blob: 0d5576f6ad2160898f59b46b40fff4f727533e72 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-only
/*
* AMD Cryptographic Coprocessor (CCP) driver
*
* Copyright (C) 2013,2017 Advanced Micro Devices, Inc.
*
* Author: Tom Lendacky <thomas.lendacky@amd.com>
* Author: Gary R Hook <gary.hook@amd.com>
*/
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/kthread.h>
#include <linux/interrupt.h>
#include <linux/ccp.h>
#include "ccp-dev.h"
static u32 ccp_alloc_ksb(struct ccp_cmd_queue *cmd_q, unsigned int count)
{
int start;
struct ccp_device *ccp = cmd_q->ccp;
for (;;) {
mutex_lock(&ccp->sb_mutex);
start = (u32)bitmap_find_next_zero_area(ccp->sb,
ccp->sb_count,
ccp->sb_start,
count, 0);
if (start <= ccp->sb_count) {
bitmap_set(ccp->sb, start, count);
mutex_unlock(&ccp->sb_mutex);
break;
}
ccp->sb_avail = 0;
mutex_unlock(&ccp->sb_mutex);
/* Wait for KSB entries to become available */
if (wait_event_interruptible(ccp->sb_queue, ccp->sb_avail))
return 0;
}
return KSB_START + start;
}
static void ccp_free_ksb(struct ccp_cmd_queue *cmd_q, unsigned int start,
unsigned int count)
{
struct ccp_device *ccp = cmd_q->ccp;
if (!start)
return;
mutex_lock(&ccp->sb_mutex);
bitmap_clear(ccp->sb, start - KSB_START, count);
ccp->sb_avail = 1;
mutex_unlock(&ccp->sb_mutex);
wake_up_interruptible_all(&ccp->sb_queue);
}
static unsigned int ccp_get_free_slots(struct ccp_cmd_queue *cmd_q)
{
return CMD_Q_DEPTH(ioread32(cmd_q->reg_status));
}
static int ccp_do_cmd(struct ccp_op *op, u32 *cr, unsigned int cr_count)
{
struct ccp_cmd_queue *cmd_q = op->cmd_q;
struct ccp_device *ccp = cmd_q->ccp;
void __iomem *cr_addr;
u32 cr0, cmd;
unsigned int i;
int ret = 0;
/* We could read a status register to see how many free slots
* are actually available, but reading that register resets it
* and you could lose some error information.
*/
cmd_q->free_slots--;
cr0 = (cmd_q->id << REQ0_CMD_Q_SHIFT)
| (op->jobid << REQ0_JOBID_SHIFT)
| REQ0_WAIT_FOR_WRITE;
if (op->soc)
cr0 |= REQ0_STOP_ON_COMPLETE
| REQ0_INT_ON_COMPLETE;
if (op->ioc || !cmd_q->free_slots)
cr0 |= REQ0_INT_ON_COMPLETE;
/* Start at CMD_REQ1 */
cr_addr = ccp->io_regs + CMD_REQ0 + CMD_REQ_INCR;
mutex_lock(&ccp->req_mutex);
/* Write CMD_REQ1 through CMD_REQx first */
for (i = 0; i < cr_count; i++, cr_addr += CMD_REQ_INCR)
iowrite32(*(cr + i), cr_addr);
/* Tell the CCP to start */
wmb();
iowrite32(cr0, ccp->io_regs + CMD_REQ0);
mutex_unlock(&ccp->req_mutex);
if (cr0 & REQ0_INT_ON_COMPLETE) {
/* Wait for the job to complete */
ret = wait_event_interruptible(cmd_q->int_queue,
cmd_q->int_rcvd);
if (ret || cmd_q->cmd_error) {
/* On error delete all related jobs from the queue */
cmd = (cmd_q->id << DEL_Q_ID_SHIFT)
| op->jobid;
if (cmd_q->cmd_error)
ccp_log_error(cmd_q->ccp,
cmd_q->cmd_error);
iowrite32(cmd, ccp->io_regs + DEL_CMD_Q_JOB);
if (!ret)
ret = -EIO;
} else if (op->soc) {
/* Delete just head job from the queue on SoC */
cmd = DEL_Q_ACTIVE
| (cmd_q->id << DEL_Q_ID_SHIFT)
| op->jobid;
iowrite32(cmd, ccp->io_regs + DEL_CMD_Q_JOB);
}
cmd_q->free_slots = CMD_Q_DEPTH(cmd_q->q_status);
cmd_q->int_rcvd = 0;
}
return ret;
}
static int ccp_perform_aes(struct ccp_op *op)
{
u32 cr[6];
/* Fill out the register contents for REQ1 through REQ6 */
cr[0] = (CCP_ENGINE_AES << REQ1_ENGINE_SHIFT)
| (op->u.aes.type << REQ1_AES_TYPE_SHIFT)
| (op->u.aes.mode << REQ1_AES_MODE_SHIFT)
| (op->u.aes.action << REQ1_AES_ACTION_SHIFT)
| (op->sb_key << REQ1_KEY_KSB_SHIFT);
cr[1] = op->src.u.dma.length - 1;
cr[2] = ccp_addr_lo(&op->src.u.dma);
cr[3] = (op->sb_ctx << REQ4_KSB_SHIFT)
| (CCP_MEMTYPE_SYSTEM << REQ4_MEMTYPE_SHIFT)
| ccp_addr_hi(&op->src.u.dma);
cr[4] = ccp_addr_lo(&op->dst.u.dma);
cr[5] = (CCP_MEMTYPE_SYSTEM << REQ6_MEMTYPE_SHIFT)
| ccp_addr_hi(&op->dst.u.dma);
if (op->u.aes.mode == CCP_AES_MODE_CFB)
cr[0] |= ((0x7f) << REQ1_AES_CFB_SIZE_SHIFT);
if (op->eom)
cr[0] |= REQ1_EOM;
if (op->init)
cr[0] |= REQ1_INIT;
return ccp_do_cmd(op, cr, ARRAY_SIZE(cr));
}
static int ccp_perform_xts_aes(struct ccp_op *op)
{
u32 cr[6];
/* Fill out the register contents for REQ1 through REQ6 */
cr[0] = (CCP_ENGINE_XTS_AES_128 << REQ1_ENGINE_SHIFT)
| (op->u.xts.action << REQ1_AES_ACTION_SHIFT)
| (op->u.xts.unit_size << REQ1_XTS_AES_SIZE_SHIFT)
| (op->sb_key << REQ1_KEY_KSB_SHIFT);
cr[1] = op->src.u.dma.length - 1;
cr[2] = ccp_addr_lo(&op->src.u.dma);
cr[3] = (op->sb_ctx << REQ4_KSB_SHIFT)
| (CCP_MEMTYPE_SYSTEM << REQ4_MEMTYPE_SHIFT)
| ccp_addr_hi(&op->src.u.dma);
cr[4] = ccp_addr_lo(&op->dst.u.dma);
cr[5] = (CCP_MEMTYPE_SYSTEM << REQ6_MEMTYPE_SHIFT)
| ccp_addr_hi(&op->dst.u.dma);
if (op->eom)
cr[0] |= REQ1_EOM;
if (op->init)
cr[0] |= REQ1_INIT;
return ccp_do_cmd(op, cr, ARRAY_SIZE(cr));
}
static int ccp_perform_sha(struct ccp_op *op)
{
u32 cr[6];
/* Fill out the register contents for REQ1 through REQ6 */
cr[0] = (CCP_ENGINE_SHA << REQ1_ENGINE_SHIFT)
| (op->u.sha.type << REQ1_SHA_TYPE_SHIFT)
| REQ1_INIT;
cr[1] = op->src.u.dma.length - 1;
cr[2] = ccp_addr_lo(&op->src.u.dma);
cr[3] = (op->sb_ctx << REQ4_KSB_SHIFT)
| (CCP_MEMTYPE_SYSTEM << REQ4_MEMTYPE_SHIFT)
| ccp_addr_hi(&op->src.u.dma);
if (op->eom) {
cr[0] |= REQ1_EOM;
cr[4] = lower_32_bits(op->u.sha.msg_bits);
cr[5] = upper_32_bits(op->u.sha.msg_bits);
} else {
cr[4] = 0;
cr[5] = 0;
}
return ccp_do_cmd(op, cr, ARRAY_SIZE(cr));
}
static int ccp_perform_rsa(struct ccp_op *op)
{
u32 cr[6];
/* Fill out the register contents for REQ1 through REQ6 */
cr[0] = (CCP_ENGINE_RSA << REQ1_ENGINE_SHIFT)
| (op->u.rsa.mod_size << REQ1_RSA_MOD_SIZE_SHIFT)
| (op->sb_key << REQ1_KEY_KSB_SHIFT)
| REQ1_EOM;
cr[1] = op->u.rsa.input_len - 1;
cr[2] = ccp_addr_lo(&op->src.u.dma);
cr[3] = (op->sb_ctx << REQ4_KSB_SHIFT)
| (CCP_MEMTYPE_SYSTEM << REQ4_MEMTYPE_SHIFT)
| ccp_addr_hi(&op->src.u.dma);
cr[4] = ccp_addr_lo(&op->dst.u.dma);
cr[5] = (CCP_MEMTYPE_SYSTEM << REQ6_MEMTYPE_SHIFT)
| ccp_addr_hi(&op->dst.u.dma);
return ccp_do_cmd(op, cr, ARRAY_SIZE(cr));
}
static int ccp_perform_passthru(struct ccp_op *op)
{
u32 cr[6];
/* Fill out the register contents for REQ1 through REQ6 */
cr[0] = (CCP_ENGINE_PASSTHRU << REQ1_ENGINE_SHIFT)
| (op->u.passthru.bit_mod << REQ1_PT_BW_SHIFT)
| (op->u.passthru.byte_swap << REQ1_PT_BS_SHIFT);
if (op->src.type == CCP_MEMTYPE_SYSTEM)
cr[1] = op->src.u.dma.length - 1;
else
cr[1] = op->dst.u.dma.length - 1;
if (op->src.type == CCP_MEMTYPE_SYSTEM) {
cr[2] = ccp_addr_lo(&op->src.u.dma);
cr[3] = (CCP_MEMTYPE_SYSTEM << REQ4_MEMTYPE_SHIFT)
| ccp_addr_hi(&op->src.u.dma);
if (op->u.passthru.bit_mod != CCP_PASSTHRU_BITWISE_NOOP)
cr[3] |= (op->sb_key << REQ4_KSB_SHIFT);
} else {
cr[2] = op->src.u.sb * CCP_SB_BYTES;
cr[3] = (CCP_MEMTYPE_SB << REQ4_MEMTYPE_SHIFT);
}
if (op->dst.type == CCP_MEMTYPE_SYSTEM) {
cr[4] = ccp_addr_lo(&op->dst.u.dma);
cr[5] = (CCP_MEMTYPE_SYSTEM << REQ6_MEMTYPE_SHIFT)
| ccp_addr_hi(&op->dst.u.dma);
} else {
cr[4] = op->dst.u.sb * CCP_SB_BYTES;
cr[5] = (CCP_MEMTYPE_SB << REQ6_MEMTYPE_SHIFT);
}
if (op->eom)
cr[0] |= REQ1_EOM;
return ccp_do_cmd(op, cr, ARRAY_SIZE(cr));
}
static int ccp_perform_ecc(struct ccp_op *op)
{
u32 cr[6];
/* Fill out the register contents for REQ1 through REQ6 */
cr[0] = REQ1_ECC_AFFINE_CONVERT
| (CCP_ENGINE_ECC << REQ1_ENGINE_SHIFT)
| (op->u.ecc.function << REQ1_ECC_FUNCTION_SHIFT)
| REQ1_EOM;
cr[1] = op->src.u.dma.length - 1;
cr[2] = ccp_addr_lo(&op->src.u.dma);
cr[3] = (CCP_MEMTYPE_SYSTEM << REQ4_MEMTYPE_SHIFT)
| ccp_addr_hi(&op->src.u.dma);
cr[4] = ccp_addr_lo(&op->dst.u.dma);
cr[5] = (CCP_MEMTYPE_SYSTEM << REQ6_MEMTYPE_SHIFT)
| ccp_addr_hi(&op->dst.u.dma);
return ccp_do_cmd(op, cr, ARRAY_SIZE(cr));
}
static void ccp_disable_queue_interrupts(struct ccp_device *ccp)
{
iowrite32(0x00, ccp->io_regs + IRQ_MASK_REG);
}
static void ccp_enable_queue_interrupts(struct ccp_device *ccp)
{
iowrite32(ccp->qim, ccp->io_regs + IRQ_MASK_REG);
}
static void ccp_irq_bh(unsigned long data)
{
struct ccp_device *ccp = (struct ccp_device *)data;
struct ccp_cmd_queue *cmd_q;
u32 q_int, status;
unsigned int i;
status = ioread32(ccp->io_regs + IRQ_STATUS_REG);
for (i = 0; i < ccp->cmd_q_count; i++) {
cmd_q = &ccp->cmd_q[i];
q_int = status & (cmd_q->int_ok | cmd_q->int_err);
if (q_int) {
cmd_q->int_status = status;
cmd_q->q_status = ioread32(cmd_q->reg_status);
cmd_q->q_int_status = ioread32(cmd_q->reg_int_status);
/* On error, only save the first error value */
if ((q_int & cmd_q->int_err) && !cmd_q->cmd_error)
cmd_q->cmd_error = CMD_Q_ERROR(cmd_q->q_status);
cmd_q->int_rcvd = 1;
/* Acknowledge the interrupt and wake the kthread */
iowrite32(q_int, ccp->io_regs + IRQ_STATUS_REG);
wake_up_interruptible(&cmd_q->int_queue);
}
}
ccp_enable_queue_interrupts(ccp);
}
static irqreturn_t ccp_irq_handler(int irq, void *data)
{
struct ccp_device *ccp = (struct ccp_device *)data;
ccp_disable_queue_interrupts(ccp);
if (ccp->use_tasklet)
tasklet_schedule(&ccp->irq_tasklet);
else
ccp_irq_bh((unsigned long)ccp);
return IRQ_HANDLED;
}
static int ccp_init(struct ccp_device *ccp)
{
struct device *dev = ccp->dev;
struct ccp_cmd_queue *cmd_q;
struct dma_pool *dma_pool;
char dma_pool_name[MAX_DMAPOOL_NAME_LEN];
unsigned int qmr, i;
int ret;
/* Find available queues */
ccp->qim = 0;
qmr = ioread32(ccp->io_regs + Q_MASK_REG);
for (i = 0; (i < MAX_HW_QUEUES) && (ccp->cmd_q_count < ccp->max_q_count); i++) {
if (!(qmr & (1 << i)))
continue;
/* Allocate a dma pool for this queue */
snprintf(dma_pool_name, sizeof(dma_pool_name), "%s_q%d",
ccp->name, i);
dma_pool = dma_pool_create(dma_pool_name, dev,
CCP_DMAPOOL_MAX_SIZE,
CCP_DMAPOOL_ALIGN, 0);
if (!dma_pool) {
dev_err(dev, "unable to allocate dma pool\n");
ret = -ENOMEM;
goto e_pool;
}
cmd_q = &ccp->cmd_q[ccp->cmd_q_count];
ccp->cmd_q_count++;
cmd_q->ccp = ccp;
cmd_q->id = i;
cmd_q->dma_pool = dma_pool;
/* Reserve 2 KSB regions for the queue */
cmd_q->sb_key = KSB_START + ccp->sb_start++;
cmd_q->sb_ctx = KSB_START + ccp->sb_start++;
ccp->sb_count -= 2;
/* Preset some register values and masks that are queue
* number dependent
*/
cmd_q->reg_status = ccp->io_regs + CMD_Q_STATUS_BASE +
(CMD_Q_STATUS_INCR * i);
cmd_q->reg_int_status = ccp->io_regs + CMD_Q_INT_STATUS_BASE +
(CMD_Q_STATUS_INCR * i);
cmd_q->int_ok = 1 << (i * 2);
cmd_q->int_err = 1 << ((i * 2) + 1);
cmd_q->free_slots = ccp_get_free_slots(cmd_q);
init_waitqueue_head(&cmd_q->int_queue);
/* Build queue interrupt mask (two interrupts per queue) */
ccp->qim |= cmd_q->int_ok | cmd_q->int_err;
#ifdef CONFIG_ARM64
/* For arm64 set the recommended queue cache settings */
iowrite32(ccp->axcache, ccp->io_regs + CMD_Q_CACHE_BASE +
(CMD_Q_CACHE_INC * i));
#endif
dev_dbg(dev, "queue #%u available\n", i);
}
if (ccp->cmd_q_count == 0) {
dev_notice(dev, "no command queues available\n");
ret = -EIO;
goto e_pool;
}
dev_notice(dev, "%u command queues available\n", ccp->cmd_q_count);
/* Disable and clear interrupts until ready */
ccp_disable_queue_interrupts(ccp);
for (i = 0; i < ccp->cmd_q_count; i++) {
cmd_q = &ccp->cmd_q[i];
ioread32(cmd_q->reg_int_status);
ioread32(cmd_q->reg_status);
}
iowrite32(ccp->qim, ccp->io_regs + IRQ_STATUS_REG);
/* Request an irq */
ret = sp_request_ccp_irq(ccp->sp, ccp_irq_handler, ccp->name, ccp);
if (ret) {
dev_err(dev, "unable to allocate an IRQ\n");
goto e_pool;
}
/* Initialize the ISR tasklet? */
if (ccp->use_tasklet)
tasklet_init(&ccp->irq_tasklet, ccp_irq_bh,
(unsigned long)ccp);
dev_dbg(dev, "Starting threads...\n");
/* Create a kthread for each queue */
for (i = 0; i < ccp->cmd_q_count; i++) {
struct task_struct *kthread;
cmd_q = &ccp->cmd_q[i];
kthread = kthread_create(ccp_cmd_queue_thread, cmd_q,
"%s-q%u", ccp->name, cmd_q->id);
if (IS_ERR(kthread)) {
dev_err(dev, "error creating queue thread (%ld)\n",
PTR_ERR(kthread));
ret = PTR_ERR(kthread);
goto e_kthread;
}
cmd_q->kthread = kthread;
wake_up_process(kthread);
}
dev_dbg(dev, "Enabling interrupts...\n");
/* Enable interrupts */
ccp_enable_queue_interrupts(ccp);
dev_dbg(dev, "Registering device...\n");
ccp_add_device(ccp);
ret = ccp_register_rng(ccp);
if (ret)
goto e_kthread;
/* Register the DMA engine support */
ret = ccp_dmaengine_register(ccp);
if (ret)
goto e_hwrng;
return 0;
e_hwrng:
ccp_unregister_rng(ccp);
e_kthread:
for (i = 0; i < ccp->cmd_q_count; i++)
if (ccp->cmd_q[i].kthread)
kthread_stop(ccp->cmd_q[i].kthread);
sp_free_ccp_irq(ccp->sp, ccp);
e_pool:
for (i = 0; i < ccp->cmd_q_count; i++)
dma_pool_destroy(ccp->cmd_q[i].dma_pool);
return ret;
}
static void ccp_destroy(struct ccp_device *ccp)
{
struct ccp_cmd_queue *cmd_q;
struct ccp_cmd *cmd;
unsigned int i;
/* Unregister the DMA engine */
ccp_dmaengine_unregister(ccp);
/* Unregister the RNG */
ccp_unregister_rng(ccp);
/* Remove this device from the list of available units */
ccp_del_device(ccp);
/* Disable and clear interrupts */
ccp_disable_queue_interrupts(ccp);
for (i = 0; i < ccp->cmd_q_count; i++) {
cmd_q = &ccp->cmd_q[i];
ioread32(cmd_q->reg_int_status);
ioread32(cmd_q->reg_status);
}
iowrite32(ccp->qim, ccp->io_regs + IRQ_STATUS_REG);
/* Stop the queue kthreads */
for (i = 0; i < ccp->cmd_q_count; i++)
if (ccp->cmd_q[i].kthread)
kthread_stop(ccp->cmd_q[i].kthread);
sp_free_ccp_irq(ccp->sp, ccp);
for (i = 0; i < ccp->cmd_q_count; i++)
dma_pool_destroy(ccp->cmd_q[i].dma_pool);
/* Flush the cmd and backlog queue */
while (!list_empty(&ccp->cmd)) {
/* Invoke the callback directly with an error code */
cmd = list_first_entry(&ccp->cmd, struct ccp_cmd, entry);
list_del(&cmd->entry);
cmd->callback(cmd->data, -ENODEV);
}
while (!list_empty(&ccp->backlog)) {
/* Invoke the callback directly with an error code */
cmd = list_first_entry(&ccp->backlog, struct ccp_cmd, entry);
list_del(&cmd->entry);
cmd->callback(cmd->data, -ENODEV);
}
}
static const struct ccp_actions ccp3_actions = {
.aes = ccp_perform_aes,
.xts_aes = ccp_perform_xts_aes,
.des3 = NULL,
.sha = ccp_perform_sha,
.rsa = ccp_perform_rsa,
.passthru = ccp_perform_passthru,
.ecc = ccp_perform_ecc,
.sballoc = ccp_alloc_ksb,
.sbfree = ccp_free_ksb,
.init = ccp_init,
.destroy = ccp_destroy,
.get_free_slots = ccp_get_free_slots,
.irqhandler = ccp_irq_handler,
};
const struct ccp_vdata ccpv3_platform = {
.version = CCP_VERSION(3, 0),
.setup = NULL,
.perform = &ccp3_actions,
.offset = 0,
.rsamax = CCP_RSA_MAX_WIDTH,
};
const struct ccp_vdata ccpv3 = {
.version = CCP_VERSION(3, 0),
.setup = NULL,
.perform = &ccp3_actions,
.offset = 0x20000,
.rsamax = CCP_RSA_MAX_WIDTH,
};