blob: c043efe4548d16ea6dd4adca979dba95f93b9f50 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
// Copyright 2019 NXP
#include <linux/bitrev.h>
#include <linux/clk.h>
#include <linux/firmware.h>
#include <linux/interrupt.h>
#include <linux/module.h>
#include <linux/of_platform.h>
#include <linux/pm_runtime.h>
#include <linux/regmap.h>
#include <linux/reset.h>
#include <sound/dmaengine_pcm.h>
#include <sound/pcm_iec958.h>
#include <sound/pcm_params.h>
#include "fsl_xcvr.h"
#include "imx-pcm.h"
#define FSL_XCVR_CAPDS_SIZE 256
struct fsl_xcvr_soc_data {
const char *fw_name;
};
struct fsl_xcvr {
const struct fsl_xcvr_soc_data *soc_data;
struct platform_device *pdev;
struct regmap *regmap;
struct clk *ipg_clk;
struct clk *pll_ipg_clk;
struct clk *phy_clk;
struct clk *spba_clk;
struct reset_control *reset;
u8 streams;
u32 mode;
u32 arc_mode;
void __iomem *ram_addr;
struct snd_dmaengine_dai_dma_data dma_prms_rx;
struct snd_dmaengine_dai_dma_data dma_prms_tx;
struct snd_aes_iec958 rx_iec958;
struct snd_aes_iec958 tx_iec958;
u8 cap_ds[FSL_XCVR_CAPDS_SIZE];
};
static const struct fsl_xcvr_pll_conf {
u8 mfi; /* min=0x18, max=0x38 */
u32 mfn; /* signed int, 2's compl., min=0x3FFF0000, max=0x00010000 */
u32 mfd; /* unsigned int */
u32 fout; /* Fout = Fref*(MFI + MFN/MFD), Fref is 24MHz */
} fsl_xcvr_pll_cfg[] = {
{ .mfi = 54, .mfn = 1, .mfd = 6, .fout = 1300000000, }, /* 1.3 GHz */
{ .mfi = 32, .mfn = 96, .mfd = 125, .fout = 786432000, }, /* 8000 Hz */
{ .mfi = 30, .mfn = 66, .mfd = 625, .fout = 722534400, }, /* 11025 Hz */
{ .mfi = 29, .mfn = 1, .mfd = 6, .fout = 700000000, }, /* 700 MHz */
};
/*
* HDMI2.1 spec defines 6- and 12-channels layout for one bit audio
* stream. Todo: to check how this case can be considered below
*/
static const u32 fsl_xcvr_earc_channels[] = { 1, 2, 8, 16, 32, };
static const struct snd_pcm_hw_constraint_list fsl_xcvr_earc_channels_constr = {
.count = ARRAY_SIZE(fsl_xcvr_earc_channels),
.list = fsl_xcvr_earc_channels,
};
static const u32 fsl_xcvr_earc_rates[] = {
32000, 44100, 48000, 64000, 88200, 96000,
128000, 176400, 192000, 256000, 352800, 384000,
512000, 705600, 768000, 1024000, 1411200, 1536000,
};
static const struct snd_pcm_hw_constraint_list fsl_xcvr_earc_rates_constr = {
.count = ARRAY_SIZE(fsl_xcvr_earc_rates),
.list = fsl_xcvr_earc_rates,
};
static const u32 fsl_xcvr_spdif_channels[] = { 2, };
static const struct snd_pcm_hw_constraint_list fsl_xcvr_spdif_channels_constr = {
.count = ARRAY_SIZE(fsl_xcvr_spdif_channels),
.list = fsl_xcvr_spdif_channels,
};
static const u32 fsl_xcvr_spdif_rates[] = {
32000, 44100, 48000, 88200, 96000, 176400, 192000,
};
static const struct snd_pcm_hw_constraint_list fsl_xcvr_spdif_rates_constr = {
.count = ARRAY_SIZE(fsl_xcvr_spdif_rates),
.list = fsl_xcvr_spdif_rates,
};
static int fsl_xcvr_arc_mode_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_dai *dai = snd_kcontrol_chip(kcontrol);
struct fsl_xcvr *xcvr = snd_soc_dai_get_drvdata(dai);
struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
unsigned int *item = ucontrol->value.enumerated.item;
xcvr->arc_mode = snd_soc_enum_item_to_val(e, item[0]);
return 0;
}
static int fsl_xcvr_arc_mode_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_dai *dai = snd_kcontrol_chip(kcontrol);
struct fsl_xcvr *xcvr = snd_soc_dai_get_drvdata(dai);
ucontrol->value.enumerated.item[0] = xcvr->arc_mode;
return 0;
}
static const u32 fsl_xcvr_phy_arc_cfg[] = {
FSL_XCVR_PHY_CTRL_ARC_MODE_SE_EN, FSL_XCVR_PHY_CTRL_ARC_MODE_CM_EN,
};
static const char * const fsl_xcvr_arc_mode[] = { "Single Ended", "Common", };
static const struct soc_enum fsl_xcvr_arc_mode_enum =
SOC_ENUM_SINGLE_EXT(ARRAY_SIZE(fsl_xcvr_arc_mode), fsl_xcvr_arc_mode);
static struct snd_kcontrol_new fsl_xcvr_arc_mode_kctl =
SOC_ENUM_EXT("ARC Mode", fsl_xcvr_arc_mode_enum,
fsl_xcvr_arc_mode_get, fsl_xcvr_arc_mode_put);
/* Capabilities data structure, bytes */
static int fsl_xcvr_type_capds_bytes_info(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
uinfo->type = SNDRV_CTL_ELEM_TYPE_BYTES;
uinfo->count = FSL_XCVR_CAPDS_SIZE;
return 0;
}
static int fsl_xcvr_capds_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_dai *dai = snd_kcontrol_chip(kcontrol);
struct fsl_xcvr *xcvr = snd_soc_dai_get_drvdata(dai);
memcpy(ucontrol->value.bytes.data, xcvr->cap_ds, FSL_XCVR_CAPDS_SIZE);
return 0;
}
static int fsl_xcvr_capds_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_dai *dai = snd_kcontrol_chip(kcontrol);
struct fsl_xcvr *xcvr = snd_soc_dai_get_drvdata(dai);
memcpy(xcvr->cap_ds, ucontrol->value.bytes.data, FSL_XCVR_CAPDS_SIZE);
return 0;
}
static struct snd_kcontrol_new fsl_xcvr_earc_capds_kctl = {
.iface = SNDRV_CTL_ELEM_IFACE_PCM,
.name = "Capabilities Data Structure",
.access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
.info = fsl_xcvr_type_capds_bytes_info,
.get = fsl_xcvr_capds_get,
.put = fsl_xcvr_capds_put,
};
static int fsl_xcvr_activate_ctl(struct snd_soc_dai *dai, const char *name,
bool active)
{
struct snd_soc_card *card = dai->component->card;
struct snd_kcontrol *kctl;
bool enabled;
kctl = snd_soc_card_get_kcontrol(card, name);
if (kctl == NULL)
return -ENOENT;
enabled = ((kctl->vd[0].access & SNDRV_CTL_ELEM_ACCESS_WRITE) != 0);
if (active == enabled)
return 0; /* nothing to do */
if (active)
kctl->vd[0].access |= SNDRV_CTL_ELEM_ACCESS_WRITE;
else
kctl->vd[0].access &= ~SNDRV_CTL_ELEM_ACCESS_WRITE;
snd_ctl_notify(card->snd_card, SNDRV_CTL_EVENT_MASK_INFO, &kctl->id);
return 1;
}
static int fsl_xcvr_mode_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_dai *dai = snd_kcontrol_chip(kcontrol);
struct fsl_xcvr *xcvr = snd_soc_dai_get_drvdata(dai);
struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
unsigned int *item = ucontrol->value.enumerated.item;
struct snd_soc_card *card = dai->component->card;
struct snd_soc_pcm_runtime *rtd;
xcvr->mode = snd_soc_enum_item_to_val(e, item[0]);
fsl_xcvr_activate_ctl(dai, fsl_xcvr_arc_mode_kctl.name,
(xcvr->mode == FSL_XCVR_MODE_ARC));
fsl_xcvr_activate_ctl(dai, fsl_xcvr_earc_capds_kctl.name,
(xcvr->mode == FSL_XCVR_MODE_EARC));
/* Allow playback for SPDIF only */
rtd = snd_soc_get_pcm_runtime(card, card->dai_link);
rtd->pcm->streams[SNDRV_PCM_STREAM_PLAYBACK].substream_count =
(xcvr->mode == FSL_XCVR_MODE_SPDIF ? 1 : 0);
return 0;
}
static int fsl_xcvr_mode_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_dai *dai = snd_kcontrol_chip(kcontrol);
struct fsl_xcvr *xcvr = snd_soc_dai_get_drvdata(dai);
ucontrol->value.enumerated.item[0] = xcvr->mode;
return 0;
}
static const char * const fsl_xcvr_mode[] = { "SPDIF", "ARC RX", "eARC", };
static const struct soc_enum fsl_xcvr_mode_enum =
SOC_ENUM_SINGLE_EXT(ARRAY_SIZE(fsl_xcvr_mode), fsl_xcvr_mode);
static struct snd_kcontrol_new fsl_xcvr_mode_kctl =
SOC_ENUM_EXT("XCVR Mode", fsl_xcvr_mode_enum,
fsl_xcvr_mode_get, fsl_xcvr_mode_put);
/** phy: true => phy, false => pll */
static int fsl_xcvr_ai_write(struct fsl_xcvr *xcvr, u8 reg, u32 data, bool phy)
{
struct device *dev = &xcvr->pdev->dev;
u32 val, idx, tidx;
int ret;
idx = BIT(phy ? 26 : 24);
tidx = BIT(phy ? 27 : 25);
regmap_write(xcvr->regmap, FSL_XCVR_PHY_AI_CTRL_CLR, 0xFF);
regmap_write(xcvr->regmap, FSL_XCVR_PHY_AI_CTRL_SET, reg);
regmap_write(xcvr->regmap, FSL_XCVR_PHY_AI_WDATA, data);
regmap_write(xcvr->regmap, FSL_XCVR_PHY_AI_CTRL_TOG, idx);
ret = regmap_read_poll_timeout(xcvr->regmap, FSL_XCVR_PHY_AI_CTRL, val,
(val & idx) == ((val & tidx) >> 1),
10, 10000);
if (ret)
dev_err(dev, "AI timeout: failed to set %s reg 0x%02x=0x%08x\n",
phy ? "PHY" : "PLL", reg, data);
return ret;
}
static int fsl_xcvr_en_phy_pll(struct fsl_xcvr *xcvr, u32 freq, bool tx)
{
struct device *dev = &xcvr->pdev->dev;
u32 i, div = 0, log2;
int ret;
for (i = 0; i < ARRAY_SIZE(fsl_xcvr_pll_cfg); i++) {
if (fsl_xcvr_pll_cfg[i].fout % freq == 0) {
div = fsl_xcvr_pll_cfg[i].fout / freq;
break;
}
}
if (!div || i >= ARRAY_SIZE(fsl_xcvr_pll_cfg))
return -EINVAL;
log2 = ilog2(div);
/* Release AI interface from reset */
ret = regmap_write(xcvr->regmap, FSL_XCVR_PHY_AI_CTRL_SET,
FSL_XCVR_PHY_AI_CTRL_AI_RESETN);
if (ret < 0) {
dev_err(dev, "Error while setting IER0: %d\n", ret);
return ret;
}
/* PLL: BANDGAP_SET: EN_VBG (enable bandgap) */
fsl_xcvr_ai_write(xcvr, FSL_XCVR_PLL_BANDGAP_SET,
FSL_XCVR_PLL_BANDGAP_EN_VBG, 0);
/* PLL: CTRL0: DIV_INTEGER */
fsl_xcvr_ai_write(xcvr, FSL_XCVR_PLL_CTRL0, fsl_xcvr_pll_cfg[i].mfi, 0);
/* PLL: NUMERATOR: MFN */
fsl_xcvr_ai_write(xcvr, FSL_XCVR_PLL_NUM, fsl_xcvr_pll_cfg[i].mfn, 0);
/* PLL: DENOMINATOR: MFD */
fsl_xcvr_ai_write(xcvr, FSL_XCVR_PLL_DEN, fsl_xcvr_pll_cfg[i].mfd, 0);
/* PLL: CTRL0_SET: HOLD_RING_OFF, POWER_UP */
fsl_xcvr_ai_write(xcvr, FSL_XCVR_PLL_CTRL0_SET,
FSL_XCVR_PLL_CTRL0_HROFF | FSL_XCVR_PLL_CTRL0_PWP, 0);
udelay(25);
/* PLL: CTRL0: Clear Hold Ring Off */
fsl_xcvr_ai_write(xcvr, FSL_XCVR_PLL_CTRL0_CLR,
FSL_XCVR_PLL_CTRL0_HROFF, 0);
udelay(100);
if (tx) { /* TX is enabled for SPDIF only */
/* PLL: POSTDIV: PDIV0 */
fsl_xcvr_ai_write(xcvr, FSL_XCVR_PLL_PDIV,
FSL_XCVR_PLL_PDIVx(log2, 0), 0);
/* PLL: CTRL_SET: CLKMUX0_EN */
fsl_xcvr_ai_write(xcvr, FSL_XCVR_PLL_CTRL0_SET,
FSL_XCVR_PLL_CTRL0_CM0_EN, 0);
} else if (xcvr->mode == FSL_XCVR_MODE_EARC) { /* eARC RX */
/* PLL: POSTDIV: PDIV1 */
fsl_xcvr_ai_write(xcvr, FSL_XCVR_PLL_PDIV,
FSL_XCVR_PLL_PDIVx(log2, 1), 0);
/* PLL: CTRL_SET: CLKMUX1_EN */
fsl_xcvr_ai_write(xcvr, FSL_XCVR_PLL_CTRL0_SET,
FSL_XCVR_PLL_CTRL0_CM1_EN, 0);
} else { /* SPDIF / ARC RX */
/* PLL: POSTDIV: PDIV2 */
fsl_xcvr_ai_write(xcvr, FSL_XCVR_PLL_PDIV,
FSL_XCVR_PLL_PDIVx(log2, 2), 0);
/* PLL: CTRL_SET: CLKMUX2_EN */
fsl_xcvr_ai_write(xcvr, FSL_XCVR_PLL_CTRL0_SET,
FSL_XCVR_PLL_CTRL0_CM2_EN, 0);
}
if (xcvr->mode == FSL_XCVR_MODE_EARC) { /* eARC mode */
/* PHY: CTRL_SET: TX_DIFF_OE, PHY_EN */
fsl_xcvr_ai_write(xcvr, FSL_XCVR_PHY_CTRL_SET,
FSL_XCVR_PHY_CTRL_TSDIFF_OE |
FSL_XCVR_PHY_CTRL_PHY_EN, 1);
/* PHY: CTRL2_SET: EARC_TX_MODE */
fsl_xcvr_ai_write(xcvr, FSL_XCVR_PHY_CTRL2_SET,
FSL_XCVR_PHY_CTRL2_EARC_TXMS, 1);
} else if (!tx) { /* SPDIF / ARC RX mode */
if (xcvr->mode == FSL_XCVR_MODE_SPDIF)
/* PHY: CTRL_SET: SPDIF_EN */
fsl_xcvr_ai_write(xcvr, FSL_XCVR_PHY_CTRL_SET,
FSL_XCVR_PHY_CTRL_SPDIF_EN, 1);
else /* PHY: CTRL_SET: ARC RX setup */
fsl_xcvr_ai_write(xcvr, FSL_XCVR_PHY_CTRL_SET,
FSL_XCVR_PHY_CTRL_PHY_EN |
FSL_XCVR_PHY_CTRL_RX_CM_EN |
fsl_xcvr_phy_arc_cfg[xcvr->arc_mode], 1);
}
dev_dbg(dev, "PLL Fexp: %u, Fout: %u, mfi: %u, mfn: %u, mfd: %d, div: %u, pdiv0: %u\n",
freq, fsl_xcvr_pll_cfg[i].fout, fsl_xcvr_pll_cfg[i].mfi,
fsl_xcvr_pll_cfg[i].mfn, fsl_xcvr_pll_cfg[i].mfd, div, log2);
return 0;
}
static int fsl_xcvr_en_aud_pll(struct fsl_xcvr *xcvr, u32 freq)
{
struct device *dev = &xcvr->pdev->dev;
int ret;
clk_disable_unprepare(xcvr->phy_clk);
ret = clk_set_rate(xcvr->phy_clk, freq);
if (ret < 0) {
dev_err(dev, "Error while setting AUD PLL rate: %d\n", ret);
return ret;
}
ret = clk_prepare_enable(xcvr->phy_clk);
if (ret) {
dev_err(dev, "failed to start PHY clock: %d\n", ret);
return ret;
}
/* Release AI interface from reset */
ret = regmap_write(xcvr->regmap, FSL_XCVR_PHY_AI_CTRL_SET,
FSL_XCVR_PHY_AI_CTRL_AI_RESETN);
if (ret < 0) {
dev_err(dev, "Error while setting IER0: %d\n", ret);
return ret;
}
if (xcvr->mode == FSL_XCVR_MODE_EARC) { /* eARC mode */
/* PHY: CTRL_SET: TX_DIFF_OE, PHY_EN */
fsl_xcvr_ai_write(xcvr, FSL_XCVR_PHY_CTRL_SET,
FSL_XCVR_PHY_CTRL_TSDIFF_OE |
FSL_XCVR_PHY_CTRL_PHY_EN, 1);
/* PHY: CTRL2_SET: EARC_TX_MODE */
fsl_xcvr_ai_write(xcvr, FSL_XCVR_PHY_CTRL2_SET,
FSL_XCVR_PHY_CTRL2_EARC_TXMS, 1);
} else { /* SPDIF mode */
/* PHY: CTRL_SET: TX_CLK_AUD_SS | SPDIF_EN */
fsl_xcvr_ai_write(xcvr, FSL_XCVR_PHY_CTRL_SET,
FSL_XCVR_PHY_CTRL_TX_CLK_AUD_SS |
FSL_XCVR_PHY_CTRL_SPDIF_EN, 1);
}
dev_dbg(dev, "PLL Fexp: %u\n", freq);
return 0;
}
#define FSL_XCVR_SPDIF_RX_FREQ 175000000
static int fsl_xcvr_prepare(struct snd_pcm_substream *substream,
struct snd_soc_dai *dai)
{
struct fsl_xcvr *xcvr = snd_soc_dai_get_drvdata(dai);
bool tx = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
u32 m_ctl = 0, v_ctl = 0;
u32 r = substream->runtime->rate, ch = substream->runtime->channels;
u32 fout = 32 * r * ch * 10 * 2;
int ret = 0;
switch (xcvr->mode) {
case FSL_XCVR_MODE_SPDIF:
case FSL_XCVR_MODE_ARC:
if (tx) {
ret = fsl_xcvr_en_aud_pll(xcvr, fout);
if (ret < 0) {
dev_err(dai->dev, "Failed to set TX freq %u: %d\n",
fout, ret);
return ret;
}
ret = regmap_write(xcvr->regmap, FSL_XCVR_TX_DPTH_CTRL_SET,
FSL_XCVR_TX_DPTH_CTRL_FRM_FMT);
if (ret < 0) {
dev_err(dai->dev, "Failed to set TX_DPTH: %d\n", ret);
return ret;
}
/**
* set SPDIF MODE - this flag is used to gate
* SPDIF output, useless for SPDIF RX
*/
m_ctl |= FSL_XCVR_EXT_CTRL_SPDIF_MODE;
v_ctl |= FSL_XCVR_EXT_CTRL_SPDIF_MODE;
} else {
/**
* Clear RX FIFO, flip RX FIFO bits,
* disable eARC related HW mode detects
*/
ret = regmap_write(xcvr->regmap, FSL_XCVR_RX_DPTH_CTRL_SET,
FSL_XCVR_RX_DPTH_CTRL_STORE_FMT |
FSL_XCVR_RX_DPTH_CTRL_CLR_RX_FIFO |
FSL_XCVR_RX_DPTH_CTRL_COMP |
FSL_XCVR_RX_DPTH_CTRL_LAYB_CTRL);
if (ret < 0) {
dev_err(dai->dev, "Failed to set RX_DPTH: %d\n", ret);
return ret;
}
ret = fsl_xcvr_en_phy_pll(xcvr, FSL_XCVR_SPDIF_RX_FREQ, tx);
if (ret < 0) {
dev_err(dai->dev, "Failed to set RX freq %u: %d\n",
FSL_XCVR_SPDIF_RX_FREQ, ret);
return ret;
}
}
break;
case FSL_XCVR_MODE_EARC:
if (!tx) {
/** Clear RX FIFO, flip RX FIFO bits */
ret = regmap_write(xcvr->regmap, FSL_XCVR_RX_DPTH_CTRL_SET,
FSL_XCVR_RX_DPTH_CTRL_STORE_FMT |
FSL_XCVR_RX_DPTH_CTRL_CLR_RX_FIFO);
if (ret < 0) {
dev_err(dai->dev, "Failed to set RX_DPTH: %d\n", ret);
return ret;
}
/** Enable eARC related HW mode detects */
ret = regmap_write(xcvr->regmap, FSL_XCVR_RX_DPTH_CTRL_CLR,
FSL_XCVR_RX_DPTH_CTRL_COMP |
FSL_XCVR_RX_DPTH_CTRL_LAYB_CTRL);
if (ret < 0) {
dev_err(dai->dev, "Failed to clr TX_DPTH: %d\n", ret);
return ret;
}
}
/* clear CMDC RESET */
m_ctl |= FSL_XCVR_EXT_CTRL_CMDC_RESET(tx);
/* set TX_RX_MODE */
m_ctl |= FSL_XCVR_EXT_CTRL_TX_RX_MODE;
v_ctl |= (tx ? FSL_XCVR_EXT_CTRL_TX_RX_MODE : 0);
break;
}
ret = regmap_update_bits(xcvr->regmap, FSL_XCVR_EXT_IER0,
FSL_XCVR_IRQ_EARC_ALL, FSL_XCVR_IRQ_EARC_ALL);
if (ret < 0) {
dev_err(dai->dev, "Error while setting IER0: %d\n", ret);
return ret;
}
/* set DPATH RESET */
m_ctl |= FSL_XCVR_EXT_CTRL_DPTH_RESET(tx);
v_ctl |= FSL_XCVR_EXT_CTRL_DPTH_RESET(tx);
ret = regmap_update_bits(xcvr->regmap, FSL_XCVR_EXT_CTRL, m_ctl, v_ctl);
if (ret < 0) {
dev_err(dai->dev, "Error while setting EXT_CTRL: %d\n", ret);
return ret;
}
return 0;
}
static int fsl_xcvr_constr(const struct snd_pcm_substream *substream,
const struct snd_pcm_hw_constraint_list *channels,
const struct snd_pcm_hw_constraint_list *rates)
{
struct snd_pcm_runtime *rt = substream->runtime;
int ret;
ret = snd_pcm_hw_constraint_list(rt, 0, SNDRV_PCM_HW_PARAM_CHANNELS,
channels);
if (ret < 0)
return ret;
ret = snd_pcm_hw_constraint_list(rt, 0, SNDRV_PCM_HW_PARAM_RATE,
rates);
if (ret < 0)
return ret;
return 0;
}
static int fsl_xcvr_startup(struct snd_pcm_substream *substream,
struct snd_soc_dai *dai)
{
struct fsl_xcvr *xcvr = snd_soc_dai_get_drvdata(dai);
bool tx = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
int ret = 0;
if (xcvr->streams & BIT(substream->stream)) {
dev_err(dai->dev, "%sX busy\n", tx ? "T" : "R");
return -EBUSY;
}
switch (xcvr->mode) {
case FSL_XCVR_MODE_SPDIF:
case FSL_XCVR_MODE_ARC:
ret = fsl_xcvr_constr(substream, &fsl_xcvr_spdif_channels_constr,
&fsl_xcvr_spdif_rates_constr);
break;
case FSL_XCVR_MODE_EARC:
ret = fsl_xcvr_constr(substream, &fsl_xcvr_earc_channels_constr,
&fsl_xcvr_earc_rates_constr);
break;
}
if (ret < 0)
return ret;
xcvr->streams |= BIT(substream->stream);
/* Disable XCVR controls if there is stream started */
fsl_xcvr_activate_ctl(dai, fsl_xcvr_mode_kctl.name, false);
fsl_xcvr_activate_ctl(dai, fsl_xcvr_arc_mode_kctl.name, false);
fsl_xcvr_activate_ctl(dai, fsl_xcvr_earc_capds_kctl.name, false);
return 0;
}
static void fsl_xcvr_shutdown(struct snd_pcm_substream *substream,
struct snd_soc_dai *dai)
{
struct fsl_xcvr *xcvr = snd_soc_dai_get_drvdata(dai);
bool tx = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
u32 mask = 0, val = 0;
int ret;
xcvr->streams &= ~BIT(substream->stream);
/* Enable XCVR controls if there is no stream started */
if (!xcvr->streams) {
fsl_xcvr_activate_ctl(dai, fsl_xcvr_mode_kctl.name, true);
fsl_xcvr_activate_ctl(dai, fsl_xcvr_arc_mode_kctl.name,
(xcvr->mode == FSL_XCVR_MODE_ARC));
fsl_xcvr_activate_ctl(dai, fsl_xcvr_earc_capds_kctl.name,
(xcvr->mode == FSL_XCVR_MODE_EARC));
ret = regmap_update_bits(xcvr->regmap, FSL_XCVR_EXT_IER0,
FSL_XCVR_IRQ_EARC_ALL, 0);
if (ret < 0) {
dev_err(dai->dev, "Failed to set IER0: %d\n", ret);
return;
}
/* clear SPDIF MODE */
if (xcvr->mode == FSL_XCVR_MODE_SPDIF)
mask |= FSL_XCVR_EXT_CTRL_SPDIF_MODE;
}
if (xcvr->mode == FSL_XCVR_MODE_EARC) {
/* set CMDC RESET */
mask |= FSL_XCVR_EXT_CTRL_CMDC_RESET(tx);
val |= FSL_XCVR_EXT_CTRL_CMDC_RESET(tx);
}
ret = regmap_update_bits(xcvr->regmap, FSL_XCVR_EXT_CTRL, mask, val);
if (ret < 0) {
dev_err(dai->dev, "Err setting DPATH RESET: %d\n", ret);
return;
}
}
static int fsl_xcvr_trigger(struct snd_pcm_substream *substream, int cmd,
struct snd_soc_dai *dai)
{
struct fsl_xcvr *xcvr = snd_soc_dai_get_drvdata(dai);
bool tx = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
int ret;
switch (cmd) {
case SNDRV_PCM_TRIGGER_START:
case SNDRV_PCM_TRIGGER_RESUME:
case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
if (tx) {
switch (xcvr->mode) {
case FSL_XCVR_MODE_EARC:
/* set isr_cmdc_tx_en, w1c */
ret = regmap_write(xcvr->regmap,
FSL_XCVR_ISR_SET,
FSL_XCVR_ISR_CMDC_TX_EN);
if (ret < 0) {
dev_err(dai->dev, "err updating isr %d\n", ret);
return ret;
}
fallthrough;
case FSL_XCVR_MODE_SPDIF:
ret = regmap_write(xcvr->regmap,
FSL_XCVR_TX_DPTH_CTRL_SET,
FSL_XCVR_TX_DPTH_CTRL_STRT_DATA_TX);
if (ret < 0) {
dev_err(dai->dev, "Failed to start DATA_TX: %d\n", ret);
return ret;
}
break;
}
}
/* enable DMA RD/WR */
ret = regmap_update_bits(xcvr->regmap, FSL_XCVR_EXT_CTRL,
FSL_XCVR_EXT_CTRL_DMA_DIS(tx), 0);
if (ret < 0) {
dev_err(dai->dev, "Failed to enable DMA: %d\n", ret);
return ret;
}
/* clear DPATH RESET */
ret = regmap_update_bits(xcvr->regmap, FSL_XCVR_EXT_CTRL,
FSL_XCVR_EXT_CTRL_DPTH_RESET(tx),
0);
if (ret < 0) {
dev_err(dai->dev, "Failed to clear DPATH RESET: %d\n", ret);
return ret;
}
break;
case SNDRV_PCM_TRIGGER_STOP:
case SNDRV_PCM_TRIGGER_SUSPEND:
case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
/* disable DMA RD/WR */
ret = regmap_update_bits(xcvr->regmap, FSL_XCVR_EXT_CTRL,
FSL_XCVR_EXT_CTRL_DMA_DIS(tx),
FSL_XCVR_EXT_CTRL_DMA_DIS(tx));
if (ret < 0) {
dev_err(dai->dev, "Failed to disable DMA: %d\n", ret);
return ret;
}
if (tx) {
switch (xcvr->mode) {
case FSL_XCVR_MODE_SPDIF:
ret = regmap_write(xcvr->regmap,
FSL_XCVR_TX_DPTH_CTRL_CLR,
FSL_XCVR_TX_DPTH_CTRL_STRT_DATA_TX);
if (ret < 0) {
dev_err(dai->dev, "Failed to stop DATA_TX: %d\n", ret);
return ret;
}
fallthrough;
case FSL_XCVR_MODE_EARC:
/* clear ISR_CMDC_TX_EN, W1C */
ret = regmap_write(xcvr->regmap,
FSL_XCVR_ISR_CLR,
FSL_XCVR_ISR_CMDC_TX_EN);
if (ret < 0) {
dev_err(dai->dev,
"Err updating ISR %d\n", ret);
return ret;
}
break;
}
}
break;
default:
return -EINVAL;
}
return 0;
}
static int fsl_xcvr_load_firmware(struct fsl_xcvr *xcvr)
{
struct device *dev = &xcvr->pdev->dev;
const struct firmware *fw;
int ret = 0, rem, off, out, page = 0, size = FSL_XCVR_REG_OFFSET;
u32 mask, val;
ret = request_firmware(&fw, xcvr->soc_data->fw_name, dev);
if (ret) {
dev_err(dev, "failed to request firmware.\n");
return ret;
}
rem = fw->size;
/* RAM is 20KiB = 16KiB code + 4KiB data => max 10 pages 2KiB each */
if (rem > 16384) {
dev_err(dev, "FW size %d is bigger than 16KiB.\n", rem);
release_firmware(fw);
return -ENOMEM;
}
for (page = 0; page < 10; page++) {
ret = regmap_update_bits(xcvr->regmap, FSL_XCVR_EXT_CTRL,
FSL_XCVR_EXT_CTRL_PAGE_MASK,
FSL_XCVR_EXT_CTRL_PAGE(page));
if (ret < 0) {
dev_err(dev, "FW: failed to set page %d, err=%d\n",
page, ret);
goto err_firmware;
}
off = page * size;
out = min(rem, size);
/* IPG clock is assumed to be running, otherwise it will hang */
if (out > 0) {
/* write firmware into code memory */
memcpy_toio(xcvr->ram_addr, fw->data + off, out);
rem -= out;
if (rem == 0) {
/* last part of firmware written */
/* clean remaining part of code memory page */
memset_io(xcvr->ram_addr + out, 0, size - out);
}
} else {
/* clean current page, including data memory */
memset_io(xcvr->ram_addr, 0, size);
}
}
err_firmware:
release_firmware(fw);
if (ret < 0)
return ret;
/* configure watermarks */
mask = FSL_XCVR_EXT_CTRL_RX_FWM_MASK | FSL_XCVR_EXT_CTRL_TX_FWM_MASK;
val = FSL_XCVR_EXT_CTRL_RX_FWM(FSL_XCVR_FIFO_WMK_RX);
val |= FSL_XCVR_EXT_CTRL_TX_FWM(FSL_XCVR_FIFO_WMK_TX);
/* disable DMA RD/WR */
mask |= FSL_XCVR_EXT_CTRL_DMA_RD_DIS | FSL_XCVR_EXT_CTRL_DMA_WR_DIS;
val |= FSL_XCVR_EXT_CTRL_DMA_RD_DIS | FSL_XCVR_EXT_CTRL_DMA_WR_DIS;
/* Data RAM is 4KiB, last two pages: 8 and 9. Select page 8. */
mask |= FSL_XCVR_EXT_CTRL_PAGE_MASK;
val |= FSL_XCVR_EXT_CTRL_PAGE(8);
ret = regmap_update_bits(xcvr->regmap, FSL_XCVR_EXT_CTRL, mask, val);
if (ret < 0) {
dev_err(dev, "Failed to set watermarks: %d\n", ret);
return ret;
}
/* Store Capabilities Data Structure into Data RAM */
memcpy_toio(xcvr->ram_addr + FSL_XCVR_CAP_DATA_STR, xcvr->cap_ds,
FSL_XCVR_CAPDS_SIZE);
return 0;
}
static int fsl_xcvr_type_iec958_info(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
uinfo->count = 1;
return 0;
}
static int fsl_xcvr_type_iec958_bytes_info(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
uinfo->type = SNDRV_CTL_ELEM_TYPE_BYTES;
uinfo->count = sizeof_field(struct snd_aes_iec958, status);
return 0;
}
static int fsl_xcvr_rx_cs_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_dai *dai = snd_kcontrol_chip(kcontrol);
struct fsl_xcvr *xcvr = snd_soc_dai_get_drvdata(dai);
memcpy(ucontrol->value.iec958.status, xcvr->rx_iec958.status, 24);
return 0;
}
static int fsl_xcvr_tx_cs_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_dai *dai = snd_kcontrol_chip(kcontrol);
struct fsl_xcvr *xcvr = snd_soc_dai_get_drvdata(dai);
memcpy(ucontrol->value.iec958.status, xcvr->tx_iec958.status, 24);
return 0;
}
static int fsl_xcvr_tx_cs_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_dai *dai = snd_kcontrol_chip(kcontrol);
struct fsl_xcvr *xcvr = snd_soc_dai_get_drvdata(dai);
memcpy(xcvr->tx_iec958.status, ucontrol->value.iec958.status, 24);
return 0;
}
static struct snd_kcontrol_new fsl_xcvr_rx_ctls[] = {
/* Channel status controller */
{
.iface = SNDRV_CTL_ELEM_IFACE_PCM,
.name = SNDRV_CTL_NAME_IEC958("", CAPTURE, DEFAULT),
.access = SNDRV_CTL_ELEM_ACCESS_READ,
.info = fsl_xcvr_type_iec958_info,
.get = fsl_xcvr_rx_cs_get,
},
/* Capture channel status, bytes */
{
.iface = SNDRV_CTL_ELEM_IFACE_PCM,
.name = "Capture Channel Status",
.access = SNDRV_CTL_ELEM_ACCESS_READ,
.info = fsl_xcvr_type_iec958_bytes_info,
.get = fsl_xcvr_rx_cs_get,
},
};
static struct snd_kcontrol_new fsl_xcvr_tx_ctls[] = {
/* Channel status controller */
{
.iface = SNDRV_CTL_ELEM_IFACE_PCM,
.name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, DEFAULT),
.access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
.info = fsl_xcvr_type_iec958_info,
.get = fsl_xcvr_tx_cs_get,
.put = fsl_xcvr_tx_cs_put,
},
/* Playback channel status, bytes */
{
.iface = SNDRV_CTL_ELEM_IFACE_PCM,
.name = "Playback Channel Status",
.access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
.info = fsl_xcvr_type_iec958_bytes_info,
.get = fsl_xcvr_tx_cs_get,
.put = fsl_xcvr_tx_cs_put,
},
};
static const struct snd_soc_dai_ops fsl_xcvr_dai_ops = {
.prepare = fsl_xcvr_prepare,
.startup = fsl_xcvr_startup,
.shutdown = fsl_xcvr_shutdown,
.trigger = fsl_xcvr_trigger,
};
static int fsl_xcvr_dai_probe(struct snd_soc_dai *dai)
{
struct fsl_xcvr *xcvr = snd_soc_dai_get_drvdata(dai);
snd_soc_dai_init_dma_data(dai, &xcvr->dma_prms_tx, &xcvr->dma_prms_rx);
snd_soc_add_dai_controls(dai, &fsl_xcvr_mode_kctl, 1);
snd_soc_add_dai_controls(dai, &fsl_xcvr_arc_mode_kctl, 1);
snd_soc_add_dai_controls(dai, &fsl_xcvr_earc_capds_kctl, 1);
snd_soc_add_dai_controls(dai, fsl_xcvr_tx_ctls,
ARRAY_SIZE(fsl_xcvr_tx_ctls));
snd_soc_add_dai_controls(dai, fsl_xcvr_rx_ctls,
ARRAY_SIZE(fsl_xcvr_rx_ctls));
return 0;
}
static struct snd_soc_dai_driver fsl_xcvr_dai = {
.probe = fsl_xcvr_dai_probe,
.ops = &fsl_xcvr_dai_ops,
.playback = {
.stream_name = "CPU-Playback",
.channels_min = 1,
.channels_max = 32,
.rate_min = 32000,
.rate_max = 1536000,
.rates = SNDRV_PCM_RATE_KNOT,
.formats = SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE,
},
.capture = {
.stream_name = "CPU-Capture",
.channels_min = 1,
.channels_max = 32,
.rate_min = 32000,
.rate_max = 1536000,
.rates = SNDRV_PCM_RATE_KNOT,
.formats = SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE,
},
};
static const struct snd_soc_component_driver fsl_xcvr_comp = {
.name = "fsl-xcvr-dai",
.legacy_dai_naming = 1,
};
static const struct reg_default fsl_xcvr_reg_defaults[] = {
{ FSL_XCVR_VERSION, 0x00000000 },
{ FSL_XCVR_EXT_CTRL, 0xF8204040 },
{ FSL_XCVR_EXT_STATUS, 0x00000000 },
{ FSL_XCVR_EXT_IER0, 0x00000000 },
{ FSL_XCVR_EXT_IER1, 0x00000000 },
{ FSL_XCVR_EXT_ISR, 0x00000000 },
{ FSL_XCVR_EXT_ISR_SET, 0x00000000 },
{ FSL_XCVR_EXT_ISR_CLR, 0x00000000 },
{ FSL_XCVR_EXT_ISR_TOG, 0x00000000 },
{ FSL_XCVR_IER, 0x00000000 },
{ FSL_XCVR_ISR, 0x00000000 },
{ FSL_XCVR_ISR_SET, 0x00000000 },
{ FSL_XCVR_ISR_CLR, 0x00000000 },
{ FSL_XCVR_ISR_TOG, 0x00000000 },
{ FSL_XCVR_RX_DPTH_CTRL, 0x00002C89 },
{ FSL_XCVR_RX_DPTH_CTRL_SET, 0x00002C89 },
{ FSL_XCVR_RX_DPTH_CTRL_CLR, 0x00002C89 },
{ FSL_XCVR_RX_DPTH_CTRL_TOG, 0x00002C89 },
{ FSL_XCVR_TX_DPTH_CTRL, 0x00000000 },
{ FSL_XCVR_TX_DPTH_CTRL_SET, 0x00000000 },
{ FSL_XCVR_TX_DPTH_CTRL_CLR, 0x00000000 },
{ FSL_XCVR_TX_DPTH_CTRL_TOG, 0x00000000 },
{ FSL_XCVR_TX_CS_DATA_0, 0x00000000 },
{ FSL_XCVR_TX_CS_DATA_1, 0x00000000 },
{ FSL_XCVR_TX_CS_DATA_2, 0x00000000 },
{ FSL_XCVR_TX_CS_DATA_3, 0x00000000 },
{ FSL_XCVR_TX_CS_DATA_4, 0x00000000 },
{ FSL_XCVR_TX_CS_DATA_5, 0x00000000 },
{ FSL_XCVR_DEBUG_REG_0, 0x00000000 },
{ FSL_XCVR_DEBUG_REG_1, 0x00000000 },
};
static bool fsl_xcvr_readable_reg(struct device *dev, unsigned int reg)
{
switch (reg) {
case FSL_XCVR_VERSION:
case FSL_XCVR_EXT_CTRL:
case FSL_XCVR_EXT_STATUS:
case FSL_XCVR_EXT_IER0:
case FSL_XCVR_EXT_IER1:
case FSL_XCVR_EXT_ISR:
case FSL_XCVR_EXT_ISR_SET:
case FSL_XCVR_EXT_ISR_CLR:
case FSL_XCVR_EXT_ISR_TOG:
case FSL_XCVR_IER:
case FSL_XCVR_ISR:
case FSL_XCVR_ISR_SET:
case FSL_XCVR_ISR_CLR:
case FSL_XCVR_ISR_TOG:
case FSL_XCVR_PHY_AI_CTRL:
case FSL_XCVR_PHY_AI_CTRL_SET:
case FSL_XCVR_PHY_AI_CTRL_CLR:
case FSL_XCVR_PHY_AI_CTRL_TOG:
case FSL_XCVR_PHY_AI_RDATA:
case FSL_XCVR_CLK_CTRL:
case FSL_XCVR_RX_DPTH_CTRL:
case FSL_XCVR_RX_DPTH_CTRL_SET:
case FSL_XCVR_RX_DPTH_CTRL_CLR:
case FSL_XCVR_RX_DPTH_CTRL_TOG:
case FSL_XCVR_TX_DPTH_CTRL:
case FSL_XCVR_TX_DPTH_CTRL_SET:
case FSL_XCVR_TX_DPTH_CTRL_CLR:
case FSL_XCVR_TX_DPTH_CTRL_TOG:
case FSL_XCVR_TX_CS_DATA_0:
case FSL_XCVR_TX_CS_DATA_1:
case FSL_XCVR_TX_CS_DATA_2:
case FSL_XCVR_TX_CS_DATA_3:
case FSL_XCVR_TX_CS_DATA_4:
case FSL_XCVR_TX_CS_DATA_5:
case FSL_XCVR_DEBUG_REG_0:
case FSL_XCVR_DEBUG_REG_1:
return true;
default:
return false;
}
}
static bool fsl_xcvr_writeable_reg(struct device *dev, unsigned int reg)
{
switch (reg) {
case FSL_XCVR_EXT_CTRL:
case FSL_XCVR_EXT_IER0:
case FSL_XCVR_EXT_IER1:
case FSL_XCVR_EXT_ISR:
case FSL_XCVR_EXT_ISR_SET:
case FSL_XCVR_EXT_ISR_CLR:
case FSL_XCVR_EXT_ISR_TOG:
case FSL_XCVR_IER:
case FSL_XCVR_ISR_SET:
case FSL_XCVR_ISR_CLR:
case FSL_XCVR_ISR_TOG:
case FSL_XCVR_PHY_AI_CTRL:
case FSL_XCVR_PHY_AI_CTRL_SET:
case FSL_XCVR_PHY_AI_CTRL_CLR:
case FSL_XCVR_PHY_AI_CTRL_TOG:
case FSL_XCVR_PHY_AI_WDATA:
case FSL_XCVR_CLK_CTRL:
case FSL_XCVR_RX_DPTH_CTRL:
case FSL_XCVR_RX_DPTH_CTRL_SET:
case FSL_XCVR_RX_DPTH_CTRL_CLR:
case FSL_XCVR_RX_DPTH_CTRL_TOG:
case FSL_XCVR_TX_DPTH_CTRL_SET:
case FSL_XCVR_TX_DPTH_CTRL_CLR:
case FSL_XCVR_TX_DPTH_CTRL_TOG:
case FSL_XCVR_TX_CS_DATA_0:
case FSL_XCVR_TX_CS_DATA_1:
case FSL_XCVR_TX_CS_DATA_2:
case FSL_XCVR_TX_CS_DATA_3:
case FSL_XCVR_TX_CS_DATA_4:
case FSL_XCVR_TX_CS_DATA_5:
return true;
default:
return false;
}
}
static bool fsl_xcvr_volatile_reg(struct device *dev, unsigned int reg)
{
return fsl_xcvr_readable_reg(dev, reg);
}
static const struct regmap_config fsl_xcvr_regmap_cfg = {
.reg_bits = 32,
.reg_stride = 4,
.val_bits = 32,
.max_register = FSL_XCVR_MAX_REG,
.reg_defaults = fsl_xcvr_reg_defaults,
.num_reg_defaults = ARRAY_SIZE(fsl_xcvr_reg_defaults),
.readable_reg = fsl_xcvr_readable_reg,
.volatile_reg = fsl_xcvr_volatile_reg,
.writeable_reg = fsl_xcvr_writeable_reg,
.cache_type = REGCACHE_FLAT,
};
static irqreturn_t irq0_isr(int irq, void *devid)
{
struct fsl_xcvr *xcvr = (struct fsl_xcvr *)devid;
struct device *dev = &xcvr->pdev->dev;
struct regmap *regmap = xcvr->regmap;
void __iomem *reg_ctrl, *reg_buff;
u32 isr, isr_clr = 0, val, i;
regmap_read(regmap, FSL_XCVR_EXT_ISR, &isr);
if (isr & FSL_XCVR_IRQ_NEW_CS) {
dev_dbg(dev, "Received new CS block\n");
isr_clr |= FSL_XCVR_IRQ_NEW_CS;
/* Data RAM is 4KiB, last two pages: 8 and 9. Select page 8. */
regmap_update_bits(xcvr->regmap, FSL_XCVR_EXT_CTRL,
FSL_XCVR_EXT_CTRL_PAGE_MASK,
FSL_XCVR_EXT_CTRL_PAGE(8));
/* Find updated CS buffer */
reg_ctrl = xcvr->ram_addr + FSL_XCVR_RX_CS_CTRL_0;
reg_buff = xcvr->ram_addr + FSL_XCVR_RX_CS_BUFF_0;
memcpy_fromio(&val, reg_ctrl, sizeof(val));
if (!val) {
reg_ctrl = xcvr->ram_addr + FSL_XCVR_RX_CS_CTRL_1;
reg_buff = xcvr->ram_addr + FSL_XCVR_RX_CS_BUFF_1;
memcpy_fromio(&val, reg_ctrl, sizeof(val));
}
if (val) {
/* copy CS buffer */
memcpy_fromio(&xcvr->rx_iec958.status, reg_buff,
sizeof(xcvr->rx_iec958.status));
for (i = 0; i < 6; i++) {
val = *(u32 *)(xcvr->rx_iec958.status + i*4);
*(u32 *)(xcvr->rx_iec958.status + i*4) =
bitrev32(val);
}
/* clear CS control register */
memset_io(reg_ctrl, 0, sizeof(val));
}
}
if (isr & FSL_XCVR_IRQ_NEW_UD) {
dev_dbg(dev, "Received new UD block\n");
isr_clr |= FSL_XCVR_IRQ_NEW_UD;
}
if (isr & FSL_XCVR_IRQ_MUTE) {
dev_dbg(dev, "HW mute bit detected\n");
isr_clr |= FSL_XCVR_IRQ_MUTE;
}
if (isr & FSL_XCVR_IRQ_FIFO_UOFL_ERR) {
dev_dbg(dev, "RX/TX FIFO full/empty\n");
isr_clr |= FSL_XCVR_IRQ_FIFO_UOFL_ERR;
}
if (isr & FSL_XCVR_IRQ_ARC_MODE) {
dev_dbg(dev, "CMDC SM falls out of eARC mode\n");
isr_clr |= FSL_XCVR_IRQ_ARC_MODE;
}
if (isr & FSL_XCVR_IRQ_DMA_RD_REQ) {
dev_dbg(dev, "DMA read request\n");
isr_clr |= FSL_XCVR_IRQ_DMA_RD_REQ;
}
if (isr & FSL_XCVR_IRQ_DMA_WR_REQ) {
dev_dbg(dev, "DMA write request\n");
isr_clr |= FSL_XCVR_IRQ_DMA_WR_REQ;
}
if (isr_clr) {
regmap_write(regmap, FSL_XCVR_EXT_ISR_CLR, isr_clr);
return IRQ_HANDLED;
}
return IRQ_NONE;
}
static const struct fsl_xcvr_soc_data fsl_xcvr_imx8mp_data = {
.fw_name = "imx/xcvr/xcvr-imx8mp.bin",
};
static const struct of_device_id fsl_xcvr_dt_ids[] = {
{ .compatible = "fsl,imx8mp-xcvr", .data = &fsl_xcvr_imx8mp_data },
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, fsl_xcvr_dt_ids);
static int fsl_xcvr_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct fsl_xcvr *xcvr;
struct resource *rx_res, *tx_res;
void __iomem *regs;
int ret, irq;
xcvr = devm_kzalloc(dev, sizeof(*xcvr), GFP_KERNEL);
if (!xcvr)
return -ENOMEM;
xcvr->pdev = pdev;
xcvr->soc_data = of_device_get_match_data(&pdev->dev);
xcvr->ipg_clk = devm_clk_get(dev, "ipg");
if (IS_ERR(xcvr->ipg_clk)) {
dev_err(dev, "failed to get ipg clock\n");
return PTR_ERR(xcvr->ipg_clk);
}
xcvr->phy_clk = devm_clk_get(dev, "phy");
if (IS_ERR(xcvr->phy_clk)) {
dev_err(dev, "failed to get phy clock\n");
return PTR_ERR(xcvr->phy_clk);
}
xcvr->spba_clk = devm_clk_get(dev, "spba");
if (IS_ERR(xcvr->spba_clk)) {
dev_err(dev, "failed to get spba clock\n");
return PTR_ERR(xcvr->spba_clk);
}
xcvr->pll_ipg_clk = devm_clk_get(dev, "pll_ipg");
if (IS_ERR(xcvr->pll_ipg_clk)) {
dev_err(dev, "failed to get pll_ipg clock\n");
return PTR_ERR(xcvr->pll_ipg_clk);
}
xcvr->ram_addr = devm_platform_ioremap_resource_byname(pdev, "ram");
if (IS_ERR(xcvr->ram_addr))
return PTR_ERR(xcvr->ram_addr);
regs = devm_platform_ioremap_resource_byname(pdev, "regs");
if (IS_ERR(regs))
return PTR_ERR(regs);
xcvr->regmap = devm_regmap_init_mmio_clk(dev, NULL, regs,
&fsl_xcvr_regmap_cfg);
if (IS_ERR(xcvr->regmap)) {
dev_err(dev, "failed to init XCVR regmap: %ld\n",
PTR_ERR(xcvr->regmap));
return PTR_ERR(xcvr->regmap);
}
xcvr->reset = devm_reset_control_get_exclusive(dev, NULL);
if (IS_ERR(xcvr->reset)) {
dev_err(dev, "failed to get XCVR reset control\n");
return PTR_ERR(xcvr->reset);
}
/* get IRQs */
irq = platform_get_irq(pdev, 0);
if (irq < 0)
return irq;
ret = devm_request_irq(dev, irq, irq0_isr, 0, pdev->name, xcvr);
if (ret) {
dev_err(dev, "failed to claim IRQ0: %i\n", ret);
return ret;
}
rx_res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "rxfifo");
tx_res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "txfifo");
if (!rx_res || !tx_res) {
dev_err(dev, "could not find rxfifo or txfifo resource\n");
return -EINVAL;
}
xcvr->dma_prms_rx.chan_name = "rx";
xcvr->dma_prms_tx.chan_name = "tx";
xcvr->dma_prms_rx.addr = rx_res->start;
xcvr->dma_prms_tx.addr = tx_res->start;
xcvr->dma_prms_rx.maxburst = FSL_XCVR_MAXBURST_RX;
xcvr->dma_prms_tx.maxburst = FSL_XCVR_MAXBURST_TX;
platform_set_drvdata(pdev, xcvr);
pm_runtime_enable(dev);
regcache_cache_only(xcvr->regmap, true);
/*
* Register platform component before registering cpu dai for there
* is not defer probe for platform component in snd_soc_add_pcm_runtime().
*/
ret = devm_snd_dmaengine_pcm_register(dev, NULL, 0);
if (ret) {
pm_runtime_disable(dev);
dev_err(dev, "failed to pcm register\n");
return ret;
}
ret = devm_snd_soc_register_component(dev, &fsl_xcvr_comp,
&fsl_xcvr_dai, 1);
if (ret) {
pm_runtime_disable(dev);
dev_err(dev, "failed to register component %s\n",
fsl_xcvr_comp.name);
}
return ret;
}
static int fsl_xcvr_remove(struct platform_device *pdev)
{
pm_runtime_disable(&pdev->dev);
return 0;
}
static __maybe_unused int fsl_xcvr_runtime_suspend(struct device *dev)
{
struct fsl_xcvr *xcvr = dev_get_drvdata(dev);
int ret;
/*
* Clear interrupts, when streams starts or resumes after
* suspend, interrupts are enabled in prepare(), so no need
* to enable interrupts in resume().
*/
ret = regmap_update_bits(xcvr->regmap, FSL_XCVR_EXT_IER0,
FSL_XCVR_IRQ_EARC_ALL, 0);
if (ret < 0)
dev_err(dev, "Failed to clear IER0: %d\n", ret);
/* Assert M0+ reset */
ret = regmap_update_bits(xcvr->regmap, FSL_XCVR_EXT_CTRL,
FSL_XCVR_EXT_CTRL_CORE_RESET,
FSL_XCVR_EXT_CTRL_CORE_RESET);
if (ret < 0)
dev_err(dev, "Failed to assert M0+ core: %d\n", ret);
regcache_cache_only(xcvr->regmap, true);
clk_disable_unprepare(xcvr->spba_clk);
clk_disable_unprepare(xcvr->phy_clk);
clk_disable_unprepare(xcvr->pll_ipg_clk);
clk_disable_unprepare(xcvr->ipg_clk);
return 0;
}
static __maybe_unused int fsl_xcvr_runtime_resume(struct device *dev)
{
struct fsl_xcvr *xcvr = dev_get_drvdata(dev);
int ret;
ret = reset_control_assert(xcvr->reset);
if (ret < 0) {
dev_err(dev, "Failed to assert M0+ reset: %d\n", ret);
return ret;
}
ret = clk_prepare_enable(xcvr->ipg_clk);
if (ret) {
dev_err(dev, "failed to start IPG clock.\n");
return ret;
}
ret = clk_prepare_enable(xcvr->pll_ipg_clk);
if (ret) {
dev_err(dev, "failed to start PLL IPG clock.\n");
goto stop_ipg_clk;
}
ret = clk_prepare_enable(xcvr->phy_clk);
if (ret) {
dev_err(dev, "failed to start PHY clock: %d\n", ret);
goto stop_pll_ipg_clk;
}
ret = clk_prepare_enable(xcvr->spba_clk);
if (ret) {
dev_err(dev, "failed to start SPBA clock.\n");
goto stop_phy_clk;
}
regcache_cache_only(xcvr->regmap, false);
regcache_mark_dirty(xcvr->regmap);
ret = regcache_sync(xcvr->regmap);
if (ret) {
dev_err(dev, "failed to sync regcache.\n");
goto stop_spba_clk;
}
ret = reset_control_deassert(xcvr->reset);
if (ret) {
dev_err(dev, "failed to deassert M0+ reset.\n");
goto stop_spba_clk;
}
ret = fsl_xcvr_load_firmware(xcvr);
if (ret) {
dev_err(dev, "failed to load firmware.\n");
goto stop_spba_clk;
}
/* Release M0+ reset */
ret = regmap_update_bits(xcvr->regmap, FSL_XCVR_EXT_CTRL,
FSL_XCVR_EXT_CTRL_CORE_RESET, 0);
if (ret < 0) {
dev_err(dev, "M0+ core release failed: %d\n", ret);
goto stop_spba_clk;
}
/* Let M0+ core complete firmware initialization */
msleep(50);
return 0;
stop_spba_clk:
clk_disable_unprepare(xcvr->spba_clk);
stop_phy_clk:
clk_disable_unprepare(xcvr->phy_clk);
stop_pll_ipg_clk:
clk_disable_unprepare(xcvr->pll_ipg_clk);
stop_ipg_clk:
clk_disable_unprepare(xcvr->ipg_clk);
return ret;
}
static const struct dev_pm_ops fsl_xcvr_pm_ops = {
SET_RUNTIME_PM_OPS(fsl_xcvr_runtime_suspend,
fsl_xcvr_runtime_resume,
NULL)
SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
pm_runtime_force_resume)
};
static struct platform_driver fsl_xcvr_driver = {
.probe = fsl_xcvr_probe,
.driver = {
.name = "fsl,imx8mp-audio-xcvr",
.pm = &fsl_xcvr_pm_ops,
.of_match_table = fsl_xcvr_dt_ids,
},
.remove = fsl_xcvr_remove,
};
module_platform_driver(fsl_xcvr_driver);
MODULE_AUTHOR("Viorel Suman <viorel.suman@nxp.com>");
MODULE_DESCRIPTION("NXP Audio Transceiver (XCVR) driver");
MODULE_LICENSE("GPL v2");