blob: 9b55fbdc3a7c6e1a7932b47246fb17fcff25e4a2 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-only
/*
* Driver for Xilinx TEMAC Ethernet device
*
* Copyright (c) 2008 Nissin Systems Co., Ltd., Yoshio Kashiwagi
* Copyright (c) 2005-2008 DLA Systems, David H. Lynch Jr. <dhlii@dlasys.net>
* Copyright (c) 2008-2009 Secret Lab Technologies Ltd.
*
* This is a driver for the Xilinx ll_temac ipcore which is often used
* in the Virtex and Spartan series of chips.
*
* Notes:
* - The ll_temac hardware uses indirect access for many of the TEMAC
* registers, include the MDIO bus. However, indirect access to MDIO
* registers take considerably more clock cycles than to TEMAC registers.
* MDIO accesses are long, so threads doing them should probably sleep
* rather than busywait. However, since only one indirect access can be
* in progress at any given time, that means that *all* indirect accesses
* could end up sleeping (to wait for an MDIO access to complete).
* Fortunately none of the indirect accesses are on the 'hot' path for tx
* or rx, so this should be okay.
*
* TODO:
* - Factor out locallink DMA code into separate driver
* - Fix support for hardware checksumming.
* - Testing. Lots and lots of testing.
*
*/
#include <linux/delay.h>
#include <linux/etherdevice.h>
#include <linux/mii.h>
#include <linux/module.h>
#include <linux/mutex.h>
#include <linux/netdevice.h>
#include <linux/if_ether.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/of_irq.h>
#include <linux/of_mdio.h>
#include <linux/of_net.h>
#include <linux/of_platform.h>
#include <linux/of_address.h>
#include <linux/skbuff.h>
#include <linux/spinlock.h>
#include <linux/tcp.h> /* needed for sizeof(tcphdr) */
#include <linux/udp.h> /* needed for sizeof(udphdr) */
#include <linux/phy.h>
#include <linux/in.h>
#include <linux/io.h>
#include <linux/ip.h>
#include <linux/slab.h>
#include <linux/interrupt.h>
#include <linux/workqueue.h>
#include <linux/dma-mapping.h>
#include <linux/processor.h>
#include <linux/platform_data/xilinx-ll-temac.h>
#include "ll_temac.h"
#define TX_BD_NUM 64
#define RX_BD_NUM 128
/* ---------------------------------------------------------------------
* Low level register access functions
*/
static u32 _temac_ior_be(struct temac_local *lp, int offset)
{
return ioread32be(lp->regs + offset);
}
static void _temac_iow_be(struct temac_local *lp, int offset, u32 value)
{
return iowrite32be(value, lp->regs + offset);
}
static u32 _temac_ior_le(struct temac_local *lp, int offset)
{
return ioread32(lp->regs + offset);
}
static void _temac_iow_le(struct temac_local *lp, int offset, u32 value)
{
return iowrite32(value, lp->regs + offset);
}
static bool hard_acs_rdy(struct temac_local *lp)
{
return temac_ior(lp, XTE_RDY0_OFFSET) & XTE_RDY0_HARD_ACS_RDY_MASK;
}
static bool hard_acs_rdy_or_timeout(struct temac_local *lp, ktime_t timeout)
{
ktime_t cur = ktime_get();
return hard_acs_rdy(lp) || ktime_after(cur, timeout);
}
/* Poll for maximum 20 ms. This is similar to the 2 jiffies @ 100 Hz
* that was used before, and should cover MDIO bus speed down to 3200
* Hz.
*/
#define HARD_ACS_RDY_POLL_NS (20 * NSEC_PER_MSEC)
/**
* temac_indirect_busywait - Wait for current indirect register access
* to complete.
*/
int temac_indirect_busywait(struct temac_local *lp)
{
ktime_t timeout = ktime_add_ns(ktime_get(), HARD_ACS_RDY_POLL_NS);
spin_until_cond(hard_acs_rdy_or_timeout(lp, timeout));
if (WARN_ON(!hard_acs_rdy(lp)))
return -ETIMEDOUT;
else
return 0;
}
/**
* temac_indirect_in32 - Indirect register read access. This function
* must be called without lp->indirect_lock being held.
*/
u32 temac_indirect_in32(struct temac_local *lp, int reg)
{
unsigned long flags;
int val;
spin_lock_irqsave(lp->indirect_lock, flags);
val = temac_indirect_in32_locked(lp, reg);
spin_unlock_irqrestore(lp->indirect_lock, flags);
return val;
}
/**
* temac_indirect_in32_locked - Indirect register read access. This
* function must be called with lp->indirect_lock being held. Use
* this together with spin_lock_irqsave/spin_lock_irqrestore to avoid
* repeated lock/unlock and to ensure uninterrupted access to indirect
* registers.
*/
u32 temac_indirect_in32_locked(struct temac_local *lp, int reg)
{
/* This initial wait should normally not spin, as we always
* try to wait for indirect access to complete before
* releasing the indirect_lock.
*/
if (WARN_ON(temac_indirect_busywait(lp)))
return -ETIMEDOUT;
/* Initiate read from indirect register */
temac_iow(lp, XTE_CTL0_OFFSET, reg);
/* Wait for indirect register access to complete. We really
* should not see timeouts, and could even end up causing
* problem for following indirect access, so let's make a bit
* of WARN noise.
*/
if (WARN_ON(temac_indirect_busywait(lp)))
return -ETIMEDOUT;
/* Value is ready now */
return temac_ior(lp, XTE_LSW0_OFFSET);
}
/**
* temac_indirect_out32 - Indirect register write access. This function
* must be called without lp->indirect_lock being held.
*/
void temac_indirect_out32(struct temac_local *lp, int reg, u32 value)
{
unsigned long flags;
spin_lock_irqsave(lp->indirect_lock, flags);
temac_indirect_out32_locked(lp, reg, value);
spin_unlock_irqrestore(lp->indirect_lock, flags);
}
/**
* temac_indirect_out32_locked - Indirect register write access. This
* function must be called with lp->indirect_lock being held. Use
* this together with spin_lock_irqsave/spin_lock_irqrestore to avoid
* repeated lock/unlock and to ensure uninterrupted access to indirect
* registers.
*/
void temac_indirect_out32_locked(struct temac_local *lp, int reg, u32 value)
{
/* As in temac_indirect_in32_locked(), we should normally not
* spin here. And if it happens, we actually end up silently
* ignoring the write request. Ouch.
*/
if (WARN_ON(temac_indirect_busywait(lp)))
return;
/* Initiate write to indirect register */
temac_iow(lp, XTE_LSW0_OFFSET, value);
temac_iow(lp, XTE_CTL0_OFFSET, CNTLREG_WRITE_ENABLE_MASK | reg);
/* As in temac_indirect_in32_locked(), we should not see timeouts
* here. And if it happens, we continue before the write has
* completed. Not good.
*/
WARN_ON(temac_indirect_busywait(lp));
}
/**
* temac_dma_in32_* - Memory mapped DMA read, these function expects a
* register input that is based on DCR word addresses which are then
* converted to memory mapped byte addresses. To be assigned to
* lp->dma_in32.
*/
static u32 temac_dma_in32_be(struct temac_local *lp, int reg)
{
return ioread32be(lp->sdma_regs + (reg << 2));
}
static u32 temac_dma_in32_le(struct temac_local *lp, int reg)
{
return ioread32(lp->sdma_regs + (reg << 2));
}
/**
* temac_dma_out32_* - Memory mapped DMA read, these function expects
* a register input that is based on DCR word addresses which are then
* converted to memory mapped byte addresses. To be assigned to
* lp->dma_out32.
*/
static void temac_dma_out32_be(struct temac_local *lp, int reg, u32 value)
{
iowrite32be(value, lp->sdma_regs + (reg << 2));
}
static void temac_dma_out32_le(struct temac_local *lp, int reg, u32 value)
{
iowrite32(value, lp->sdma_regs + (reg << 2));
}
/* DMA register access functions can be DCR based or memory mapped.
* The PowerPC 440 is DCR based, the PowerPC 405 and MicroBlaze are both
* memory mapped.
*/
#ifdef CONFIG_PPC_DCR
/**
* temac_dma_dcr_in32 - DCR based DMA read
*/
static u32 temac_dma_dcr_in(struct temac_local *lp, int reg)
{
return dcr_read(lp->sdma_dcrs, reg);
}
/**
* temac_dma_dcr_out32 - DCR based DMA write
*/
static void temac_dma_dcr_out(struct temac_local *lp, int reg, u32 value)
{
dcr_write(lp->sdma_dcrs, reg, value);
}
/**
* temac_dcr_setup - If the DMA is DCR based, then setup the address and
* I/O functions
*/
static int temac_dcr_setup(struct temac_local *lp, struct platform_device *op,
struct device_node *np)
{
unsigned int dcrs;
/* setup the dcr address mapping if it's in the device tree */
dcrs = dcr_resource_start(np, 0);
if (dcrs != 0) {
lp->sdma_dcrs = dcr_map(np, dcrs, dcr_resource_len(np, 0));
lp->dma_in = temac_dma_dcr_in;
lp->dma_out = temac_dma_dcr_out;
dev_dbg(&op->dev, "DCR base: %x\n", dcrs);
return 0;
}
/* no DCR in the device tree, indicate a failure */
return -1;
}
#else
/*
* temac_dcr_setup - This is a stub for when DCR is not supported,
* such as with MicroBlaze and x86
*/
static int temac_dcr_setup(struct temac_local *lp, struct platform_device *op,
struct device_node *np)
{
return -1;
}
#endif
/**
* temac_dma_bd_release - Release buffer descriptor rings
*/
static void temac_dma_bd_release(struct net_device *ndev)
{
struct temac_local *lp = netdev_priv(ndev);
int i;
/* Reset Local Link (DMA) */
lp->dma_out(lp, DMA_CONTROL_REG, DMA_CONTROL_RST);
for (i = 0; i < RX_BD_NUM; i++) {
if (!lp->rx_skb[i])
break;
else {
dma_unmap_single(ndev->dev.parent, lp->rx_bd_v[i].phys,
XTE_MAX_JUMBO_FRAME_SIZE, DMA_FROM_DEVICE);
dev_kfree_skb(lp->rx_skb[i]);
}
}
if (lp->rx_bd_v)
dma_free_coherent(ndev->dev.parent,
sizeof(*lp->rx_bd_v) * RX_BD_NUM,
lp->rx_bd_v, lp->rx_bd_p);
if (lp->tx_bd_v)
dma_free_coherent(ndev->dev.parent,
sizeof(*lp->tx_bd_v) * TX_BD_NUM,
lp->tx_bd_v, lp->tx_bd_p);
}
/**
* temac_dma_bd_init - Setup buffer descriptor rings
*/
static int temac_dma_bd_init(struct net_device *ndev)
{
struct temac_local *lp = netdev_priv(ndev);
struct sk_buff *skb;
dma_addr_t skb_dma_addr;
int i;
lp->rx_skb = devm_kcalloc(&ndev->dev, RX_BD_NUM, sizeof(*lp->rx_skb),
GFP_KERNEL);
if (!lp->rx_skb)
goto out;
/* allocate the tx and rx ring buffer descriptors. */
/* returns a virtual address and a physical address. */
lp->tx_bd_v = dma_alloc_coherent(ndev->dev.parent,
sizeof(*lp->tx_bd_v) * TX_BD_NUM,
&lp->tx_bd_p, GFP_KERNEL);
if (!lp->tx_bd_v)
goto out;
lp->rx_bd_v = dma_alloc_coherent(ndev->dev.parent,
sizeof(*lp->rx_bd_v) * RX_BD_NUM,
&lp->rx_bd_p, GFP_KERNEL);
if (!lp->rx_bd_v)
goto out;
for (i = 0; i < TX_BD_NUM; i++) {
lp->tx_bd_v[i].next = cpu_to_be32(lp->tx_bd_p
+ sizeof(*lp->tx_bd_v) * ((i + 1) % TX_BD_NUM));
}
for (i = 0; i < RX_BD_NUM; i++) {
lp->rx_bd_v[i].next = cpu_to_be32(lp->rx_bd_p
+ sizeof(*lp->rx_bd_v) * ((i + 1) % RX_BD_NUM));
skb = netdev_alloc_skb_ip_align(ndev,
XTE_MAX_JUMBO_FRAME_SIZE);
if (!skb)
goto out;
lp->rx_skb[i] = skb;
/* returns physical address of skb->data */
skb_dma_addr = dma_map_single(ndev->dev.parent, skb->data,
XTE_MAX_JUMBO_FRAME_SIZE,
DMA_FROM_DEVICE);
if (dma_mapping_error(ndev->dev.parent, skb_dma_addr))
goto out;
lp->rx_bd_v[i].phys = cpu_to_be32(skb_dma_addr);
lp->rx_bd_v[i].len = cpu_to_be32(XTE_MAX_JUMBO_FRAME_SIZE);
lp->rx_bd_v[i].app0 = cpu_to_be32(STS_CTRL_APP0_IRQONEND);
}
/* Configure DMA channel (irq setup) */
lp->dma_out(lp, TX_CHNL_CTRL, lp->tx_chnl_ctrl |
0x00000400 | // Use 1 Bit Wide Counters. Currently Not Used!
CHNL_CTRL_IRQ_EN | CHNL_CTRL_IRQ_ERR_EN |
CHNL_CTRL_IRQ_DLY_EN | CHNL_CTRL_IRQ_COAL_EN);
lp->dma_out(lp, RX_CHNL_CTRL, lp->rx_chnl_ctrl |
CHNL_CTRL_IRQ_IOE |
CHNL_CTRL_IRQ_EN | CHNL_CTRL_IRQ_ERR_EN |
CHNL_CTRL_IRQ_DLY_EN | CHNL_CTRL_IRQ_COAL_EN);
/* Init descriptor indexes */
lp->tx_bd_ci = 0;
lp->tx_bd_next = 0;
lp->tx_bd_tail = 0;
lp->rx_bd_ci = 0;
lp->rx_bd_tail = RX_BD_NUM - 1;
/* Enable RX DMA transfers */
wmb();
lp->dma_out(lp, RX_CURDESC_PTR, lp->rx_bd_p);
lp->dma_out(lp, RX_TAILDESC_PTR,
lp->rx_bd_p + (sizeof(*lp->rx_bd_v) * lp->rx_bd_tail));
/* Prepare for TX DMA transfer */
lp->dma_out(lp, TX_CURDESC_PTR, lp->tx_bd_p);
return 0;
out:
temac_dma_bd_release(ndev);
return -ENOMEM;
}
/* ---------------------------------------------------------------------
* net_device_ops
*/
static void temac_do_set_mac_address(struct net_device *ndev)
{
struct temac_local *lp = netdev_priv(ndev);
unsigned long flags;
/* set up unicast MAC address filter set its mac address */
spin_lock_irqsave(lp->indirect_lock, flags);
temac_indirect_out32_locked(lp, XTE_UAW0_OFFSET,
(ndev->dev_addr[0]) |
(ndev->dev_addr[1] << 8) |
(ndev->dev_addr[2] << 16) |
(ndev->dev_addr[3] << 24));
/* There are reserved bits in EUAW1
* so don't affect them Set MAC bits [47:32] in EUAW1 */
temac_indirect_out32_locked(lp, XTE_UAW1_OFFSET,
(ndev->dev_addr[4] & 0x000000ff) |
(ndev->dev_addr[5] << 8));
spin_unlock_irqrestore(lp->indirect_lock, flags);
}
static int temac_init_mac_address(struct net_device *ndev, const void *address)
{
ether_addr_copy(ndev->dev_addr, address);
if (!is_valid_ether_addr(ndev->dev_addr))
eth_hw_addr_random(ndev);
temac_do_set_mac_address(ndev);
return 0;
}
static int temac_set_mac_address(struct net_device *ndev, void *p)
{
struct sockaddr *addr = p;
if (!is_valid_ether_addr(addr->sa_data))
return -EADDRNOTAVAIL;
memcpy(ndev->dev_addr, addr->sa_data, ETH_ALEN);
temac_do_set_mac_address(ndev);
return 0;
}
static void temac_set_multicast_list(struct net_device *ndev)
{
struct temac_local *lp = netdev_priv(ndev);
u32 multi_addr_msw, multi_addr_lsw;
int i = 0;
unsigned long flags;
bool promisc_mode_disabled = false;
if (ndev->flags & (IFF_PROMISC | IFF_ALLMULTI) ||
(netdev_mc_count(ndev) > MULTICAST_CAM_TABLE_NUM)) {
temac_indirect_out32(lp, XTE_AFM_OFFSET, XTE_AFM_EPPRM_MASK);
dev_info(&ndev->dev, "Promiscuous mode enabled.\n");
return;
}
spin_lock_irqsave(lp->indirect_lock, flags);
if (!netdev_mc_empty(ndev)) {
struct netdev_hw_addr *ha;
netdev_for_each_mc_addr(ha, ndev) {
if (WARN_ON(i >= MULTICAST_CAM_TABLE_NUM))
break;
multi_addr_msw = ((ha->addr[3] << 24) |
(ha->addr[2] << 16) |
(ha->addr[1] << 8) |
(ha->addr[0]));
temac_indirect_out32_locked(lp, XTE_MAW0_OFFSET,
multi_addr_msw);
multi_addr_lsw = ((ha->addr[5] << 8) |
(ha->addr[4]) | (i << 16));
temac_indirect_out32_locked(lp, XTE_MAW1_OFFSET,
multi_addr_lsw);
i++;
}
}
/* Clear all or remaining/unused address table entries */
while (i < MULTICAST_CAM_TABLE_NUM) {
temac_indirect_out32_locked(lp, XTE_MAW0_OFFSET, 0);
temac_indirect_out32_locked(lp, XTE_MAW1_OFFSET, i << 16);
i++;
}
/* Enable address filter block if currently disabled */
if (temac_indirect_in32_locked(lp, XTE_AFM_OFFSET)
& XTE_AFM_EPPRM_MASK) {
temac_indirect_out32_locked(lp, XTE_AFM_OFFSET, 0);
promisc_mode_disabled = true;
}
spin_unlock_irqrestore(lp->indirect_lock, flags);
if (promisc_mode_disabled)
dev_info(&ndev->dev, "Promiscuous mode disabled.\n");
}
static struct temac_option {
int flg;
u32 opt;
u32 reg;
u32 m_or;
u32 m_and;
} temac_options[] = {
/* Turn on jumbo packet support for both Rx and Tx */
{
.opt = XTE_OPTION_JUMBO,
.reg = XTE_TXC_OFFSET,
.m_or = XTE_TXC_TXJMBO_MASK,
},
{
.opt = XTE_OPTION_JUMBO,
.reg = XTE_RXC1_OFFSET,
.m_or =XTE_RXC1_RXJMBO_MASK,
},
/* Turn on VLAN packet support for both Rx and Tx */
{
.opt = XTE_OPTION_VLAN,
.reg = XTE_TXC_OFFSET,
.m_or =XTE_TXC_TXVLAN_MASK,
},
{
.opt = XTE_OPTION_VLAN,
.reg = XTE_RXC1_OFFSET,
.m_or =XTE_RXC1_RXVLAN_MASK,
},
/* Turn on FCS stripping on receive packets */
{
.opt = XTE_OPTION_FCS_STRIP,
.reg = XTE_RXC1_OFFSET,
.m_or =XTE_RXC1_RXFCS_MASK,
},
/* Turn on FCS insertion on transmit packets */
{
.opt = XTE_OPTION_FCS_INSERT,
.reg = XTE_TXC_OFFSET,
.m_or =XTE_TXC_TXFCS_MASK,
},
/* Turn on length/type field checking on receive packets */
{
.opt = XTE_OPTION_LENTYPE_ERR,
.reg = XTE_RXC1_OFFSET,
.m_or =XTE_RXC1_RXLT_MASK,
},
/* Turn on flow control */
{
.opt = XTE_OPTION_FLOW_CONTROL,
.reg = XTE_FCC_OFFSET,
.m_or =XTE_FCC_RXFLO_MASK,
},
/* Turn on flow control */
{
.opt = XTE_OPTION_FLOW_CONTROL,
.reg = XTE_FCC_OFFSET,
.m_or =XTE_FCC_TXFLO_MASK,
},
/* Turn on promiscuous frame filtering (all frames are received ) */
{
.opt = XTE_OPTION_PROMISC,
.reg = XTE_AFM_OFFSET,
.m_or =XTE_AFM_EPPRM_MASK,
},
/* Enable transmitter if not already enabled */
{
.opt = XTE_OPTION_TXEN,
.reg = XTE_TXC_OFFSET,
.m_or =XTE_TXC_TXEN_MASK,
},
/* Enable receiver? */
{
.opt = XTE_OPTION_RXEN,
.reg = XTE_RXC1_OFFSET,
.m_or =XTE_RXC1_RXEN_MASK,
},
{}
};
/**
* temac_setoptions
*/
static u32 temac_setoptions(struct net_device *ndev, u32 options)
{
struct temac_local *lp = netdev_priv(ndev);
struct temac_option *tp = &temac_options[0];
int reg;
unsigned long flags;
spin_lock_irqsave(lp->indirect_lock, flags);
while (tp->opt) {
reg = temac_indirect_in32_locked(lp, tp->reg) & ~tp->m_or;
if (options & tp->opt) {
reg |= tp->m_or;
temac_indirect_out32_locked(lp, tp->reg, reg);
}
tp++;
}
spin_unlock_irqrestore(lp->indirect_lock, flags);
lp->options |= options;
return 0;
}
/* Initialize temac */
static void temac_device_reset(struct net_device *ndev)
{
struct temac_local *lp = netdev_priv(ndev);
u32 timeout;
u32 val;
unsigned long flags;
/* Perform a software reset */
/* 0x300 host enable bit ? */
/* reset PHY through control register ?:1 */
dev_dbg(&ndev->dev, "%s()\n", __func__);
/* Reset the receiver and wait for it to finish reset */
temac_indirect_out32(lp, XTE_RXC1_OFFSET, XTE_RXC1_RXRST_MASK);
timeout = 1000;
while (temac_indirect_in32(lp, XTE_RXC1_OFFSET) & XTE_RXC1_RXRST_MASK) {
udelay(1);
if (--timeout == 0) {
dev_err(&ndev->dev,
"temac_device_reset RX reset timeout!!\n");
break;
}
}
/* Reset the transmitter and wait for it to finish reset */
temac_indirect_out32(lp, XTE_TXC_OFFSET, XTE_TXC_TXRST_MASK);
timeout = 1000;
while (temac_indirect_in32(lp, XTE_TXC_OFFSET) & XTE_TXC_TXRST_MASK) {
udelay(1);
if (--timeout == 0) {
dev_err(&ndev->dev,
"temac_device_reset TX reset timeout!!\n");
break;
}
}
/* Disable the receiver */
spin_lock_irqsave(lp->indirect_lock, flags);
val = temac_indirect_in32_locked(lp, XTE_RXC1_OFFSET);
temac_indirect_out32_locked(lp, XTE_RXC1_OFFSET,
val & ~XTE_RXC1_RXEN_MASK);
spin_unlock_irqrestore(lp->indirect_lock, flags);
/* Reset Local Link (DMA) */
lp->dma_out(lp, DMA_CONTROL_REG, DMA_CONTROL_RST);
timeout = 1000;
while (lp->dma_in(lp, DMA_CONTROL_REG) & DMA_CONTROL_RST) {
udelay(1);
if (--timeout == 0) {
dev_err(&ndev->dev,
"temac_device_reset DMA reset timeout!!\n");
break;
}
}
lp->dma_out(lp, DMA_CONTROL_REG, DMA_TAIL_ENABLE);
if (temac_dma_bd_init(ndev)) {
dev_err(&ndev->dev,
"temac_device_reset descriptor allocation failed\n");
}
spin_lock_irqsave(lp->indirect_lock, flags);
temac_indirect_out32_locked(lp, XTE_RXC0_OFFSET, 0);
temac_indirect_out32_locked(lp, XTE_RXC1_OFFSET, 0);
temac_indirect_out32_locked(lp, XTE_TXC_OFFSET, 0);
temac_indirect_out32_locked(lp, XTE_FCC_OFFSET, XTE_FCC_RXFLO_MASK);
spin_unlock_irqrestore(lp->indirect_lock, flags);
/* Sync default options with HW
* but leave receiver and transmitter disabled. */
temac_setoptions(ndev,
lp->options & ~(XTE_OPTION_TXEN | XTE_OPTION_RXEN));
temac_do_set_mac_address(ndev);
/* Set address filter table */
temac_set_multicast_list(ndev);
if (temac_setoptions(ndev, lp->options))
dev_err(&ndev->dev, "Error setting TEMAC options\n");
/* Init Driver variable */
netif_trans_update(ndev); /* prevent tx timeout */
}
static void temac_adjust_link(struct net_device *ndev)
{
struct temac_local *lp = netdev_priv(ndev);
struct phy_device *phy = ndev->phydev;
u32 mii_speed;
int link_state;
unsigned long flags;
/* hash together the state values to decide if something has changed */
link_state = phy->speed | (phy->duplex << 1) | phy->link;
if (lp->last_link != link_state) {
spin_lock_irqsave(lp->indirect_lock, flags);
mii_speed = temac_indirect_in32_locked(lp, XTE_EMCFG_OFFSET);
mii_speed &= ~XTE_EMCFG_LINKSPD_MASK;
switch (phy->speed) {
case SPEED_1000: mii_speed |= XTE_EMCFG_LINKSPD_1000; break;
case SPEED_100: mii_speed |= XTE_EMCFG_LINKSPD_100; break;
case SPEED_10: mii_speed |= XTE_EMCFG_LINKSPD_10; break;
}
/* Write new speed setting out to TEMAC */
temac_indirect_out32_locked(lp, XTE_EMCFG_OFFSET, mii_speed);
spin_unlock_irqrestore(lp->indirect_lock, flags);
lp->last_link = link_state;
phy_print_status(phy);
}
}
#ifdef CONFIG_64BIT
static void ptr_to_txbd(void *p, struct cdmac_bd *bd)
{
bd->app3 = (u32)(((u64)p) >> 32);
bd->app4 = (u32)((u64)p & 0xFFFFFFFF);
}
static void *ptr_from_txbd(struct cdmac_bd *bd)
{
return (void *)(((u64)(bd->app3) << 32) | bd->app4);
}
#else
static void ptr_to_txbd(void *p, struct cdmac_bd *bd)
{
bd->app4 = (u32)p;
}
static void *ptr_from_txbd(struct cdmac_bd *bd)
{
return (void *)(bd->app4);
}
#endif
static void temac_start_xmit_done(struct net_device *ndev)
{
struct temac_local *lp = netdev_priv(ndev);
struct cdmac_bd *cur_p;
unsigned int stat = 0;
struct sk_buff *skb;
cur_p = &lp->tx_bd_v[lp->tx_bd_ci];
stat = be32_to_cpu(cur_p->app0);
while (stat & STS_CTRL_APP0_CMPLT) {
dma_unmap_single(ndev->dev.parent, be32_to_cpu(cur_p->phys),
be32_to_cpu(cur_p->len), DMA_TO_DEVICE);
skb = (struct sk_buff *)ptr_from_txbd(cur_p);
if (skb)
dev_consume_skb_irq(skb);
cur_p->app0 = 0;
cur_p->app1 = 0;
cur_p->app2 = 0;
cur_p->app3 = 0;
cur_p->app4 = 0;
ndev->stats.tx_packets++;
ndev->stats.tx_bytes += be32_to_cpu(cur_p->len);
lp->tx_bd_ci++;
if (lp->tx_bd_ci >= TX_BD_NUM)
lp->tx_bd_ci = 0;
cur_p = &lp->tx_bd_v[lp->tx_bd_ci];
stat = be32_to_cpu(cur_p->app0);
}
/* Matches barrier in temac_start_xmit */
smp_mb();
netif_wake_queue(ndev);
}
static inline int temac_check_tx_bd_space(struct temac_local *lp, int num_frag)
{
struct cdmac_bd *cur_p;
int tail;
tail = lp->tx_bd_tail;
cur_p = &lp->tx_bd_v[tail];
do {
if (cur_p->app0)
return NETDEV_TX_BUSY;
tail++;
if (tail >= TX_BD_NUM)
tail = 0;
cur_p = &lp->tx_bd_v[tail];
num_frag--;
} while (num_frag >= 0);
return 0;
}
static netdev_tx_t
temac_start_xmit(struct sk_buff *skb, struct net_device *ndev)
{
struct temac_local *lp = netdev_priv(ndev);
struct cdmac_bd *cur_p;
dma_addr_t start_p, tail_p, skb_dma_addr;
int ii;
unsigned long num_frag;
skb_frag_t *frag;
num_frag = skb_shinfo(skb)->nr_frags;
frag = &skb_shinfo(skb)->frags[0];
start_p = lp->tx_bd_p + sizeof(*lp->tx_bd_v) * lp->tx_bd_tail;
cur_p = &lp->tx_bd_v[lp->tx_bd_tail];
if (temac_check_tx_bd_space(lp, num_frag + 1)) {
if (netif_queue_stopped(ndev))
return NETDEV_TX_BUSY;
netif_stop_queue(ndev);
/* Matches barrier in temac_start_xmit_done */
smp_mb();
/* Space might have just been freed - check again */
if (temac_check_tx_bd_space(lp, num_frag + 1))
return NETDEV_TX_BUSY;
netif_wake_queue(ndev);
}
cur_p->app0 = 0;
if (skb->ip_summed == CHECKSUM_PARTIAL) {
unsigned int csum_start_off = skb_checksum_start_offset(skb);
unsigned int csum_index_off = csum_start_off + skb->csum_offset;
cur_p->app0 |= cpu_to_be32(0x000001); /* TX Checksum Enabled */
cur_p->app1 = cpu_to_be32((csum_start_off << 16)
| csum_index_off);
cur_p->app2 = 0; /* initial checksum seed */
}
cur_p->app0 |= cpu_to_be32(STS_CTRL_APP0_SOP);
skb_dma_addr = dma_map_single(ndev->dev.parent, skb->data,
skb_headlen(skb), DMA_TO_DEVICE);
cur_p->len = cpu_to_be32(skb_headlen(skb));
if (WARN_ON_ONCE(dma_mapping_error(ndev->dev.parent, skb_dma_addr))) {
dev_kfree_skb_any(skb);
ndev->stats.tx_dropped++;
return NETDEV_TX_OK;
}
cur_p->phys = cpu_to_be32(skb_dma_addr);
for (ii = 0; ii < num_frag; ii++) {
if (++lp->tx_bd_tail >= TX_BD_NUM)
lp->tx_bd_tail = 0;
cur_p = &lp->tx_bd_v[lp->tx_bd_tail];
skb_dma_addr = dma_map_single(ndev->dev.parent,
skb_frag_address(frag),
skb_frag_size(frag),
DMA_TO_DEVICE);
if (dma_mapping_error(ndev->dev.parent, skb_dma_addr)) {
if (--lp->tx_bd_tail < 0)
lp->tx_bd_tail = TX_BD_NUM - 1;
cur_p = &lp->tx_bd_v[lp->tx_bd_tail];
while (--ii >= 0) {
--frag;
dma_unmap_single(ndev->dev.parent,
be32_to_cpu(cur_p->phys),
skb_frag_size(frag),
DMA_TO_DEVICE);
if (--lp->tx_bd_tail < 0)
lp->tx_bd_tail = TX_BD_NUM - 1;
cur_p = &lp->tx_bd_v[lp->tx_bd_tail];
}
dma_unmap_single(ndev->dev.parent,
be32_to_cpu(cur_p->phys),
skb_headlen(skb), DMA_TO_DEVICE);
dev_kfree_skb_any(skb);
ndev->stats.tx_dropped++;
return NETDEV_TX_OK;
}
cur_p->phys = cpu_to_be32(skb_dma_addr);
cur_p->len = cpu_to_be32(skb_frag_size(frag));
cur_p->app0 = 0;
frag++;
}
cur_p->app0 |= cpu_to_be32(STS_CTRL_APP0_EOP);
/* Mark last fragment with skb address, so it can be consumed
* in temac_start_xmit_done()
*/
ptr_to_txbd((void *)skb, cur_p);
tail_p = lp->tx_bd_p + sizeof(*lp->tx_bd_v) * lp->tx_bd_tail;
lp->tx_bd_tail++;
if (lp->tx_bd_tail >= TX_BD_NUM)
lp->tx_bd_tail = 0;
skb_tx_timestamp(skb);
/* Kick off the transfer */
wmb();
lp->dma_out(lp, TX_TAILDESC_PTR, tail_p); /* DMA start */
return NETDEV_TX_OK;
}
static int ll_temac_recv_buffers_available(struct temac_local *lp)
{
int available;
if (!lp->rx_skb[lp->rx_bd_ci])
return 0;
available = 1 + lp->rx_bd_tail - lp->rx_bd_ci;
if (available <= 0)
available += RX_BD_NUM;
return available;
}
static void ll_temac_recv(struct net_device *ndev)
{
struct temac_local *lp = netdev_priv(ndev);
unsigned long flags;
int rx_bd;
bool update_tail = false;
spin_lock_irqsave(&lp->rx_lock, flags);
/* Process all received buffers, passing them on network
* stack. After this, the buffer descriptors will be in an
* un-allocated stage, where no skb is allocated for it, and
* they are therefore not available for TEMAC/DMA.
*/
do {
struct cdmac_bd *bd = &lp->rx_bd_v[lp->rx_bd_ci];
struct sk_buff *skb = lp->rx_skb[lp->rx_bd_ci];
unsigned int bdstat = be32_to_cpu(bd->app0);
int length;
/* While this should not normally happen, we can end
* here when GFP_ATOMIC allocations fail, and we
* therefore have un-allocated buffers.
*/
if (!skb)
break;
/* Loop over all completed buffer descriptors */
if (!(bdstat & STS_CTRL_APP0_CMPLT))
break;
dma_unmap_single(ndev->dev.parent, be32_to_cpu(bd->phys),
XTE_MAX_JUMBO_FRAME_SIZE, DMA_FROM_DEVICE);
/* The buffer is not valid for DMA anymore */
bd->phys = 0;
bd->len = 0;
length = be32_to_cpu(bd->app4) & 0x3FFF;
skb_put(skb, length);
skb->protocol = eth_type_trans(skb, ndev);
skb_checksum_none_assert(skb);
/* if we're doing rx csum offload, set it up */
if (((lp->temac_features & TEMAC_FEATURE_RX_CSUM) != 0) &&
(skb->protocol == htons(ETH_P_IP)) &&
(skb->len > 64)) {
/* Convert from device endianness (be32) to cpu
* endiannes, and if necessary swap the bytes
* (back) for proper IP checksum byte order
* (be16).
*/
skb->csum = htons(be32_to_cpu(bd->app3) & 0xFFFF);
skb->ip_summed = CHECKSUM_COMPLETE;
}
if (!skb_defer_rx_timestamp(skb))
netif_rx(skb);
/* The skb buffer is now owned by network stack above */
lp->rx_skb[lp->rx_bd_ci] = NULL;
ndev->stats.rx_packets++;
ndev->stats.rx_bytes += length;
rx_bd = lp->rx_bd_ci;
if (++lp->rx_bd_ci >= RX_BD_NUM)
lp->rx_bd_ci = 0;
} while (rx_bd != lp->rx_bd_tail);
/* DMA operations will halt when the last buffer descriptor is
* processed (ie. the one pointed to by RX_TAILDESC_PTR).
* When that happens, no more interrupt events will be
* generated. No IRQ_COAL or IRQ_DLY, and not even an
* IRQ_ERR. To avoid stalling, we schedule a delayed work
* when there is a potential risk of that happening. The work
* will call this function, and thus re-schedule itself until
* enough buffers are available again.
*/
if (ll_temac_recv_buffers_available(lp) < lp->coalesce_count_rx)
schedule_delayed_work(&lp->restart_work, HZ / 1000);
/* Allocate new buffers for those buffer descriptors that were
* passed to network stack. Note that GFP_ATOMIC allocations
* can fail (e.g. when a larger burst of GFP_ATOMIC
* allocations occurs), so while we try to allocate all
* buffers in the same interrupt where they were processed, we
* continue with what we could get in case of allocation
* failure. Allocation of remaining buffers will be retried
* in following calls.
*/
while (1) {
struct sk_buff *skb;
struct cdmac_bd *bd;
dma_addr_t skb_dma_addr;
rx_bd = lp->rx_bd_tail + 1;
if (rx_bd >= RX_BD_NUM)
rx_bd = 0;
bd = &lp->rx_bd_v[rx_bd];
if (bd->phys)
break; /* All skb's allocated */
skb = netdev_alloc_skb_ip_align(ndev, XTE_MAX_JUMBO_FRAME_SIZE);
if (!skb) {
dev_warn(&ndev->dev, "skb alloc failed\n");
break;
}
skb_dma_addr = dma_map_single(ndev->dev.parent, skb->data,
XTE_MAX_JUMBO_FRAME_SIZE,
DMA_FROM_DEVICE);
if (WARN_ON_ONCE(dma_mapping_error(ndev->dev.parent,
skb_dma_addr))) {
dev_kfree_skb_any(skb);
break;
}
bd->phys = cpu_to_be32(skb_dma_addr);
bd->len = cpu_to_be32(XTE_MAX_JUMBO_FRAME_SIZE);
bd->app0 = cpu_to_be32(STS_CTRL_APP0_IRQONEND);
lp->rx_skb[rx_bd] = skb;
lp->rx_bd_tail = rx_bd;
update_tail = true;
}
/* Move tail pointer when buffers have been allocated */
if (update_tail) {
lp->dma_out(lp, RX_TAILDESC_PTR,
lp->rx_bd_p + sizeof(*lp->rx_bd_v) * lp->rx_bd_tail);
}
spin_unlock_irqrestore(&lp->rx_lock, flags);
}
/* Function scheduled to ensure a restart in case of DMA halt
* condition caused by running out of buffer descriptors.
*/
static void ll_temac_restart_work_func(struct work_struct *work)
{
struct temac_local *lp = container_of(work, struct temac_local,
restart_work.work);
struct net_device *ndev = lp->ndev;
ll_temac_recv(ndev);
}
static irqreturn_t ll_temac_tx_irq(int irq, void *_ndev)
{
struct net_device *ndev = _ndev;
struct temac_local *lp = netdev_priv(ndev);
unsigned int status;
status = lp->dma_in(lp, TX_IRQ_REG);
lp->dma_out(lp, TX_IRQ_REG, status);
if (status & (IRQ_COAL | IRQ_DLY))
temac_start_xmit_done(lp->ndev);
if (status & (IRQ_ERR | IRQ_DMAERR))
dev_err_ratelimited(&ndev->dev,
"TX error 0x%x TX_CHNL_STS=0x%08x\n",
status, lp->dma_in(lp, TX_CHNL_STS));
return IRQ_HANDLED;
}
static irqreturn_t ll_temac_rx_irq(int irq, void *_ndev)
{
struct net_device *ndev = _ndev;
struct temac_local *lp = netdev_priv(ndev);
unsigned int status;
/* Read and clear the status registers */
status = lp->dma_in(lp, RX_IRQ_REG);
lp->dma_out(lp, RX_IRQ_REG, status);
if (status & (IRQ_COAL | IRQ_DLY))
ll_temac_recv(lp->ndev);
if (status & (IRQ_ERR | IRQ_DMAERR))
dev_err_ratelimited(&ndev->dev,
"RX error 0x%x RX_CHNL_STS=0x%08x\n",
status, lp->dma_in(lp, RX_CHNL_STS));
return IRQ_HANDLED;
}
static int temac_open(struct net_device *ndev)
{
struct temac_local *lp = netdev_priv(ndev);
struct phy_device *phydev = NULL;
int rc;
dev_dbg(&ndev->dev, "temac_open()\n");
if (lp->phy_node) {
phydev = of_phy_connect(lp->ndev, lp->phy_node,
temac_adjust_link, 0, 0);
if (!phydev) {
dev_err(lp->dev, "of_phy_connect() failed\n");
return -ENODEV;
}
phy_start(phydev);
} else if (strlen(lp->phy_name) > 0) {
phydev = phy_connect(lp->ndev, lp->phy_name, temac_adjust_link,
lp->phy_interface);
if (IS_ERR(phydev)) {
dev_err(lp->dev, "phy_connect() failed\n");
return PTR_ERR(phydev);
}
phy_start(phydev);
}
temac_device_reset(ndev);
rc = request_irq(lp->tx_irq, ll_temac_tx_irq, 0, ndev->name, ndev);
if (rc)
goto err_tx_irq;
rc = request_irq(lp->rx_irq, ll_temac_rx_irq, 0, ndev->name, ndev);
if (rc)
goto err_rx_irq;
return 0;
err_rx_irq:
free_irq(lp->tx_irq, ndev);
err_tx_irq:
if (phydev)
phy_disconnect(phydev);
dev_err(lp->dev, "request_irq() failed\n");
return rc;
}
static int temac_stop(struct net_device *ndev)
{
struct temac_local *lp = netdev_priv(ndev);
struct phy_device *phydev = ndev->phydev;
dev_dbg(&ndev->dev, "temac_close()\n");
cancel_delayed_work_sync(&lp->restart_work);
free_irq(lp->tx_irq, ndev);
free_irq(lp->rx_irq, ndev);
if (phydev)
phy_disconnect(phydev);
temac_dma_bd_release(ndev);
return 0;
}
#ifdef CONFIG_NET_POLL_CONTROLLER
static void
temac_poll_controller(struct net_device *ndev)
{
struct temac_local *lp = netdev_priv(ndev);
disable_irq(lp->tx_irq);
disable_irq(lp->rx_irq);
ll_temac_rx_irq(lp->tx_irq, ndev);
ll_temac_tx_irq(lp->rx_irq, ndev);
enable_irq(lp->tx_irq);
enable_irq(lp->rx_irq);
}
#endif
static int temac_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd)
{
if (!netif_running(ndev))
return -EINVAL;
if (!ndev->phydev)
return -EINVAL;
return phy_mii_ioctl(ndev->phydev, rq, cmd);
}
static const struct net_device_ops temac_netdev_ops = {
.ndo_open = temac_open,
.ndo_stop = temac_stop,
.ndo_start_xmit = temac_start_xmit,
.ndo_set_rx_mode = temac_set_multicast_list,
.ndo_set_mac_address = temac_set_mac_address,
.ndo_validate_addr = eth_validate_addr,
.ndo_do_ioctl = temac_ioctl,
#ifdef CONFIG_NET_POLL_CONTROLLER
.ndo_poll_controller = temac_poll_controller,
#endif
};
/* ---------------------------------------------------------------------
* SYSFS device attributes
*/
static ssize_t temac_show_llink_regs(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct net_device *ndev = dev_get_drvdata(dev);
struct temac_local *lp = netdev_priv(ndev);
int i, len = 0;
for (i = 0; i < 0x11; i++)
len += sprintf(buf + len, "%.8x%s", lp->dma_in(lp, i),
(i % 8) == 7 ? "\n" : " ");
len += sprintf(buf + len, "\n");
return len;
}
static DEVICE_ATTR(llink_regs, 0440, temac_show_llink_regs, NULL);
static struct attribute *temac_device_attrs[] = {
&dev_attr_llink_regs.attr,
NULL,
};
static const struct attribute_group temac_attr_group = {
.attrs = temac_device_attrs,
};
/* ethtool support */
static const struct ethtool_ops temac_ethtool_ops = {
.nway_reset = phy_ethtool_nway_reset,
.get_link = ethtool_op_get_link,
.get_ts_info = ethtool_op_get_ts_info,
.get_link_ksettings = phy_ethtool_get_link_ksettings,
.set_link_ksettings = phy_ethtool_set_link_ksettings,
};
static int temac_probe(struct platform_device *pdev)
{
struct ll_temac_platform_data *pdata = dev_get_platdata(&pdev->dev);
struct device_node *temac_np = dev_of_node(&pdev->dev), *dma_np;
struct temac_local *lp;
struct net_device *ndev;
struct resource *res;
const void *addr;
__be32 *p;
bool little_endian;
int rc = 0;
/* Init network device structure */
ndev = devm_alloc_etherdev(&pdev->dev, sizeof(*lp));
if (!ndev)
return -ENOMEM;
platform_set_drvdata(pdev, ndev);
SET_NETDEV_DEV(ndev, &pdev->dev);
ndev->features = NETIF_F_SG;
ndev->netdev_ops = &temac_netdev_ops;
ndev->ethtool_ops = &temac_ethtool_ops;
#if 0
ndev->features |= NETIF_F_IP_CSUM; /* Can checksum TCP/UDP over IPv4. */
ndev->features |= NETIF_F_HW_CSUM; /* Can checksum all the packets. */
ndev->features |= NETIF_F_IPV6_CSUM; /* Can checksum IPV6 TCP/UDP */
ndev->features |= NETIF_F_HIGHDMA; /* Can DMA to high memory. */
ndev->features |= NETIF_F_HW_VLAN_CTAG_TX; /* Transmit VLAN hw accel */
ndev->features |= NETIF_F_HW_VLAN_CTAG_RX; /* Receive VLAN hw acceleration */
ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER; /* Receive VLAN filtering */
ndev->features |= NETIF_F_VLAN_CHALLENGED; /* cannot handle VLAN pkts */
ndev->features |= NETIF_F_GSO; /* Enable software GSO. */
ndev->features |= NETIF_F_MULTI_QUEUE; /* Has multiple TX/RX queues */
ndev->features |= NETIF_F_LRO; /* large receive offload */
#endif
/* setup temac private info structure */
lp = netdev_priv(ndev);
lp->ndev = ndev;
lp->dev = &pdev->dev;
lp->options = XTE_OPTION_DEFAULTS;
spin_lock_init(&lp->rx_lock);
INIT_DELAYED_WORK(&lp->restart_work, ll_temac_restart_work_func);
/* Setup mutex for synchronization of indirect register access */
if (pdata) {
if (!pdata->indirect_lock) {
dev_err(&pdev->dev,
"indirect_lock missing in platform_data\n");
return -EINVAL;
}
lp->indirect_lock = pdata->indirect_lock;
} else {
lp->indirect_lock = devm_kmalloc(&pdev->dev,
sizeof(*lp->indirect_lock),
GFP_KERNEL);
spin_lock_init(lp->indirect_lock);
}
/* map device registers */
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
lp->regs = devm_ioremap_nocache(&pdev->dev, res->start,
resource_size(res));
if (IS_ERR(lp->regs)) {
dev_err(&pdev->dev, "could not map TEMAC registers\n");
return PTR_ERR(lp->regs);
}
/* Select register access functions with the specified
* endianness mode. Default for OF devices is big-endian.
*/
little_endian = false;
if (temac_np) {
if (of_get_property(temac_np, "little-endian", NULL))
little_endian = true;
} else if (pdata) {
little_endian = pdata->reg_little_endian;
}
if (little_endian) {
lp->temac_ior = _temac_ior_le;
lp->temac_iow = _temac_iow_le;
} else {
lp->temac_ior = _temac_ior_be;
lp->temac_iow = _temac_iow_be;
}
/* Setup checksum offload, but default to off if not specified */
lp->temac_features = 0;
if (temac_np) {
p = (__be32 *)of_get_property(temac_np, "xlnx,txcsum", NULL);
if (p && be32_to_cpu(*p))
lp->temac_features |= TEMAC_FEATURE_TX_CSUM;
p = (__be32 *)of_get_property(temac_np, "xlnx,rxcsum", NULL);
if (p && be32_to_cpu(*p))
lp->temac_features |= TEMAC_FEATURE_RX_CSUM;
} else if (pdata) {
if (pdata->txcsum)
lp->temac_features |= TEMAC_FEATURE_TX_CSUM;
if (pdata->rxcsum)
lp->temac_features |= TEMAC_FEATURE_RX_CSUM;
}
if (lp->temac_features & TEMAC_FEATURE_TX_CSUM)
/* Can checksum TCP/UDP over IPv4. */
ndev->features |= NETIF_F_IP_CSUM;
/* Setup LocalLink DMA */
if (temac_np) {
/* Find the DMA node, map the DMA registers, and
* decode the DMA IRQs.
*/
dma_np = of_parse_phandle(temac_np, "llink-connected", 0);
if (!dma_np) {
dev_err(&pdev->dev, "could not find DMA node\n");
return -ENODEV;
}
/* Setup the DMA register accesses, could be DCR or
* memory mapped.
*/
if (temac_dcr_setup(lp, pdev, dma_np)) {
/* no DCR in the device tree, try non-DCR */
lp->sdma_regs = devm_of_iomap(&pdev->dev, dma_np, 0,
NULL);
if (IS_ERR(lp->sdma_regs)) {
dev_err(&pdev->dev,
"unable to map DMA registers\n");
of_node_put(dma_np);
return PTR_ERR(lp->sdma_regs);
}
if (of_get_property(dma_np, "little-endian", NULL)) {
lp->dma_in = temac_dma_in32_le;
lp->dma_out = temac_dma_out32_le;
} else {
lp->dma_in = temac_dma_in32_be;
lp->dma_out = temac_dma_out32_be;
}
dev_dbg(&pdev->dev, "MEM base: %p\n", lp->sdma_regs);
}
/* Get DMA RX and TX interrupts */
lp->rx_irq = irq_of_parse_and_map(dma_np, 0);
lp->tx_irq = irq_of_parse_and_map(dma_np, 1);
/* Use defaults for IRQ delay/coalescing setup. These
* are configuration values, so does not belong in
* device-tree.
*/
lp->tx_chnl_ctrl = 0x10220000;
lp->rx_chnl_ctrl = 0xff070000;
lp->coalesce_count_rx = 0x07;
/* Finished with the DMA node; drop the reference */
of_node_put(dma_np);
} else if (pdata) {
/* 2nd memory resource specifies DMA registers */
lp->sdma_regs = devm_platform_ioremap_resource(pdev, 1);
if (IS_ERR(lp->sdma_regs)) {
dev_err(&pdev->dev,
"could not map DMA registers\n");
return PTR_ERR(lp->sdma_regs);
}
if (pdata->dma_little_endian) {
lp->dma_in = temac_dma_in32_le;
lp->dma_out = temac_dma_out32_le;
} else {
lp->dma_in = temac_dma_in32_be;
lp->dma_out = temac_dma_out32_be;
}
/* Get DMA RX and TX interrupts */
lp->rx_irq = platform_get_irq(pdev, 0);
lp->tx_irq = platform_get_irq(pdev, 1);
/* IRQ delay/coalescing setup */
if (pdata->tx_irq_timeout || pdata->tx_irq_count)
lp->tx_chnl_ctrl = (pdata->tx_irq_timeout << 24) |
(pdata->tx_irq_count << 16);
else
lp->tx_chnl_ctrl = 0x10220000;
if (pdata->rx_irq_timeout || pdata->rx_irq_count) {
lp->rx_chnl_ctrl = (pdata->rx_irq_timeout << 24) |
(pdata->rx_irq_count << 16);
lp->coalesce_count_rx = pdata->rx_irq_count;
} else {
lp->rx_chnl_ctrl = 0xff070000;
lp->coalesce_count_rx = 0x07;
}
}
/* Error handle returned DMA RX and TX interrupts */
if (lp->rx_irq < 0) {
if (lp->rx_irq != -EPROBE_DEFER)
dev_err(&pdev->dev, "could not get DMA RX irq\n");
return lp->rx_irq;
}
if (lp->tx_irq < 0) {
if (lp->tx_irq != -EPROBE_DEFER)
dev_err(&pdev->dev, "could not get DMA TX irq\n");
return lp->tx_irq;
}
if (temac_np) {
/* Retrieve the MAC address */
addr = of_get_mac_address(temac_np);
if (IS_ERR(addr)) {
dev_err(&pdev->dev, "could not find MAC address\n");
return -ENODEV;
}
temac_init_mac_address(ndev, addr);
} else if (pdata) {
temac_init_mac_address(ndev, pdata->mac_addr);
}
rc = temac_mdio_setup(lp, pdev);
if (rc)
dev_warn(&pdev->dev, "error registering MDIO bus\n");
if (temac_np) {
lp->phy_node = of_parse_phandle(temac_np, "phy-handle", 0);
if (lp->phy_node)
dev_dbg(lp->dev, "using PHY node %pOF\n", temac_np);
} else if (pdata) {
snprintf(lp->phy_name, sizeof(lp->phy_name),
PHY_ID_FMT, lp->mii_bus->id, pdata->phy_addr);
lp->phy_interface = pdata->phy_interface;
}
/* Add the device attributes */
rc = sysfs_create_group(&lp->dev->kobj, &temac_attr_group);
if (rc) {
dev_err(lp->dev, "Error creating sysfs files\n");
goto err_sysfs_create;
}
rc = register_netdev(lp->ndev);
if (rc) {
dev_err(lp->dev, "register_netdev() error (%i)\n", rc);
goto err_register_ndev;
}
return 0;
err_register_ndev:
sysfs_remove_group(&lp->dev->kobj, &temac_attr_group);
err_sysfs_create:
if (lp->phy_node)
of_node_put(lp->phy_node);
temac_mdio_teardown(lp);
return rc;
}
static int temac_remove(struct platform_device *pdev)
{
struct net_device *ndev = platform_get_drvdata(pdev);
struct temac_local *lp = netdev_priv(ndev);
unregister_netdev(ndev);
sysfs_remove_group(&lp->dev->kobj, &temac_attr_group);
if (lp->phy_node)
of_node_put(lp->phy_node);
temac_mdio_teardown(lp);
return 0;
}
static const struct of_device_id temac_of_match[] = {
{ .compatible = "xlnx,xps-ll-temac-1.01.b", },
{ .compatible = "xlnx,xps-ll-temac-2.00.a", },
{ .compatible = "xlnx,xps-ll-temac-2.02.a", },
{ .compatible = "xlnx,xps-ll-temac-2.03.a", },
{},
};
MODULE_DEVICE_TABLE(of, temac_of_match);
static struct platform_driver temac_driver = {
.probe = temac_probe,
.remove = temac_remove,
.driver = {
.name = "xilinx_temac",
.of_match_table = temac_of_match,
},
};
module_platform_driver(temac_driver);
MODULE_DESCRIPTION("Xilinx LL_TEMAC Ethernet driver");
MODULE_AUTHOR("Yoshio Kashiwagi");
MODULE_LICENSE("GPL");