32 sdhci_sdma_address(struct sdhci_host *host)
{
if (host->bounce_buffer)
return host->bounce_addr;
else
return sg_dma_address(host->data->sg);
}
static unsigned int sdhci_target_timeout(struct sdhci_host *host,
struct mmc_command *cmd,
struct mmc_data *data)
{
unsigned int target_timeout;
/* timeout in us */
if (!data) {
target_timeout = cmd->busy_timeout * 1000;
} else {
target_timeout = DIV_ROUND_UP(data->timeout_ns, 1000);
if (host->clock && data->timeout_clks) {
unsigned long long val;
/*
* data->timeout_clks is in units of clock cycles.
* host->clock is in Hz. target_timeout is in us.
* Hence, us = 1000000 * cycles / Hz. Round up.
*/
val = 1000000ULL * data->timeout_clks;
if (do_div(val, host->clock))
target_timeout++;
target_timeout += val;
}
}
return target_timeout;
}
static void sdhci_calc_sw_timeout(struct sdhci_host *host,
struct mmc_command *cmd)
{
struct mmc_data *data = cmd->data;
struct mmc_host *mmc = host->mmc;
struct mmc_ios *ios = &mmc->ios;
unsigned char bus_width = 1 << ios->bus_width;
unsigned int blksz;
unsigned int freq;
u64 target_timeout;
u64 transfer_time;
target_timeout = sdhci_target_timeout(host, cmd, data);
target_timeout *= NSEC_PER_USEC;
if (data) {
blksz = data->blksz;
freq = host->mmc->actual_clock ? : host->clock;
transfer_time = (u64)blksz * NSEC_PER_SEC * (8 / bus_width);
do_div(transfer_time, freq);
/* multiply by '2' to account for any unknowns */
transfer_time = transfer_time * 2;
/* calculate timeout for the entire data */
host->data_timeout = data->blocks * target_timeout +
transfer_time;
} else {
host->data_timeout = target_timeout;
}
if (host->data_timeout)
host->data_timeout += MMC_CMD_TRANSFER_TIME;
}
static u8 sdhci_calc_timeout(struct sdhci_host *host, struct mmc_command *cmd,
bool *too_big)
{
u8 count;
struct mmc_data *data = cmd->data;
unsigned target_timeout, current_timeout;
*too_big = true;
/*
* If the host controller provides us with an incorrect timeout
* value, just skip the check and use 0xE. The hardware may take
* longer to time out, but that's much better than having a too-short
* timeout value.
*/
if (host->quirks & SDHCI_QUIRK_BROKEN_TIMEOUT_VAL)
return 0xE;
/* Unspecified timeout, assume max */
if (!data && !cmd->busy_timeout)
return 0xE;
/* timeout in us */
target_timeout = sdhci_target_timeout(host, cmd, data);
/*
* Figure out needed cycles.
* We do this in steps in order to fit inside a 32 bit int.
* The first step is the minimum timeout, which will have a
* minimum resolution of 6 bits:
* (1) 2^13*1000 > 2^22,
* (2) host->timeout_clk < 2^16
* =>
* (1) / (2) > 2^6
*/
count = 0;
current_timeout = (1 << 13) * 1000 / host->timeout_clk;
while (current_timeout < target_timeout) {
count++;
current_timeout <<= 1;
if (count >= 0xF)
break;
}
if (count >= 0xF) {
if (!(host->quirks2 & SDHCI_QUIRK2_DISABLE_HW_TIMEOUT))
DBG("Too large timeout 0x%x requested for CMD%d!\n",
count, cmd->opcode);
count = 0xE;
} else {
*too_big = false;
}
return count;
}
static void sdhci_set_transfer_irqs(struct sdhci_host *host)
{
u32 pio_irqs = SDHCI_INT_DATA_AVAIL | SDHCI_INT_SPACE_AVAIL;
u32 dma_irqs = SDHCI_INT_DMA_END | SDHCI_INT_ADMA_ERROR;
if (host->flags & SDHCI_REQ_USE_DMA)
host->ier = (host->ier & ~pio_irqs) | dma_irqs;
else
host->ier = (host->ier & ~dma_irqs) | pio_irqs;
if (host->flags & (SDHCI_AUTO_CMD23 | SDHCI_AUTO_CMD12))
host->ier |= SDHCI_INT_AUTO_CMD_ERR;
else
host->ier &= ~SDHCI_INT_AUTO_CMD_ERR;
sdhci_writel(host, host->ier, SDHCI_INT_ENABLE);
sdhci_writel(host, host->ier, SDHCI_SIGNAL_ENABLE);
}
static void sdhci_set_data_timeout_irq(struct sdhci_host *host, bool enable)
{
if (enable)
host->ier |= SDHCI_INT_DATA_TIMEOUT;
else
host->ier &= ~SDHCI_INT_DATA_TIMEOUT;
sdhci_writel(host, host->ier, SDHCI_INT_ENABLE);
sdhci_writel(host, host->ier, SDHCI_SIGNAL_ENABLE);
}
static void sdhci_set_timeout(struct sdhci_host *host, struct mmc_command *cmd)
{
u8 count;
if (host->ops->set_timeout) {
host->ops->set_timeout(host, cmd);
} else {
bool too_big = false;
count = sdhci_calc_timeout(host, cmd, &too_big);
if (too_big &&
host->quirks2 & SDHCI_QUIRK2_DISABLE_HW_TIMEOUT) {
sdhci_calc_sw_timeout(host, cmd);
sdhci_set_data_timeout_irq(host, false);
} else if (!(host->ier & SDHCI_INT_DATA_TIMEOUT)) {
sdhci_set_data_timeout_irq(host, true);
}
sdhci_writeb(host, count, SDHCI_TIMEOUT_CONTROL);
}
}
static void sdhci_prepare_data(struct sdhci_host *host, struct mmc_command *cmd)
{
u8 ctrl;
struct mmc_data *data = cmd->data;
host->data_timeout = 0;
if (sdhci_data_line_cmd(cmd))
sdhci_set_timeout(host, cmd);
if (!data)
return;
WARN_ON(host->data);
/* Sanity checks */
BUG_ON(data->blksz * data->blocks > 524288);
BUG_ON(data->blksz > host->mmc->max_blk_size);
BUG_ON(data->blocks > 65535);
host->data = data;
host->data_early = 0;
host->data->bytes_xfered = 0;
if (host->flags & (SDHCI_USE_SDMA | SDHCI_USE_ADMA)) {
struct scatterlist *sg;
unsigned int length_mask, offset_mask;
int i;
host->flags |= SDHCI_REQ_USE_DMA;
/*
* FIXME: This doesn't account for merging when mapping the
* scatterlist.
*
* The assumption here being that alignment and lengths are
* the same after DMA mapping to device address space.
*/
length_mask = 0;
offset_mask = 0;
if (host->flags & SDHCI_USE_ADMA) {
if (host->quirks & SDHCI_QUIRK_32BIT_ADMA_SIZE) {
length_mask = 3;
/*
* As we use up to 3 byte chunks to work
* around alignment problems, we need to
* check the offset as well.
*/
offset_mask = 3;
}
} else {
if (host->quirks & SDHCI_QUIRK_32BIT_DMA_SIZE)
length_mask = 3;
if (host->quirks & SDHCI_QUIRK_32BIT_DMA_ADDR)
offset_mask = 3;
}
if (unlikely(length_mask | offset_mask)) {
for_each_sg(data->sg, sg, data->sg_len, i) {
if (sg->length & length_mask) {
DBG("Reverting to PIO because of transfer size (%d)\n",
sg->length);
host->flags &= ~SDHCI_REQ_USE_DMA;
break;
}
if (sg->offset & offset_mask) {
DBG("Reverting to PIO because of bad alignment\n");
host->flags &= ~SDHCI_REQ_USE_DMA;
break;
}
}
}
}
if (host->flags & SDHCI_REQ_USE_DMA) {
int sg_cnt = sdhci_pre_dma_transfer(host, data, COOKIE_MAPPED);
if (sg_cnt <= 0) {
/*
* This only happens when someone fed
* us an invalid request.
*/
WARN_ON(1);
host->flags &= ~SDHCI_REQ_USE_DMA;
} else if (host->flags & SDHCI_USE_ADMA) {
sdhci_adma_table_pre(host, data, sg_cnt);
sdhci_writel(host, host->adma_addr, SDHCI_ADMA_ADDRESS);
if (host->flags & SDHCI_USE_64_BIT_DMA)
sdhci_writel(host,
(u64)host->adma_addr >> 32,
SDHCI_ADMA_ADDRESS_HI);
} else {
WARN_ON(sg_cnt != 1);
sdhci_writel(host, sdhci_sdma_address(host),
SDHCI_DMA_ADDRESS);
}
}
/*
* Always adjust the DMA selection as some controllers
* (e.g. JMicron) can't do PIO properly when the selection
* is ADMA.
*/
if (host->version >= SDHCI_SPEC_200) {
ctrl = sdhci_readb(host, SDHCI_HOST_CONTROL);
ctrl &= ~SDHCI_CTRL_DMA_MASK;
if ((host->flags & SDHCI_REQ_USE_DMA) &&
(host->flags & SDHCI_USE_ADMA)) {
if (host->flags & SDHCI_USE_64_BIT_DMA)
ctrl |= SDHCI_CTRL_ADMA64;
else
ctrl |= SDHCI_CTRL_ADMA32;
} else {
ctrl |= SDHCI_CTRL_SDMA;
}
sdhci_writeb(host, ctrl, SDHCI_HOST_CONTROL);
}
if (!(host->flags & SDHCI_REQ_USE_DMA)) {
int flags;
flags = SG_MITER_ATOMIC;
if (host->data->flags & MMC_DATA_READ)
flags |= SG_MITER_TO_SG;
else
flags |= SG_MITER_FROM_SG;
sg_miter_start(&host->sg_miter, data->sg, data->sg_len, flags);
host->blocks = data->blocks;
}
sdhci_set_transfer_irqs(host);
/* Set the DMA boundary value and block size */
sdhci_writew(host, SDHCI_MAKE_BLKSZ(host->sdma_boundary, data->blksz),
SDHCI_BLOCK_SIZE);
sdhci_writew(host, data->blocks, SDHCI_BLOCK_COUNT);
}
static inline bool sdhci_auto_cmd12(struct sdhci_host *host,
struct mmc_request *mrq)
{
return !mrq->sbc && (host->flags & SDHCI_AUTO_CMD12) &&
!mrq->cap_cmd_during_tfr;
}
static void sdhci_set_transfer_mode(struct sdhci_host *host,
struct mmc_command *cmd)
{
u16 mode = 0;
struct mmc_data *data = cmd->data;
if (data == NULL) {
if (host->quirks2 &
SDHCI_QUIRK2_CLEAR_TRANSFERMODE_REG_BEFORE_CMD) {
/* must not clear SDHCI_TRANSFER_MODE when tuning */
if (cmd->opcode != MMC_SEND_TUNING_BLOCK_HS200)
sdhci_writew(host, 0x0, SDHCI_TRANSFER_MODE);
} else {
/* clear Auto CMD settings for no data CMDs */
mode = sdhci_readw(host, SDHCI_TRANSFER_MODE);
sdhci_writew(host, mode & ~(SDHCI_TRNS_AUTO_CMD12 |
SDHCI_TRNS_AUTO_CMD23), SDHCI_TRANSFER_MODE);
}
return;
}
WARN_ON(!host->data);
if (!(host->quirks2 & SDHCI_QUIRK2_SUPPORT_SINGLE))
mode = SDHCI_TRNS_BLK_CNT_EN;
if (mmc_op_multi(cmd->opcode) || data->blocks > 1) {
mode = SDHCI_TRNS_BLK_CNT_EN | SDHCI_TRNS_MULTI;
/*
* If we are sending CMD23, CMD12 never gets sent
* on successful completion (so no Auto-CMD12).
*/
if (sdhci_auto_cmd12(host, cmd->mrq) &&
(cmd->opcode != SD_IO_RW_EXTENDED))
mode |= SDHCI_TRNS_AUTO_CMD12;
else if (cmd->mrq->sbc && (host->flags & SDHCI_AUTO_CMD23)) {
mode |= SDHCI_TRNS_AUTO_CMD23;
sdhci_writel(host, cmd->mrq->sbc->arg, SDHCI_ARGUMENT2);
}
}
if (data->flags & MMC_DATA_READ)
mode |= SDHCI_TRNS_READ;
if (host->flags & SDHCI_REQ_USE_DMA)
mode |= SDHCI_TRNS_DMA;
sdhci_writew(host, mode, SDHCI_TRANSFER_MODE);
}
static bool sdhci_needs_reset(struct sdhci_host *host, struct mmc_request *mrq)
{
return (!(host->flags & SDHCI_DEVICE_DEAD) &&
((mrq->cmd && mrq->cmd->error) ||
(mrq->sbc && mrq->sbc->error) ||
(mrq->data && mrq->data->stop && mrq->data->stop->error) ||
(host->quirks & SDHCI_QUIRK_RESET_AFTER_REQUEST)));
}
static void __sdhci_finish_mrq(struct sdhci_host *host, struct mmc_request *mrq)
{
int i;
for (i = 0; i < SDHCI_MAX_MRQS; i++) {
if (host->mrqs_done[i] == mrq) {
WARN_ON(1);
return;
}
}
for (i = 0; i < SDHCI_MAX_MRQS; i++) {
if (!host->mrqs_done[i]) {
host->mrqs_done[i] = mrq;
break;
}
}
WARN_ON(i >= SDHCI_MAX_MRQS);
tasklet_schedule(&host->finish_tasklet);
}
static void sdhci_finish_mrq(struct sdhci_host *host, struct mmc_request *mrq)
{
if (host->cmd && host->cmd->mrq == mrq)
host->cmd = NULL;
if (host->data_cmd && host->data_cmd->mrq == mrq)
host->data_cmd = NULL;
if (host->data && host->data->mrq == mrq)
host->data = NULL;
if (sdhci_needs_reset(host, mrq))
host->pending_reset = true;
__sdhci_finish_mrq(host, mrq);
}
static void sdhci_finish_data(struct sdhci_host *host)
{
struct mmc_command *data_cmd = host->data_cmd;
struct mmc_data *data = host->data;
host->data = NULL;
host->data_cmd = NULL;
/*
* The controller needs a reset of internal state machines upon error
* conditions.
*/
if (data->error) {
if (!host->cmd || host->cmd == data_cmd)
sdhci_do_reset(host, SDHCI_RESET_CMD);
sdhci_do_reset(host, SDHCI_RESET_DATA);
}
if ((host->flags & (SDHCI_REQ_USE_DMA | SDHCI_USE_ADMA)) ==
(SDHCI_REQ_USE_DMA | SDHCI_USE_ADMA))
sdhci_adma_table_post(host, data);
/*
* The specification states that the block count register must
* be updated, but it does not specify at what point in the
* data flow. That makes the register entirely useless to read
* back so we have to assume that nothing made it to the card
* in the event of an error.
*/
if (data->error)
data->bytes_xfered = 0;
else
data->bytes_xfered = data->blksz * data->blocks;
/*
* Need to send CMD12 if -
* a) open-ended multiblock transfer (no CMD23)
* b) error in multiblock transfer
*/
if (data->stop &&
(data->error ||
!data->mrq->sbc)) {
/*
* 'cap_cmd_during_tfr' request must not use the command line
* after mmc_command_done() has been called. It is upper layer's
* responsibility to send the stop command if required.
*/
if (data->mrq->cap_cmd_during_tfr) {
sdhci_finish_mrq(host, data->mrq);
} else {
/* Avoid triggering warning in sdhci_send_command() */
host->cmd = NULL;
sdhci_send_command(host, data->stop);
}
} else {
sdhci_finish_mrq(host, data->mrq);
}
}
static void sdhci_mod_timer(struct sdhci_host *host, struct mmc_request *mrq,
unsigned long timeout)
{
if (sdhci_data_line_cmd(mrq->cmd))
mod_timer(&host->data_timer, timeout);
else
mod_timer(&host->timer, timeout);
}
static void sdhci_del_timer(struct sdhci_host *host, struct mmc_request *mrq)
{
if (sdhci_data_line_cmd(mrq->cmd))
del_timer(&host->data_timer);
else
del_timer(&host->timer);
}
void sdhci_send_command(struct sdhci_host *host, struct mmc_command *cmd)
{
int flags;
u32 mask;
unsigned long timeout;
WARN_ON(host->cmd);
/* Initially, a command has no error */
cmd->error = 0;
if ((host->quirks2 & SDHCI_QUIRK2_STOP_WITH_TC) &&
cmd->opcode == MMC_STOP_TRANSMISSION)
cmd->flags |= MMC_RSP_BUSY;
/* Wait max 10 ms */
timeout = 10;
mask = SDHCI_CMD_INHIBIT;
if (sdhci_data_line_cmd(cmd))
mask |= SDHCI_DATA_INHIBIT;
/* We shouldn't wait for data inihibit for stop commands, even
though they might use busy signaling */
if (cmd->mrq->data && (cmd == cmd->mrq->data->stop))
mask &= ~SDHCI_DATA_INHIBIT;
while (sdhci_readl(host, SDHCI_PRESENT_STATE) & mask) {
if (timeout == 0) {
pr_err("%s: Controller never released inhibit bit(s).\n",
mmc_hostname(host->mmc));
sdhci_dumpregs(host);
cmd->error = -EIO;
sdhci_finish_mrq(host, cmd->mrq);
return;
}
timeout--;
mdelay(1);
}
host->cmd = cmd;
if (sdhci_data_line_cmd(cmd)) {
WARN_ON(host->data_cmd);
host->data_cmd = cmd;
}
sdhci_prepare_data(host, cmd);
sdhci_writel(host, cmd->arg, SDHCI_ARGUMENT);
sdhci_set_transfer_mode(host, cmd);
if ((cmd->flags & MMC_RSP_136) && (cmd->flags & MMC_RSP_BUSY)) {
pr_err("%s: Unsupported response type!\n",
mmc_hostname(host->mmc));
cmd->error = -EINVAL;
sdhci_finish_mrq(host, cmd->mrq);
return;
}
if (!(cmd->flags & MMC_RSP_PRESENT))
flags = SDHCI_CMD_RESP_NONE;
else if (cmd->flags & MMC_RSP_136)
flags = SDHCI_CMD_RESP_LONG;
else if (cmd->flags & MMC_RSP_BUSY)
flags = SDHCI_CMD_RESP_SHORT_BUSY;
else
flags = SDHCI_CMD_RESP_SHORT;
if (cmd->flags & MMC_RSP_CRC)
flags |= SDHCI_CMD_CRC;
if (cmd->flags & MMC_RSP_OPCODE)
flags |= SDHCI_CMD_INDEX;
/* CMD19 is special in that the Data Present Select should be set */
if (cmd->data || cmd->opcode == MMC_SEND_TUNING_BLOCK ||
cmd->opcode == MMC_SEND_TUNING_BLOCK_HS200)
flags |= SDHCI_CMD_DATA;
timeout = jiffies;
if (host->data_timeout)
timeout += nsecs_to_jiffies(host->data_timeout);
else if (!cmd->data && cmd->busy_timeout > 9000)
timeout += DIV_ROUND_UP(cmd->busy_timeout, 1000) * HZ + HZ;
else
timeout += 10 * HZ;
sdhci_mod_timer(host, cmd->mrq, timeout);
sdhci_writew(host, SDHCI_MAKE_CMD(cmd->opcode, flags), SDHCI_COMMAND);
}
EXPORT_SYMBOL_GPL(sdhci_send_command);
static void sdhci_read_rsp_136(struct sdhci_host *host, struct mmc_command *cmd)
{
int i, reg;
for (i = 0; i < 4; i++) {
reg = SDHCI_RESPONSE + (3 - i) * 4;
cmd->resp[i] = sdhci_readl(host, reg);
}
if (host->quirks2 & SDHCI_QUIRK2_RSP_136_HAS_CRC)
return;
/* CRC is stripped so we need to do some shifting */
for (i = 0; i < 4; i++) {
cmd->resp[i] <<= 8;
if (i != 3)
cmd->resp[i] |= cmd->resp[i + 1] >> 24;
}
}
static void sdhci_finish_command(struct sdhci_host *host)
{
struct mmc_command *cmd = host->cmd;
host->cmd = NULL;
if (cmd->flags & MMC_RSP_PRESENT) {
if (cmd->flags & MMC_RSP_136) {
sdhci_read_rsp_136(host, cmd);
} else {
cmd->resp[0] = sdhci_readl(host, SDHCI_RESPONSE);
}
}
if (cmd->mrq->cap_cmd_during_tfr && cmd == cmd->mrq->cmd)
mmc_command_done(host->mmc, cmd->mrq);
/*
* The host can send and interrupt when the busy state has
* ended, allowing us to wait without wasting CPU cycles.
* The busy signal uses DAT0 so this is similar to waiting
* for data to complete.
*
* Note: The 1.0 specification is a bit ambiguous about this
* feature so there might be some problems with older
* controllers.
*/
if (cmd->flags & MMC_RSP_BUSY) {
if (cmd->data) {
DBG("Cannot wait for busy signal when also doing a data transfer");
} else if (!(host->quirks & SDHCI_QUIRK_NO_BUSY_IRQ) &&
cmd == host->data_cmd) {
/* Command complete before busy is ended */
return;
}
}
/* Finished CMD23, now send actual command. */
if (cmd == cmd->mrq->sbc) {
sdhci_send_command(host, cmd->mrq->cmd);
} else {
/* Processed actual command. */
if (host->data && host->data_early)
sdhci_finish_data(host);
if (!cmd->data)
sdhci_finish_mrq(host, cmd->mrq);
}
}
static u16 sdhci_get_preset_value(struct sdhci_host *host)
{
u16 preset = 0;
switch (host->timing) {
case MMC_TIMING_UHS_SDR12:
preset = sdhci_readw(host, SDHCI_PRESET_FOR_SDR12);
break;
case MMC_TIMING_UHS_SDR25:
preset = sdhci_readw(host, SDHCI_PRESET_FOR_SDR25);
break;
case MMC_TIMING_UHS_SDR50:
preset = sdhci_readw(host, SDHCI_PRESET_FOR_SDR50);
break;
case MMC_TIMING_UHS_SDR104:
case MMC_TIMING_MMC_HS200:
preset = sdhci_readw(host, SDHCI_PRESET_FOR_SDR104);
break;
case MMC_TIMING_UHS_DDR50:
case MMC_TIMING_MMC_DDR52:
preset = sdhci_readw(host, SDHCI_PRESET_FOR_DDR50);
break;
case MMC_TIMING_MMC_HS400:
preset = sdhci_readw(host, SDHCI_PRESET_FOR_HS400);
break;
default:
pr_warn("%s: Invalid UHS-I mode selected\n",
mmc_hostname(host->mmc));
preset = sdhci_readw(host, SDHCI_PRESET_FOR_SDR12);
break;
}
return preset;
}
u16 sdhci_calc_clk(struct sdhci_host *host, unsigned int clock,
unsigned int *actual_clock)
{
int div = 0; /* Initialized for compiler warning */
int real_div = div, clk_mul = 1;
u16 clk = 0;
bool switch_base_clk = false;
if (host->version >= SDHCI_SPEC_300) {
if (host->preset_enabled) {
u16 pre_val;
clk = sdhci_readw(host, SDHCI_CLOCK_CONTROL);
pre_val = sdhci_get_preset_value(host);
div = (pre_val & SDHCI_PRESET_SDCLK_FREQ_MASK)
>> SDHCI_PRESET_SDCLK_FREQ_SHIFT;
if (host->clk_mul &&
(pre_val & SDHCI_PRESET_CLKGEN_SEL_MASK)) {
clk = SDHCI_PROG_CLOCK_MODE;
real_div = div + 1;
clk_mul = host->clk_mul;
} else {
real_div = max_t(int, 1, div << 1);
}
goto clock_set;
}
/*
* Check if the Host Controller supports Programmable Clock
* Mode.
*/
if (host->clk_mul) {
for (div = 1; div <= 1024; div++) {
if ((host->max_clk * host->clk_mul / div)
<= clock)
break;
}
if ((host->max_clk * host->clk_mul / div) <= clock) {
/*
* Set Programmable Clock Mode in the Clock
* Control register.
*/
clk = SDHCI_PROG_CLOCK_MODE;
real_div = div;
clk_mul = host->clk_mul;
div--;
} else {
/*
* Divisor can be too small to reach clock
* speed requirement. Then use the base clock.
*/
switch_base_clk = true;
}
}
if (!host->clk_mul || switch_base_clk) {
/* Version 3.00 divisors must be a multiple of 2. */
if (host->max_clk <= clock)
div = 1;
else {
for (div = 2; div < SDHCI_MAX_DIV_SPEC_300;
div += 2) {
if ((host->max_clk / div) <= clock)
break;
}
}
real_div = div;
div >>= 1;
if ((host->quirks2 & SDHCI_QUIRK2_CLOCK_DIV_ZERO_BROKEN)
&& !div && host->max_clk <= 25000000)
div = 1;
}
} else {
/* Version 2.00 divisors must be a power of 2. */
for (div = 1; div < SDHCI_MAX_DIV_SPEC_200; div *= 2) {
if ((host->max_clk / div) <= clock)
break;
}
real_div = div;
div >>= 1;
}
clock_set:
if (real_div)
*actual_clock = (host->max_clk * clk_mul) / real_div;
clk |= (div & SDHCI_DIV_MASK) << SDHCI_DIVIDER_SHIFT;
clk |= ((div & SDHCI_DIV_HI_MASK) >> SDHCI_DIV_MASK_LEN)
<< SDHCI_DIVIDER_HI_SHIFT;
return clk;
}
EXPORT_SYMBOL_GPL(sdhci_calc_clk);
void sdhci_enable_clk(struct sdhci_host *host, u16 clk)
{
ktime_t timeout;
clk |= SDHCI_CLOCK_INT_EN;
sdhci_writew(host, clk, SDHCI_CLOCK_CONTROL);
/* Wait max 20 ms */
timeout = ktime_add_ms(ktime_get(), 20);
while (1) {
bool timedout = ktime_after(ktime_get(), timeout);
clk = sdhci_readw(host, SDHCI_CLOCK_CONTROL);
if (clk & SDHCI_CLOCK_INT_STABLE)
break;
if (timedout) {
pr_err("%s: Internal clock never stabilised.\n",
mmc_hostname(host->mmc));
sdhci_dumpregs(host);
return;
}
udelay(10);
}
clk |= SDHCI_CLOCK_CARD_EN;
sdhci_writew(host, clk, SDHCI_CLOCK_CONTROL);
}
EXPORT_SYMBOL_GPL(sdhci_enable_clk);
void sdhci_set_clock(struct sdhci_host *host, unsigned int clock)
{
u16 clk;
host->mmc->actual_clock = 0;
sdhci_writew(host, 0, SDHCI_CLOCK_CONTROL);
if (clock == 0)
return;
clk = sdhci_calc_clk(host, clock, &host->mmc->actual_clock);
sdhci_enable_clk(host, clk);
}
EXPORT_SYMBOL_GPL(sdhci_set_clock);
static void sdhci_set_power_reg(struct sdhci_host *host, unsigned char mode,
unsigned short vdd)
{
struct mmc_host *mmc = host->mmc;
mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, vdd);
if (mode != MMC_POWER_OFF)
sdhci_writeb(host, SDHCI_POWER_ON, SDHCI_POWER_CONTROL);
else
sdhci_writeb(host, 0, SDHCI_POWER_CONTROL);
}
void sdhci_set_power_noreg(struct sdhci_host *host, unsigned char mode,
unsigned short vdd)
{
u8 pwr = 0;
if (mode != MMC_POWER_OFF) {
switch (1 << vdd) {
case MMC_VDD_165_195:
/*
* Without a regulator, SDHCI does not support 2.0v
* so we only get here if the driver deliberately
* added the 2.0v range to ocr_avail. Map it to 1.8v
* for the purpose of turning on the power.
*/
case MMC_VDD_20_21:
pwr = SDHCI_POWER_180;
break;
case MMC_VDD_29_30:
case MMC_VDD_30_31:
pwr = SDHCI_POWER_300;
break;
case MMC_VDD_32_33:
case MMC_VDD_33_34:
pwr = SDHCI_POWER_330;
break;
default:
WARN(1, "%s: Invalid vdd %#x\n",
mmc_hostname(host->mmc), vdd);
break;
}
}
if (host->pwr == pwr)
return;
host->pwr = pwr;
if (pwr == 0) {
sdhci_writeb(host, 0, SDHCI_POWER_CONTROL);
if (host->quirks2 & SDHCI_QUIRK2_CARD_ON_NEEDS_BUS_ON)
sdhci_runtime_pm_bus_off(host);
} else {
/*
* Spec says that we should clear the power reg before setting
* a new value. Some controllers don't seem to like this though.
*/
if (!(host->quirks & SDHCI_QUIRK_SINGLE_POWER_WRITE))
sdhci_writeb(host, 0, SDHCI_POWER_CONTROL);
/*
* At least the Marvell CaFe chip gets confused if we set the
* voltage and set turn on power at the same time, so set the
* voltage first.
*/
if (host->quirks & SDHCI_QUIRK_NO_SIMULT_VDD_AND_POWER)
sdhci_writeb(host, pwr, SDHCI_POWER_CONTROL);
pwr |= SDHCI_POWER_ON;
sdhci_writeb(host, pwr, SDHCI_POWER_CONTROL);
if (host->quirks2 & SDHCI_QUIRK2_CARD_ON_NEEDS_BUS_ON)
sdhci_runtime_pm_bus_on(host);
/*
* Some controllers need an extra 10ms delay of 10ms before
* they can apply clock after applying power
*/
if (host->quirks & SDHCI_QUIRK_DELAY_AFTER_POWER)
mdelay(10);
}
}
EXPORT_SYMBOL_GPL(sdhci_set_power_noreg);
void sdhci_set_power(struct sdhci_host *host, unsigned char mode,
unsigned short vdd)
{
if (IS_ERR(host->mmc->supply.vmmc))
sdhci_set_power_noreg(host, mode, vdd);
else
sdhci_set_power_reg(host, mode, vdd);
}
EXPORT_SYMBOL_GPL(sdhci_set_power);
/*****************************************************************************\
* *
* MMC callbacks *
* *
\*****************************************************************************/
static void sdhci_request(struct mmc_host *mmc, struct mmc_request *mrq)
{
struct sdhci_host *host;
int present;
unsigned long flags;
host = mmc_priv(mmc);
/* Firstly check card presence */
present = mmc->ops->get_cd(mmc);
spin_lock_irqsave(&host->lock, flags);
sdhci_led_activate(host);
/*
* Ensure we don't send the STOP for non-SET_BLOCK_COUNTED
* requests if Auto-CMD12 is enabled.
*/
if (sdhci_auto_cmd12(host, mrq)) {
if (mrq->stop) {
mrq->data->stop = NULL;
mrq->stop = NULL;
}
}
if (!present || host->flags & SDHCI_DEVICE_DEAD) {
mrq->cmd->error = -ENOMEDIUM;
sdhci_finish_mrq(host, mrq);
} else {
if (mrq->sbc && !(host->flags & SDHCI_AUTO_CMD23))
sdhci_send_command(host, mrq->sbc);
else
sdhci_send_command(host, mrq->cmd);
}
mmiowb();
spin_unlock_irqrestore(&host->lock, flags);
}
void sdhci_set_bus_width(struct sdhci_host *host, int width)
{
u8 ctrl;
ctrl = sdhci_readb(host, SDHCI_HOST_CONTROL);
if (width == MMC_BUS_WIDTH_8) {
ctrl &= ~SDHCI_CTRL_4BITBUS;
ctrl |= SDHCI_CTRL_8BITBUS;
} else {
if (host->mmc->caps & MMC_CAP_8_BIT_DATA)
ctrl &= ~SDHCI_CTRL_8BITBUS;
if (width == MMC_BUS_WIDTH_4)
ctrl |= SDHCI_CTRL_4BITBUS;
else
ctrl &= ~SDHCI_CTRL_4BITBUS;
}
sdhci_writeb(host, ctrl, SDHCI_HOST_CONTROL);
}
EXPORT_SYMBOL_GPL(sdhci_set_bus_width);
void sdhci_set_uhs_signaling(struct sdhci_host *host, unsigned timing)
{
u16 ctrl_2;
ctrl_2 = sdhci_readw(host, SDHCI_HOST_CONTROL2);
/* Select Bus Speed Mode for host */
ctrl_2 &= ~SDHCI_CTRL_UHS_MASK;
if ((timing == MMC_TIMING_MMC_HS200) ||
(timing == MMC_TIMING_UHS_SDR104))
ctrl_2 |= SDHCI_CTRL_UHS_SDR104;
else if (timing == MMC_TIMING_UHS_SDR12)
ctrl_2 |= SDHCI_CTRL_UHS_SDR12;
else if (timing == MMC_TIMING_UHS_SDR25)
ctrl_2 |= SDHCI_CTRL_UHS_SDR25;
else if (timing == MMC_TIMING_UHS_SDR50)
ctrl_2 |= SDHCI_CTRL_UHS_SDR50;
else if ((timing == MMC_TIMING_UHS_DDR50) ||
(timing == MMC_TIMING_MMC_DDR52))
ctrl_2 |= SDHCI_CTRL_UHS_DDR50;
else if (timing == MMC_TIMING_MMC_HS400)
ctrl_2 |= SDHCI_CTRL_HS400; /* Non-standard */
sdhci_writew(host, ctrl_2, SDHCI_HOST_CONTROL2);
}
EXPORT_SYMBOL_GPL(sdhci_set_uhs_signaling);
void sdhci_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
{
struct sdhci_host *host = mmc_priv(mmc);
u8 ctrl;
if (ios->power_mode == MMC_POWER_UNDEFINED)
return;
if (host->flags & SDHCI_DEVICE_DEAD) {
if (!IS_ERR(mmc->supply.vmmc) &&
ios->power_mode == MMC_POWER_OFF)
mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
return;
}
/*
* Reset the chip on each power off.
* Should clear out any weird states.
*/
if (ios->power_mode == MMC_POWER_OFF) {
sdhci_writel(host, 0, SDHCI_SIGNAL_ENABLE);
sdhci_reinit(host);
}
if (host->version >= SDHCI_SPEC_300 &&
(ios->power_mode == MMC_POWER_UP) &&
!(host->quirks2 & SDHCI_QUIRK2_PRESET_VALUE_BROKEN))
sdhci_enable_preset_value(host, false);
if (!ios->clock || ios->clock != host->clock) {
host->ops->set_clock(host, ios->clock);
host->clock = ios->clock;
if (host->quirks & SDHCI_QUIRK_DATA_TIMEOUT_USES_SDCLK &&
host->clock) {
host->timeout_clk = host->mmc->actual_clock ?
host->mmc->actual_clock / 1000 :
host->clock / 1000;
host->mmc->max_busy_timeout =
host->ops->get_max_timeout_count ?
host->ops->get_max_timeout_count(host) :
1 << 27;
host->mmc->max_busy_timeout /= host->timeout_clk;
}
}
if (host->ops->set_power)
host->ops->set_power(host, ios->power_mode, ios->vdd);
else
sdhci_set_power(host, ios->power_mode, ios->vdd);
if (host->ops->platform_send_init_74_clocks)
host->ops->platform_send_init_74_clocks(host, ios->power_mode);
host->ops->set_bus_width(host, ios->bus_width);
ctrl = sdhci_readb(host, SDHCI_HOST_CONTROL);
if (!(host->quirks & SDHCI_QUIRK_NO_HISPD_BIT)) {
if (ios->timing == MMC_TIMING_SD_HS ||
ios->timing == MMC_TIMING_MMC_HS ||
ios->timing == MMC_TIMING_MMC_HS400 ||
ios->timing == MMC_TIMING_MMC_HS200 ||
ios->timing == MMC_TIMING_MMC_DDR52 ||
ios->timing == MMC_TIMING_UHS_SDR50 ||
ios->timing == MMC_TIMING_UHS_SDR104 ||
ios->timing == MMC_TIMING_UHS_DDR50 ||
ios->timing == MMC_TIMING_UHS_SDR25)
ctrl |= SDHCI_CTRL_HISPD;
else
ctrl &= ~SDHCI_CTRL_HISPD;
}
if (host->version >= SDHCI_SPEC_300) {
u16 clk, ctrl_2;
if (!host->preset_enabled) {
sdhci_writeb(host, ctrl, SDHCI_HOST_CONTROL);
/*
* We only need to set Driver Strength if the
* preset value enable is not set.
*/
ctrl_2 = sdhci_readw(host, SDHCI_HOST_CONTROL2);
ctrl_2 &= ~SDHCI_CTRL_DRV_TYPE_MASK;
if (ios->drv_type == MMC_SET_DRIVER_TYPE_A)
ctrl_2 |= SDHCI_CTRL_DRV_TYPE_A;
else if (ios->drv_type == MMC_SET_DRIVER_TYPE_B)
ctrl_2 |= SDHCI_CTRL_DRV_TYPE_B;
else if (ios->drv_type == MMC_SET_DRIVER_TYPE_C)
ctrl_2 |= SDHCI_CTRL_DRV_TYPE_C;
else if (ios->drv_type == MMC_SET_DRIVER_TYPE_D)
ctrl_2 |= SDHCI_CTRL_DRV_TYPE_D;
else {
pr_warn("%s: invalid driver type, default to driver type B\n",
mmc_hostname(mmc));
ctrl_2 |= SDHCI_CTRL_DRV_TYPE_B;
}
sdhci_writew(host, ctrl_2, SDHCI_HOST_CONTROL2);
} else {
/*
* According to SDHC Spec v3.00, if the Preset Value
* Enable in the Host Control 2 register is set, we
* need to reset SD Clock Enable before changing High
* Speed Enable to avoid generating clock gliches.
*/
/* Reset SD Clock Enable */
clk = sdhci_readw(host, SDHCI_CLOCK_CONTROL);
clk &= ~SDHCI_CLOCK_CARD_EN;
sdhci_writew(host, clk, SDHCI_CLOCK_CONTROL);
sdhci_writeb(host, ctrl, SDHCI_HOST_CONTROL);
/* Re-enable SD Clock */
host->ops->set_clock(host, host->clock);
}
/* Reset SD Clock Enable */
clk = sdhci_readw(host, SDHCI_CLOCK_CONTROL);
clk &= ~SDHCI_CLOCK_CARD_EN;
sdhci_writew(host, clk, SDHCI_CLOCK_CONTROL);
host->ops->set_uhs_signaling(host, ios->timing);
host->timing = ios->timing;
if (!(host->quirks2 & SDHCI_QUIRK2_PRESET_VALUE_BROKEN) &&
((ios->timing == MMC_TIMING_UHS_SDR12) ||
(ios->timing == MMC_TIMING_UHS_SDR25) ||
(ios->timing == MMC_TIMING_UHS_SDR50) ||
(ios->timing == MMC_TIMING_UHS_SDR104) ||
(ios->timing == MMC_TIMING_UHS_DDR50) ||
(ios->timing == MMC_TIMING_MMC_DDR52))) {
u16 preset;
sdhci_enable_preset_value(host, true);
preset = sdhci_get_preset_value(host);
ios->drv_type = (preset & SDHCI_PRESET_DRV_MASK)
>> SDHCI_PRESET_DRV_SHIFT;
}
/* Re-enable SD Clock */
host->ops->set_clock(host, host->clock);
} else
sdhci_writeb(host, ctrl, SDHCI_HOST_CONTROL);
/*
* Some (ENE) controllers go apeshit on some ios operation,
* signalling timeout and CRC errors even on CMD0. Resetting
* it on each ios seems to solve the problem.
*/
if (host->quirks & SDHCI_QUIRK_RESET_CMD_DATA_ON_IOS)
sdhci_do_reset(host, SDHCI_RESET_CMD | SDHCI_RESET_DATA);
mmiowb();
}
EXPORT_SYMBOL_GPL(sdhci_set_ios);
static int sdhci_get_cd(struct mmc_host *mmc)
{
struct sdhci_host *host = mmc_priv(mmc);
int gpio_cd = mmc_gpio_get_cd(mmc);
if (host->flags & SDHCI_DEVICE_DEAD)
return 0;
/* If nonremovable, assume that the card is always present. */
if (!mmc_card_is_removable(host->mmc))
return 1;
/*
* Try slot gpio detect, if defined it take precedence
* over build in controller functionality
*/
if (gpio_cd >= 0)
return !!gpio_cd;
/* If polling, assume that the card is always present. */
if (host->quirks & SDHCI_QUIRK_BROKEN_CARD_DETECTION)
return 1;
/* Host native card detect */
return !!(sdhci_readl(host, SDHCI_PRESENT_STATE) & SDHCI_CARD_PRESENT);
}
static int sdhci_check_ro(struct sdhci_host *host)
{
unsigned long flags;
int is_readonly;
spin_lock_irqsave(&host->lock, flags);
if (host->flags & SDHCI_DEVICE_DEAD)
is_readonly = 0;
else if (host->ops->get_ro)
is_readonly = host->ops->get_ro(host);
else
is_readonly = !(sdhci_readl(host, SDHCI_PRESENT_STATE)
& SDHCI_WRITE_PROTECT);
spin_unlock_irqrestore(&host->lock, flags);
/* This quirk needs to be replaced by a callback-function later */
return host->quirks & SDHCI_QUIRK_INVERTED_WRITE_PROTECT ?
!is_readonly : is_readonly;
}
#define SAMPLE_COUNT 5
static int sdhci_get_ro(struct mmc_host *mmc)
{
struct sdhci_host *host = mmc_priv(mmc);
int i, ro_count;
if (!(host->quirks & SDHCI_QUIRK_UNSTABLE_RO_DETECT))
return sdhci_check_ro(host);
ro_count = 0;
for (i = 0; i < SAMPLE_COUNT; i++) {
if (sdhci_check_ro(host)) {
if (++ro_count > SAMPLE_COUNT / 2)
return 1;
}
msleep(30);
}
return 0;
}
static void sdhci_hw_reset(struct mmc_host *mmc)
{
struct sdhci_host *host = mmc_priv(mmc);
if (host->ops && host->ops->hw_reset)
host->ops->hw_reset(host);
}
static void sdhci_enable_sdio_irq_nolock(struct sdhci_host *host, int enable)
{
if (!(host->flags & SDHCI_DEVICE_DEAD)) {
if (enable)
host->ier |= SDHCI_INT_CARD_INT;
else
host->ier &= ~SDHCI_INT_CARD_INT;
sdhci_writel(host, host->ier, SDHCI_INT_ENABLE);
sdhci_writel(host, host->ier, SDHCI_SIGNAL_ENABLE);
mmiowb();
}
}
void sdhci_enable_sdio_irq(struct mmc_host *mmc, int enable)
{
struct sdhci_host *host = mmc_priv(mmc);
unsigned long flags;
if (enable)
pm_runtime_get_noresume(host->mmc->parent);
spin_lock_irqsave(&host->lock, flags);
if (enable)
host->flags |= SDHCI_SDIO_IRQ_ENABLED;
else
host->flags &= ~SDHCI_SDIO_IRQ_ENABLED;
sdhci_enable_sdio_irq_nolock(host, enable);
spin_unlock_irqrestore(&host->lock, flags);
if (!enable)
pm_runtime_put_noidle(host->mmc->parent);
}
EXPORT_SYMBOL_GPL(sdhci_enable_sdio_irq);
int sdhci_start_signal_voltage_switch(struct mmc_host *mmc,
struct mmc_ios *ios)
{
struct sdhci_host *host = mmc_priv(mmc);
u16 ctrl;
int ret;
/*
* Signal Voltage Switching is only applicable for Host Controllers
* v3.00 and above.
*/
if (host->version < SDHCI_SPEC_300)
return 0;
ctrl = sdhci_readw(host, SDHCI_HOST_CONTROL2);
switch (ios->signal_voltage) {
case MMC_SIGNAL_VOLTAGE_330:
if (!(host->flags & SDHCI_SIGNALING_330))
return -EINVAL;
/* Set 1.8V Signal Enable in the Host Control2 register to 0 */
ctrl &= ~SDHCI_CTRL_VDD_180;
sdhci_writew(host, ctrl, SDHCI_HOST_CONTROL2);
if (!IS_ERR(mmc->supply.vqmmc)) {
ret = mmc_regulator_set_vqmmc(mmc, ios);
if (ret) {
pr_warn("%s: Switching to 3.3V signalling voltage failed\n",
mmc_hostname(mmc));
return -EIO;
}
}
/* Wait for 5ms */
usleep_range(5000, 5500);
/* 3.3V regulator output should be stable within 5 ms */
ctrl = sdhci_readw(host, SDHCI_HOST_CONTROL2);
if (!(ctrl & SDHCI_CTRL_VDD_180))
return 0;
pr_warn("%s: 3.3V regulator output did not became stable\n",
mmc_hostname(mmc));
return -EAGAIN;
case MMC_SIGNAL_VOLTAGE_180:
if (!(host->flags & SDHCI_SIGNALING_180))
return -EINVAL;
if (!IS_ERR(mmc->supply.vqmmc)) {
ret = mmc_regulator_set_vqmmc(mmc, ios);
if (ret) {
pr_warn("%s: Switching to 1.8V signalling voltage failed\n",
mmc_hostname(mmc));
return -EIO;
}
}
/*
* Enable 1.8V Signal Enable in the Host Control2
* register
*/
ctrl |= SDHCI_CTRL_VDD_180;
sdhci_writew(host, ctrl, SDHCI_HOST_CONTROL2);
/* Some controller need to do more when switching */
if (host->ops->voltage_switch)
host->ops->voltage_switch(host);
/* 1.8V regulator output should be stable within 5 ms */
ctrl = sdhci_readw(host, SDHCI_HOST_CONTROL2);
if (ctrl & SDHCI_CTRL_VDD_180)
return 0;
pr_warn("%s: 1.8V regulator output did not became stable\n",
mmc_hostname(mmc));
return -EAGAIN;
case MMC_SIGNAL_VOLTAGE_120:
if (!(host->flags & SDHCI_SIGNALING_120))
return -EINVAL;
if (!IS_ERR(mmc->supply.vqmmc)) {
ret = mmc_regulator_set_vqmmc(mmc, ios);
if (ret) {
pr_warn("%s: Switching to 1.2V signalling voltage failed\n",
mmc_hostname(mmc));
return -EIO;
}
}
return 0;
default:
/* No signal voltage switch required */
return 0;
}
}
EXPORT_SYMBOL_GPL(sdhci_start_signal_voltage_switch);
static int sdhci_card_busy(struct mmc_host *mmc)
{
struct sdhci_host *host = mmc_priv(mmc);
u32 present_state;
/* Check whether DAT[0] is 0 */
present_state = sdhci_readl(host, SDHCI_PRESENT_STATE);
return !(present_state & SDHCI_DATA_0_LVL_MASK);
}
static int sdhci_prepare_hs400_tuning(struct mmc_host *mmc, struct mmc_ios *ios)
{
struct sdhci_host *host = mmc_priv(mmc);
unsigned long flags;
spin_lock_irqsave(&host->lock, flags);
host->flags |= SDHCI_HS400_TUNING;
spin_unlock_irqrestore(&host->lock, flags);
return 0;
}
void sdhci_start_tuning(struct sdhci_host *host)
{
u16 ctrl;
ctrl = sdhci_readw(host, SDHCI_HOST_CONTROL2);
ctrl |= SDHCI_CTRL_EXEC_TUNING;
if (host->quirks2 & SDHCI_QUIRK2_TUNING_WORK_AROUND)
ctrl |= SDHCI_CTRL_TUNED_CLK;
sdhci_writew(host, ctrl, SDHCI_HOST_CONTROL2);
/*
* As per the Host Controller spec v3.00, tuning command
* generates Buffer Read Ready interrupt, so enable that.
*
* Note: The spec clearly says that when tuning sequence
* is being performed, the controller does not generate
* interrupts other than Buffer Read Ready interrupt. But
* to make sure we don't hit a controller bug, we _only_
* enable Buffer Read Ready interrupt here.
*/
sdhci_writel(host, SDHCI_INT_DATA_AVAIL, SDHCI_INT_ENABLE);
sdhci_writel(host, SDHCI_INT_DATA_AVAIL, SDHCI_SIGNAL_ENABLE);
}
EXPORT_SYMBOL_GPL(sdhci_start_tuning);
void sdhci_end_tuning(struct sdhci_host *host)
{
sdhci_writel(host, host->ier, SDHCI_INT_ENABLE);
sdhci_writel(host, host->ier, SDHCI_SIGNAL_ENABLE);
}
EXPORT_SYMBOL_GPL(sdhci_end_tuning);
void sdhci_reset_tuning(struct sdhci_host *host)
{
u16 ctrl;
ctrl = sdhci_readw(host, SDHCI_HOST_CONTROL2);
ctrl &= ~SDHCI_CTRL_TUNED_CLK;
ctrl &= ~SDHCI_CTRL_EXEC_TUNING;
sdhci_writew(host, ctrl, SDHCI_HOST_CONTROL2);
}
EXPORT_SYMBOL_GPL(sdhci_reset_tuning);
static void sdhci_abort_tuning(struct sdhci_host *host, u32 opcode)
{
sdhci_reset_tuning(host);
sdhci_do_reset(host, SDHCI_RESET_CMD);
sdhci_do_reset(host, SDHCI_RESET_DATA);
sdhci_end_tuning(host);
mmc_abort_tuning(host->mmc, opcode);
}
/*
* We use sdhci_send_tuning() because mmc_send_tuning() is not a good fit. SDHCI
* tuning command does not have a data payload (or rather the hardware does it
* automatically) so mmc_send_tuning() will return -EIO. Also the tuning command
* interrupt setup is different to other commands and there is no timeout
* interrupt so special handling is needed.
*/
void sdhci_send_tuning(struct sdhci_host *host, u32 opcode)
{
struct mmc_host *mmc = host->mmc;
struct mmc_command cmd = {};
struct mmc_request mrq = {};
unsigned long flags;
u32 b = host->sdma_boundary;
spin_lock_irqsave(&host->lock, flags);
cmd.opcode = opcode;
cmd.flags = MMC_RSP_R1 | MMC_CMD_ADTC;
cmd.mrq = &mrq;
mrq.cmd = &cmd;
/*
* In response to CMD19, the card sends 64 bytes of tuning
* block to the Host Controller. So we set the block size
* to 64 here.
*/
if (cmd.opcode == MMC_SEND_TUNING_BLOCK_HS200 &&
mmc->ios.bus_width == MMC_BUS_WIDTH_8)
sdhci_writew(host, SDHCI_MAKE_BLKSZ(b, 128), SDHCI_BLOCK_SIZE);
else
sdhci_writew(host, SDHCI_MAKE_BLKSZ(b, 64), SDHCI_BLOCK_SIZE);
/*
* The tuning block is sent by the card to the host controller.
* So we set the TRNS_READ bit in the Transfer Mode register.
* This also takes care of setting DMA Enable and Multi Block
* Select in the same register to 0.
*/
sdhci_writew(host, SDHCI_TRNS_READ, SDHCI_TRANSFER_MODE);
sdhci_send_command(host, &cmd);
host->cmd = NULL;
sdhci_del_timer(host, &mrq);
host->tuning_done = 0;
mmiowb();
spin_unlock_irqrestore(&host->lock, flags);
/* Wait for Buffer Read Ready interrupt */
wait_event_timeout(host->buf_ready_int, (host->tuning_done == 1),
msecs_to_jiffies(50));
}
EXPORT_SYMBOL_GPL(sdhci_send_tuning);
static void __sdhci_execute_tuning(struct sdhci_host *host, u32 opcode)
{
int i;
/*
* Issue opcode repeatedly till Execute Tuning is set to 0 or the number
* of loops reaches 40 times.
*/
for (i = 0; i < MAX_TUNING_LOOP; i++) {
u16 ctrl;
sdhci_send_tuning(host, opcode);
if (!host->tuning_done) {
pr_debug("%s: Tuning timeout, falling back to fixed sampling clock\n",
mmc_hostname(host->mmc));
sdhci_abort_tuning(host, opcode);
return;
}
ctrl = sdhci_readw(host, SDHCI_HOST_CONTROL2);
if (!(ctrl & SDHCI_CTRL_EXEC_TUNING)) {
if (ctrl & SDHCI_CTRL_TUNED_CLK)
return; /* Success! */
break;
}
/* Spec does not require a delay between tuning cycles */
if (host->tuning_delay > 0)
mdelay(host->tuning_delay);
}
pr_info("%s: Tuning failed, falling back to fixed sampling clock\n",
mmc_hostname(host->mmc));
sdhci_reset_tuning(host);
}
int sdhci_execute_tuning(struct mmc_host *mmc, u32 opcode)
{
struct sdhci_host *host = mmc_priv(mmc);
int err = 0;
unsigned int tuning_count = 0;
bool hs400_tuning;
hs400_tuning = host->flags & SDHCI_HS400_TUNING;
if (host->tuning_mode == SDHCI_TUNING_MODE_1)
tuning_count = host->tuning_count;
/*
* The Host Controller needs tuning in case of SDR104 and DDR50
* mode, and for SDR50 mode when Use Tuning for SDR50 is set in
* the Capabilities register.
* If the Host Controller supports the HS200 mode then the
* tuning function has to be executed.
*/
switch (host->timing) {
/* HS400 tuning is done in HS200 mode */
case MMC_TIMING_MMC_HS400:
err = -EINVAL;
goto out;
case MMC_TIMING_MMC_HS200:
/*
* Periodic re-tuning for HS400 is not expected to be needed, so
* disable it here.
*/
if (hs400_tuning)
tuning_count = 0;
break;
case MMC_TIMING_UHS_SDR104:
case MMC_TIMING_UHS_DDR50:
break;
case MMC_TIMING_UHS_SDR50:
if (host->flags & SDHCI_SDR50_NEEDS_TUNING)
break;
/* FALLTHROUGH */
default:
goto out;
}
if (host->ops->platform_execute_tuning) {
err = host->ops->platform_execute_tuning(host, opcode);
goto out;
}
host->mmc->retune_period = tuning_count;
if (host->tuning_delay < 0)
host->tuning_delay = opcode == MMC_SEND_TUNING_BLOCK;
sdhci_start_tuning(host);
__sdhci_execute_tuning(host, opcode);
sdhci_end_tuning(host);
out:
host->flags &= ~SDHCI_HS400_TUNING;
return err;
}
EXPORT_SYMBOL_GPL(sdhci_execute_tuning);
static void sdhci_enable_preset_value(struct sdhci_host *host, bool enable)
{
/* Host Controller v3.00 defines preset value registers */
if (host->version < SDHCI_SPEC_300)
return;
/*
* We only enable or disable Preset Value if they are not already
* enabled or disabled respectively. Otherwise, we bail out.
*/
if (host->preset_enabled != enable) {
u16 ctrl = sdhci_readw(host, SDHCI_HOST_CONTROL2);
if (enable)
ctrl |= SDHCI_CTRL_PRESET_VAL_ENABLE;
else
ctrl &= ~SDHCI_CTRL_PRESET_VAL_ENABLE;
sdhci_writew(host, ctrl, SDHCI_HOST_CONTROL2);
if (enable)
host->flags |= SDHCI_PV_ENABLED;
else
host->flags &= ~SDHCI_PV_ENABLED;
host->preset_enabled = enable;
}
}
static void sdhci_post_req(struct mmc_host *mmc, struct mmc_request *mrq,
int err)
{
struct sdhci_host *host = mmc_priv(mmc);
struct mmc_data *data = mrq->data;
if (data->host_cookie != COOKIE_UNMAPPED)
dma_unmap_sg(mmc_dev(host->mmc), data->sg, data->sg_len,
mmc_get_dma_dir(data));
data->host_cookie = COOKIE_UNMAPPED;
}
static void sdhci_pre_req(struct mmc_host *mmc, struct mmc_request *mrq)
{
struct sdhci_host *host = mmc_priv(mmc);
mrq->data->host_cookie = COOKIE_UNMAPPED;
/*
* No pre-mapping in the pre hook if we're using the bounce buffer,
* for that we would need two bounce buffers since one buffer is
* in flight when this is getting called.
*/
if (host->flags & SDHCI_REQ_USE_DMA && !host->bounce_buffer)
sdhci_pre_dma_transfer(host, mrq->data, COOKIE_PRE_MAPPED);
}
static inline bool sdhci_has_requests(struct sdhci_host *host)
{
return host->cmd || host->data_cmd;
}
static void sdhci_error_out_mrqs(struct sdhci_host *host, int err)
{
if (host->data_cmd) {
host->data_cmd->error = err;
sdhci_finish_mrq(host, host->data_cmd->mrq);
}
if (host->cmd) {
host->cmd->error = err;
sdhci_finish_mrq(host, host->cmd->mrq);
}
}
static void sdhci_card_event(struct mmc_host *mmc)
{
struct sdhci_host *host = mmc_priv(mmc);
unsigned long flags;
int present;
/* First check if client has provided their own card event */
if (host->ops->card_event)
host->ops->card_event(host);
present = mmc->ops->get_cd(mmc);
spin_lock_irqsave(&host->lock, flags);
/* Check sdhci_has_requests() first in case we are runtime suspended */
if (sdhci_has_requests(host) && !present) {
pr_err("%s: Card removed during transfer!\n",
mmc_hostname(host->mmc));
pr_err("%s: Resetting controller.\n",
mmc_hostname(host->mmc));
sdhci_do_reset(host, SDHCI_RESET_CMD);
sdhci_do_reset(host, SDHCI_RESET_DATA);
sdhci_error_out_mrqs(host, -ENOMEDIUM);
}
spin_unlock_irqrestore(&host->lock, flags);
}
static const struct mmc_host_ops sdhci_ops = {
.request = sdhci_request,
.post_req = sdhci_post_req,
.pre_req = sdhci_pre_req,
.set_ios = sdhci_set_ios,
.get_cd = sdhci_get_cd,
.get_ro = sdhci_get_ro,
.hw_reset = sdhci_hw_reset,
.enable_sdio_irq = sdhci_enable_sdio_irq,
.start_signal_voltage_switch = sdhci_start_signal_voltage_switch,
.prepare_hs400_tuning = sdhci_prepare_hs400_tuning,
.execute_tuning = sdhci_execute_tuning,
.card_event = sdhci_card_event,
.card_busy = sdhci_card_busy,
};
/*****************************************************************************\
* *
* Tasklets *
* *
\*****************************************************************************/
static bool sdhci_request_done(struct sdhci_host *host)
{
unsigned long flags;
struct mmc_request *mrq;
int i;
spin_lock_irqsave(&host->lock, flags);
for (i = 0; i < SDHCI_MAX_MRQS; i++) {
mrq = host->mrqs_done[i];
if (mrq)
break;
}
if (!mrq) {
spin_unlock_irqrestore(&host->lock, flags);
return true;
}
sdhci_del_timer(host, mrq);
/*
* Always unmap the data buffers if they were mapped by
* sdhci_prepare_data() whenever we finish with a request.
* This avoids leaking DMA mappings on error.
*/
if (host->flags & SDHCI_REQ_USE_DMA) {
struct mmc_data *data = mrq->data;
if (data && data->host_cookie == COOKIE_MAPPED) {
if (host->bounce_buffer) {
/*
* On reads, copy the bounced data into the
* sglist
*/
if (mmc_get_dma_dir(data) == DMA_FROM_DEVICE) {
unsigned int length = data->bytes_xfered;
if (length > host->bounce_buffer_size) {
pr_err("%s: bounce buffer is %u bytes but DMA claims to have transferred %u bytes\n",
mmc_hostname(host->mmc),
host->bounce_buffer_size,
data->bytes_xfered);
/* Cap it down and continue */
length = host->bounce_buffer_size;
}
dma_sync_single_for_cpu(
host->mmc->parent,
host->bounce_addr,
host->bounce_buffer_size,
DMA_FROM_DEVICE);
sg_copy_from_buffer(data->sg,
data->sg_len,
host->bounce_buffer,
length);
} else {
/* No copying, just switch ownership */
dma_sync_single_for_cpu(
host->mmc->parent,
host->bounce_addr,
host->bounce_buffer_size,
mmc_get_dma_dir(data));
}
} else {
/* Unmap the raw data */
dma_unmap_sg(mmc_dev(host->mmc), data->sg,
data->sg_len,
mmc_get_dma_dir(data));
}
data->host_cookie = COOKIE_UNMAPPED;
}
}
/*
* The controller needs a reset of internal state machines
* upon error conditions.
*/
if (sdhci_needs_reset(host, mrq)) {
/*
* Do not finish until command and data lines are available for
* reset. Note there can only be one other mrq, so it cannot
* also be in mrqs_done, otherwise host->cmd and host->data_cmd
* would both be null.
*/
if (host->cmd || host->data_cmd) {
spin_unlock_irqrestore(&host->lock, flags);
return true;
}
/* Some controllers need this kick or reset won't work here */
if (host->quirks & SDHCI_QUIRK_CLOCK_BEFORE_RESET)
/* This is to force an update */
host->ops->set_clock(host, host->clock);
/* Spec says we should do both at the same time, but Ricoh
controllers do not like that. */
sdhci_do_reset(host, SDHCI_RESET_CMD);
sdhci_do_reset(host, SDHCI_RESET_DATA);
host->pending_reset = false;
}
if (!sdhci_has_requests(host))
sdhci_led_deactivate(host);
host->mrqs_done[i] = NULL;
mmiowb();
spin_unlock_irqrestore(&host->lock, flags);
mmc_request_done(host->mmc, mrq);
return false;
}
static void sdhci_tasklet_finish(unsigned long param)
{
struct sdhci_host *host = (struct sdhci_host *)param;
while (!sdhci_request_done(host))
;
}
static void sdhci_timeout_timer(struct timer_list *t)
{
struct sdhci_host *host;
unsigned long flags;
host = from_timer(host, t, timer);
spin_lock_irqsave(&host->lock, flags);
if (host->cmd && !sdhci_data_line_cmd(host->cmd)) {
pr_err("%s: Timeout waiting for hardware cmd interrupt.\n",
mmc_hostname(host->mmc));
sdhci_dumpregs(host);
host->cmd->error = -ETIMEDOUT;
sdhci_finish_mrq(host, host->cmd->mrq);
}
mmiowb();
spin_unlock_irqrestore(&host->lock, flags);
}
static void sdhci_timeout_data_timer(struct timer_list *t)
{
struct sdhci_host *host;
unsigned long flags;
host = from_timer(host, t, data_timer);
spin_lock_irqsave(&host->lock, flags);
if (host->data || host->data_cmd ||
(host->cmd && sdhci_data_line_cmd(host->cmd))) {
pr_err("%s: Timeout waiting for hardware interrupt.\n",
mmc_hostname(host->mmc));
sdhci_dumpregs(host);
if (host->data) {
host->data->error = -ETIMEDOUT;
sdhci_finish_data(host);
} else if (host->data_cmd) {
host->data_cmd->error = -ETIMEDOUT;
sdhci_finish_mrq(host, host->data_cmd->mrq);
} else {
host->cmd->error = -ETIMEDOUT;
sdhci_finish_mrq(host, host->cmd->mrq);
}
}
mmiowb();
spin_unlock_irqrestore(&host->lock, flags);
}
/*****************************************************************************\
* *
* Interrupt handling *
* *
\*****************************************************************************/
static void sdhci_cmd_irq(struct sdhci_host *host, u32 intmask, u32 *intmask_p)
{
/* Handle auto-CMD12 error */
if (intmask & SDHCI_INT_AUTO_CMD_ERR && host->data_cmd) {
struct mmc_request *mrq = host->data_cmd->mrq;
u16 auto_cmd_status = sdhci_readw(host, SDHCI_AUTO_CMD_STATUS);
int data_err_bit = (auto_cmd_status & SDHCI_AUTO_CMD_TIMEOUT) ?
SDHCI_INT_DATA_TIMEOUT :
SDHCI_INT_DATA_CRC;
/* Treat auto-CMD12 error the same as data error */
if (!mrq->sbc && (host->flags & SDHCI_AUTO_CMD12)) {
*intmask_p |= data_err_bit;
return;
}
}
if (!host->cmd) {
/*
* SDHCI recovers from errors by resetting the cmd and data
* circuits. Until that is done, there very well might be more
* interrupts, so ignore them in that case.
*/
if (host->pending_reset)
return;
pr_err("%s: Got command interrupt 0x%08x even though no command operation was in progress.\n",
mmc_hostname(host->mmc), (unsigned)intmask);
sdhci_dumpregs(host);
return;
}
if (intmask & (SDHCI_INT_TIMEOUT | SDHCI_INT_CRC |
SDHCI_INT_END_BIT | SDHCI_INT_INDEX)) {
if (intmask & SDHCI_INT_TIMEOUT)
host->cmd->error = -ETIMEDOUT;
else
host->cmd->error = -EILSEQ;
/* Treat data command CRC error the same as data CRC error */
if (host->cmd->data &&
(intmask & (SDHCI_INT_CRC | SDHCI_INT_TIMEOUT)) ==
SDHCI_INT_CRC) {
host->cmd = NULL;
*intmask_p |= SDHCI_INT_DATA_CRC;
return;
}
sdhci_finish_mrq(host, host->cmd->mrq);
return;
}
/* Handle auto-CMD23 error */
if (intmask & SDHCI_INT_AUTO_CMD_ERR) {
struct mmc_request *mrq = host->cmd->mrq;
u16 auto_cmd_status = sdhci_readw(host, SDHCI_AUTO_CMD_STATUS);
int err = (auto_cmd_status & SDHCI_AUTO_CMD_TIMEOUT) ?
-ETIMEDOUT :
-EILSEQ;
if (mrq->sbc && (host->flags & SDHCI_AUTO_CMD23)) {
mrq->sbc->error = err;
sdhci_finish_mrq(host, mrq);
return;
}
}
if (intmask & SDHCI_INT_RESPONSE)
sdhci_finish_command(host);
}
static void sdhci_adma_show_error(struct sdhci_host *host)
{
void *desc = host->adma_table;
dma_addr_t dma = host->adma_addr;
sdhci_dumpregs(host);
while (true) {
struct sdhci_adma2_64_desc *dma_desc = desc;
if (host->flags & SDHCI_USE_64_BIT_DMA)
SDHCI_DUMP("%08llx: DMA 0x%08x%08x, LEN 0x%04x, Attr=0x%02x\n",
(unsigned long long)dma,
le32_to_cpu(dma_desc->addr_hi),
le32_to_cpu(dma_desc->addr_lo),
le16_to_cpu(dma_desc->len),
le16_to_cpu(dma_desc->cmd));
else
SDHCI_DUMP("%08llx: DMA 0x%08x, LEN 0x%04x, Attr=0x%02x\n",
(unsigned long long)dma,
le32_to_cpu(dma_desc->addr_lo),
le16_to_cpu(dma_desc->len),
le16_to_cpu(dma_desc->cmd));
desc += host->desc_sz;
dma += host->desc_sz;
if (dma_desc->cmd & cpu_to_le16(ADMA2_END))
break;
}
}
static void sdhci_data_irq(struct sdhci_host *host, u32 intmask)
{
u32 command;
/* CMD19 generates _only_ Buffer Read Ready interrupt */
if (intmask & SDHCI_INT_DATA_AVAIL) {
command = SDHCI_GET_CMD(sdhci_readw(host, SDHCI_COMMAND));
if (command == MMC_SEND_TUNING_BLOCK ||
command == MMC_SEND_TUNING_BLOCK_HS200) {
host->tuning_done = 1;
wake_up(&host->buf_ready_int);
return;
}
}
if (!host->data) {
struct mmc_command *data_cmd = host->data_cmd;
/*
* The "data complete" interrupt is also used to
* indicate that a busy state has ended. See comment
* above in sdhci_cmd_irq().
*/
if (data_cmd && (data_cmd->flags & MMC_RSP_BUSY)) {
if (intmask & SDHCI_INT_DATA_TIMEOUT) {
host->data_cmd = NULL;
data_cmd->error = -ETIMEDOUT;
sdhci_finish_mrq(host, data_cmd->mrq);
return;
}
if (intmask & SDHCI_INT_DATA_END) {
host->data_cmd = NULL;
/*
* Some cards handle busy-end interrupt
* before the command completed, so make
* sure we do things in the proper order.
*/
if (host->cmd == data_cmd)
return;
sdhci_finish_mrq(host, data_cmd->mrq);
return;
}
}
/*
* SDHCI recovers from errors by resetting the cmd and data
* circuits. Until that is done, there very well might be more
* interrupts, so ignore them in that case.
*/
if (host->pending_reset)
return;
pr_err("%s: Got data interrupt 0x%08x even though no data operation was in progress.\n",
mmc_hostname(host->mmc), (unsigned)intmask);
sdhci_dumpregs(host);
return;
}
if (intmask & SDHCI_INT_DATA_TIMEOUT)
host->data->error = -ETIMEDOUT;
else if (intmask & SDHCI_INT_DATA_END_BIT)
host->data->error = -EILSEQ;
else if ((intmask & SDHCI_INT_DATA_CRC) &&
SDHCI_GET_CMD(sdhci_readw(host, SDHCI_COMMAND))
!= MMC_BUS_TEST_R)
host->data->error = -EILSEQ;
else if (intmask & SDHCI_INT_ADMA_ERROR) {
pr_err("%s: ADMA error: 0x%08x\n", mmc_hostname(host->mmc),
intmask);
sdhci_adma_show_error(host);
host->data->error = -EIO;
if (host->ops->adma_workaround)
host->ops->adma_workaround(host, intmask);
}
if (host->data->error)
sdhci_finish_data(host);
else {
if (intmask & (SDHCI_INT_DATA_AVAIL | SDHCI_INT_SPACE_AVAIL))
sdhci_transfer_pio(host);
/*
* We currently don't do anything fancy with DMA
* boundaries, but as we can't disable the feature
* we need to at least restart the transfer.
*
* According to the spec sdhci_readl(host, SDHCI_DMA_ADDRESS)
* should return a valid address to continue from, but as
* some controllers are faulty, don't trust them.
*/
if (intmask & SDHCI_INT_DMA_END) {
u32 dmastart, dmanow;
dmastart = sdhci_sdma_address(host);
dmanow = dmastart + host->data->bytes_xfered;
/*
* Force update to the next DMA block boundary.
*/
dmanow = (dmanow &
~(SDHCI_DEFAULT_BOUNDARY_SIZE - 1)) +
SDHCI_DEFAULT_BOUNDARY_SIZE;
host->data->bytes_xfered = dmanow - dmastart;
DBG("DMA base 0x%08x, transferred 0x%06x bytes, next 0x%08x\n",
dmastart, host->data->bytes_xfered, dmanow);
sdhci_writel(host, dmanow, SDHCI_DMA_ADDRESS);
}
if (intmask & SDHCI_INT_DATA_END) {
if (host->cmd == host->data_cmd) {
/*
* Data managed to finish before the
* command completed. Make sure we do
* things in the proper order.
*/
host->data_early = 1;
} else {
sdhci_finish_data(host);
}
}
}
}
static irqreturn_t sdhci_irq(int irq, void *dev_id)
{
irqreturn_t result = IRQ_NONE;
struct sdhci_host *host = dev_id;
u32 intmask, mask, unexpected = 0;
int max_loops = 16;
spin_lock(&host->lock);
if (host->runtime_suspended && !sdhci_sdio_irq_enabled(host)) {
spin_unlock(&host->lock);
return IRQ_NONE;
}
intmask = sdhci_readl(host, SDHCI_INT_STATUS);
if (!intmask || intmask == 0xffffffff) {
result = IRQ_NONE;
goto out;
}
do {
DBG("IRQ status 0x%08x\n", intmask);
if (host->ops->irq) {
intmask = host->ops->irq(host, intmask);
if (!intmask)
goto cont;
}
/* Clear selected interrupts. */
mask = intmask & (SDHCI_INT_CMD_MASK | SDHCI_INT_DATA_MASK |
SDHCI_INT_BUS_POWER);
sdhci_writel(host, mask, SDHCI_INT_STATUS);
if (intmask & (SDHCI_INT_CARD_INSERT | SDHCI_INT_CARD_REMOVE)) {
u32 present = sdhci_readl(host, SDHCI_PRESENT_STATE) &
SDHCI_CARD_PRESENT;
/*
* There is a observation on i.mx esdhc. INSERT
* bit will be immediately set again when it gets
* cleared, if a card is inserted. We have to mask
* the irq to prevent interrupt storm which will
* freeze the system. And the REMOVE gets the
* same situation.
*
* More testing are needed here to ensure it works
* for other platforms though.
*/
host->ier &= ~(SDHCI_INT_CARD_INSERT |
SDHCI_INT_CARD_REMOVE);
host->ier |= present ? SDHCI_INT_CARD_REMOVE :
SDHCI_INT_CARD_INSERT;
sdhci_writel(host, host->ier, SDHCI_INT_ENABLE);
sdhci_writel(host, host->ier, SDHCI_SIGNAL_ENABLE);
sdhci_writel(host, intmask & (SDHCI_INT_CARD_INSERT |
SDHCI_INT_CARD_REMOVE), SDHCI_INT_STATUS);
host->thread_isr |= intmask & (SDHCI_INT_CARD_INSERT |
SDHCI_INT_CARD_REMOVE);
result = IRQ_WAKE_THREAD;
}
if (intmask & SDHCI_INT_CMD_MASK)
sdhci_cmd_irq(host, intmask & SDHCI_INT_CMD_MASK, &intmask);
if (intmask & SDHCI_INT_DATA_MASK)
sdhci_data_irq(host, intmask & SDHCI_INT_DATA_MASK);
if (intmask & SDHCI_INT_BUS_POWER)
pr_err("%s: Card is consuming too much power!\n",
mmc_hostname(host->mmc));
if (intmask & SDHCI_INT_RETUNE)
mmc_retune_needed(host->mmc);
if ((intmask & SDHCI_INT_CARD_INT) &&
(host->ier & SDHCI_INT_CARD_INT)) {
sdhci_enable_sdio_irq_nolock(host, false);
host->thread_isr |= SDHCI_INT_CARD_INT;
result = IRQ_WAKE_THREAD;
}
intmask &= ~(SDHCI_INT_CARD_INSERT | SDHCI_INT_CARD_REMOVE |
SDHCI_INT_CMD_MASK | SDHCI_INT_DATA_MASK |
SDHCI_INT_ERROR | SDHCI_INT_BUS_POWER |
SDHCI_INT_RETUNE | SDHCI_INT_CARD_INT);
if (intmask) {
unexpected |= intmask;
sdhci_writel(host, intmask, SDHCI_INT_STATUS);
}
cont:
if (result == IRQ_NONE)
result = IRQ_HANDLED;
intmask = sdhci_readl(host, SDHCI_INT_STATUS);
} while (intmask && --max_loops);
out:
spin_unlock(&host->lock);
if (unexpected) {
pr_err("%s: Unexpected interrupt 0x%08x.\n",
mmc_hostname(host->mmc), unexpected);
sdhci_dumpregs(host);
}
return result;
}
static irqreturn_t sdhci_thread_irq(int irq, void *dev_id)
{
struct sdhci_host *host = dev_id;
unsigned long flags;
u32 isr;
spin_lock_irqsave(&host->lock, flags);
isr = host->thread_isr;
host->thread_isr = 0;
spin_unlock_irqrestore(&host->lock, flags);
if (isr & (SDHCI_INT_CARD_INSERT | SDHCI_INT_CARD_REMOVE)) {
struct mmc_host *mmc = host->mmc;
mmc->ops->card_event(mmc);
mmc_detect_change(mmc, msecs_to_jiffies(200));
}
if (isr & SDHCI_INT_CARD_INT) {
sdio_run_irqs(host->mmc);
spin_lock_irqsave(&host->lock, flags);
if (host->flags & SDHCI_SDIO_IRQ_ENABLED)
sdhci_enable_sdio_irq_nolock(host, true);
spin_unlock_irqrestore(&host->lock, flags);
}
return isr ? IRQ_HANDLED : IRQ_NONE;
}
/*****************************************************************************\
* *
* Suspend/resume *
* *
\*****************************************************************************/
#ifdef CONFIG_PM
static bool sdhci_cd_irq_can_wakeup(struct sdhci_host *host)
{
return mmc_card_is_removable(host->mmc) &&
!(host->quirks & SDHCI_QUIRK_BROKEN_CARD_DETECTION) &&
!mmc_can_gpio_cd(host->mmc);
}
/*
* To enable wakeup events, the corresponding events have to be enabled in
* the Interrupt Status Enable register too. See 'Table 1-6: Wakeup Signal
* Table' in the SD Host Controller Standard Specification.
* It is useless to restore SDHCI_INT_ENABLE state in
* sdhci_disable_irq_wakeups() since it will be set by
* sdhci_enable_card_detection() or sdhci_init().
*/
static bool sdhci_enable_irq_wakeups(struct sdhci_host *host)
{
u8 mask = SDHCI_WAKE_ON_INSERT | SDHCI_WAKE_ON_REMOVE |
SDHCI_WAKE_ON_INT;
u32 irq_val = 0;
u8 wake_val = 0;
u8 val;
if (sdhci_cd_irq_can_wakeup(host)) {
wake_val |= SDHCI_WAKE_ON_INSERT | SDHCI_WAKE_ON_REMOVE;
irq_val |= SDHCI_INT_CARD_INSERT | SDHCI_INT_CARD_REMOVE;
}
if (mmc_card_wake_sdio_irq(host->mmc)) {
wake_val |= SDHCI_WAKE_ON_INT;
irq_val |= SDHCI_INT_CARD_INT;
}
if (!irq_val)
return false;
val = sdhci_readb(host, SDHCI_WAKE_UP_CONTROL);
val &= ~mask;
val |= wake_val;
sdhci_writeb(host, val, SDHCI_WAKE_UP_CONTROL);
sdhci_writel(host, irq_val, SDHCI_INT_ENABLE);
host->irq_wake_enabled = !enable_irq_wake(host->irq);
return host->irq_wake_enabled;
}
static void sdhci_disable_irq_wakeups(struct sdhci_host *host)
{
u8 val;
u8 mask = SDHCI_WAKE_ON_INSERT | SDHCI_WAKE_ON_REMOVE
| SDHCI_WAKE_ON_INT;
val = sdhci_readb(host, SDHCI_WAKE_UP_CONTROL);
val &= ~mask;
sdhci_writeb(host, val, SDHCI_WAKE_UP_CONTROL);
disable_irq_wake(host->irq);
host->irq_wake_enabled = false;
}
int sdhci_suspend_host(struct sdhci_host *host)
{
sdhci_disable_card_detection(host);
mmc_retune_timer_stop(host->mmc);
if (!device_may_wakeup(mmc_dev(host->mmc)) ||
!sdhci_enable_irq_wakeups(host)) {
host->ier = 0;
sdhci_writel(host, 0, SDHCI_INT_ENABLE);
sdhci_writel(host, 0, SDHCI_SIGNAL_ENABLE);
free_irq(host->irq, host);
}
return 0;
}
EXPORT_SYMBOL_GPL(sdhci_suspend_host);
int sdhci_resume_host(struct sdhci_host *host)
{
struct mmc_host *mmc = host->mmc;
int ret = 0;
if (host->flags & (SDHCI_USE_SDMA | SDHCI_USE_ADMA)) {
if (host->ops->enable_dma)
host->ops->enable_dma(host);
}
if ((host->mmc->pm_flags & MMC_PM_KEEP_POWER) &&
(host->quirks2 & SDHCI_QUIRK2_HOST_OFF_CARD_ON)) {
/* Card keeps power but host controller does not */
sdhci_init(host, 0);
host->pwr = 0;
host->clock = 0;
mmc->ops->set_ios(mmc, &mmc->ios);
} else {
sdhci_init(host, (host->mmc->pm_flags & MMC_PM_KEEP_POWER));
mmiowb();
}
if (host->irq_wake_enabled) {
sdhci_disable_irq_wakeups(host);
} else {
ret = request_threaded_irq(host->irq, sdhci_irq,
sdhci_thread_irq, IRQF_SHARED,
mmc_hostname(host->mmc), host);
if (ret)
return ret;
}
sdhci_enable_card_detection(host);
return ret;
}
EXPORT_SYMBOL_GPL(sdhci_resume_host);
int sdhci_runtime_suspend_host(struct sdhci_host *host)
{
unsigned long flags;
mmc_retune_timer_stop(host->mmc);
spin_lock_irqsave(&host->lock,