blob: ab63d0d0304cb1012164edf8017b1d89aad638e6 [file] [log] [blame]
/*
* Copyright 2012-16 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: AMD
*
*/
#include "dce_transform.h"
#include "reg_helper.h"
#include "opp.h"
#include "basics/conversion.h"
#include "dc.h"
#define REG(reg) \
(xfm_dce->regs->reg)
#undef FN
#define FN(reg_name, field_name) \
xfm_dce->xfm_shift->field_name, xfm_dce->xfm_mask->field_name
#define CTX \
xfm_dce->base.ctx
#define DC_LOGGER \
xfm_dce->base.ctx->logger
#define IDENTITY_RATIO(ratio) (dc_fixpt_u2d19(ratio) == (1 << 19))
#define GAMUT_MATRIX_SIZE 12
#define SCL_PHASES 16
enum dcp_out_trunc_round_mode {
DCP_OUT_TRUNC_ROUND_MODE_TRUNCATE,
DCP_OUT_TRUNC_ROUND_MODE_ROUND
};
enum dcp_out_trunc_round_depth {
DCP_OUT_TRUNC_ROUND_DEPTH_14BIT,
DCP_OUT_TRUNC_ROUND_DEPTH_13BIT,
DCP_OUT_TRUNC_ROUND_DEPTH_12BIT,
DCP_OUT_TRUNC_ROUND_DEPTH_11BIT,
DCP_OUT_TRUNC_ROUND_DEPTH_10BIT,
DCP_OUT_TRUNC_ROUND_DEPTH_9BIT,
DCP_OUT_TRUNC_ROUND_DEPTH_8BIT
};
/* defines the various methods of bit reduction available for use */
enum dcp_bit_depth_reduction_mode {
DCP_BIT_DEPTH_REDUCTION_MODE_DITHER,
DCP_BIT_DEPTH_REDUCTION_MODE_ROUND,
DCP_BIT_DEPTH_REDUCTION_MODE_TRUNCATE,
DCP_BIT_DEPTH_REDUCTION_MODE_DISABLED,
DCP_BIT_DEPTH_REDUCTION_MODE_INVALID
};
enum dcp_spatial_dither_mode {
DCP_SPATIAL_DITHER_MODE_AAAA,
DCP_SPATIAL_DITHER_MODE_A_AA_A,
DCP_SPATIAL_DITHER_MODE_AABBAABB,
DCP_SPATIAL_DITHER_MODE_AABBCCAABBCC,
DCP_SPATIAL_DITHER_MODE_INVALID
};
enum dcp_spatial_dither_depth {
DCP_SPATIAL_DITHER_DEPTH_30BPP,
DCP_SPATIAL_DITHER_DEPTH_24BPP
};
enum csc_color_mode {
/* 00 - BITS2:0 Bypass */
CSC_COLOR_MODE_GRAPHICS_BYPASS,
/* 01 - hard coded coefficient TV RGB */
CSC_COLOR_MODE_GRAPHICS_PREDEFINED,
/* 04 - programmable OUTPUT CSC coefficient */
CSC_COLOR_MODE_GRAPHICS_OUTPUT_CSC,
};
enum grph_color_adjust_option {
GRPH_COLOR_MATRIX_HW_DEFAULT = 1,
GRPH_COLOR_MATRIX_SW
};
static const struct out_csc_color_matrix global_color_matrix[] = {
{ COLOR_SPACE_SRGB,
{ 0x2000, 0, 0, 0, 0, 0x2000, 0, 0, 0, 0, 0x2000, 0} },
{ COLOR_SPACE_SRGB_LIMITED,
{ 0x1B60, 0, 0, 0x200, 0, 0x1B60, 0, 0x200, 0, 0, 0x1B60, 0x200} },
{ COLOR_SPACE_YCBCR601,
{ 0xE00, 0xF447, 0xFDB9, 0x1000, 0x82F, 0x1012, 0x31F, 0x200, 0xFB47,
0xF6B9, 0xE00, 0x1000} },
{ COLOR_SPACE_YCBCR709, { 0xE00, 0xF349, 0xFEB7, 0x1000, 0x5D2, 0x1394, 0x1FA,
0x200, 0xFCCB, 0xF535, 0xE00, 0x1000} },
/* TODO: correct values below */
{ COLOR_SPACE_YCBCR601_LIMITED, { 0xE00, 0xF447, 0xFDB9, 0x1000, 0x991,
0x12C9, 0x3A6, 0x200, 0xFB47, 0xF6B9, 0xE00, 0x1000} },
{ COLOR_SPACE_YCBCR709_LIMITED, { 0xE00, 0xF349, 0xFEB7, 0x1000, 0x6CE, 0x16E3,
0x24F, 0x200, 0xFCCB, 0xF535, 0xE00, 0x1000} }
};
static bool setup_scaling_configuration(
struct dce_transform *xfm_dce,
const struct scaler_data *data)
{
REG_SET(SCL_BYPASS_CONTROL, 0, SCL_BYPASS_MODE, 0);
if (data->taps.h_taps + data->taps.v_taps <= 2) {
/* Set bypass */
if (xfm_dce->xfm_mask->SCL_PSCL_EN != 0)
REG_UPDATE_2(SCL_MODE, SCL_MODE, 0, SCL_PSCL_EN, 0);
else
REG_UPDATE(SCL_MODE, SCL_MODE, 0);
return false;
}
REG_SET_2(SCL_TAP_CONTROL, 0,
SCL_H_NUM_OF_TAPS, data->taps.h_taps - 1,
SCL_V_NUM_OF_TAPS, data->taps.v_taps - 1);
if (data->format <= PIXEL_FORMAT_GRPH_END)
REG_UPDATE(SCL_MODE, SCL_MODE, 1);
else
REG_UPDATE(SCL_MODE, SCL_MODE, 2);
if (xfm_dce->xfm_mask->SCL_PSCL_EN != 0)
REG_UPDATE(SCL_MODE, SCL_PSCL_EN, 1);
/* 1 - Replace out of bound pixels with edge */
REG_SET(SCL_CONTROL, 0, SCL_BOUNDARY_MODE, 1);
return true;
}
static void program_overscan(
struct dce_transform *xfm_dce,
const struct scaler_data *data)
{
int overscan_right = data->h_active
- data->recout.x - data->recout.width;
int overscan_bottom = data->v_active
- data->recout.y - data->recout.height;
if (xfm_dce->base.ctx->dc->debug.visual_confirm != VISUAL_CONFIRM_DISABLE) {
overscan_bottom += 2;
overscan_right += 2;
}
if (overscan_right < 0) {
BREAK_TO_DEBUGGER();
overscan_right = 0;
}
if (overscan_bottom < 0) {
BREAK_TO_DEBUGGER();
overscan_bottom = 0;
}
REG_SET_2(EXT_OVERSCAN_LEFT_RIGHT, 0,
EXT_OVERSCAN_LEFT, data->recout.x,
EXT_OVERSCAN_RIGHT, overscan_right);
REG_SET_2(EXT_OVERSCAN_TOP_BOTTOM, 0,
EXT_OVERSCAN_TOP, data->recout.y,
EXT_OVERSCAN_BOTTOM, overscan_bottom);
}
static void program_multi_taps_filter(
struct dce_transform *xfm_dce,
int taps,
const uint16_t *coeffs,
enum ram_filter_type filter_type)
{
int phase, pair;
int array_idx = 0;
int taps_pairs = (taps + 1) / 2;
int phases_to_program = SCL_PHASES / 2 + 1;
uint32_t power_ctl = 0;
if (!coeffs)
return;
/*We need to disable power gating on coeff memory to do programming*/
if (REG(DCFE_MEM_PWR_CTRL)) {
power_ctl = REG_READ(DCFE_MEM_PWR_CTRL);
REG_SET(DCFE_MEM_PWR_CTRL, power_ctl, SCL_COEFF_MEM_PWR_DIS, 1);
REG_WAIT(DCFE_MEM_PWR_STATUS, SCL_COEFF_MEM_PWR_STATE, 0, 1, 10);
}
for (phase = 0; phase < phases_to_program; phase++) {
/*we always program N/2 + 1 phases, total phases N, but N/2-1 are just mirror
phase 0 is unique and phase N/2 is unique if N is even*/
for (pair = 0; pair < taps_pairs; pair++) {
uint16_t odd_coeff = 0;
uint16_t even_coeff = coeffs[array_idx];
REG_SET_3(SCL_COEF_RAM_SELECT, 0,
SCL_C_RAM_FILTER_TYPE, filter_type,
SCL_C_RAM_PHASE, phase,
SCL_C_RAM_TAP_PAIR_IDX, pair);
if (taps % 2 && pair == taps_pairs - 1)
array_idx++;
else {
odd_coeff = coeffs[array_idx + 1];
array_idx += 2;
}
REG_SET_4(SCL_COEF_RAM_TAP_DATA, 0,
SCL_C_RAM_EVEN_TAP_COEF_EN, 1,
SCL_C_RAM_EVEN_TAP_COEF, even_coeff,
SCL_C_RAM_ODD_TAP_COEF_EN, 1,
SCL_C_RAM_ODD_TAP_COEF, odd_coeff);
}
}
/*We need to restore power gating on coeff memory to initial state*/
if (REG(DCFE_MEM_PWR_CTRL))
REG_WRITE(DCFE_MEM_PWR_CTRL, power_ctl);
}
static void program_viewport(
struct dce_transform *xfm_dce,
const struct rect *view_port)
{
REG_SET_2(VIEWPORT_START, 0,
VIEWPORT_X_START, view_port->x,
VIEWPORT_Y_START, view_port->y);
REG_SET_2(VIEWPORT_SIZE, 0,
VIEWPORT_HEIGHT, view_port->height,
VIEWPORT_WIDTH, view_port->width);
/* TODO: add stereo support */
}
static void calculate_inits(
struct dce_transform *xfm_dce,
const struct scaler_data *data,
struct scl_ratios_inits *inits)
{
struct fixed31_32 h_init;
struct fixed31_32 v_init;
inits->h_int_scale_ratio =
dc_fixpt_u2d19(data->ratios.horz) << 5;
inits->v_int_scale_ratio =
dc_fixpt_u2d19(data->ratios.vert) << 5;
h_init =
dc_fixpt_div_int(
dc_fixpt_add(
data->ratios.horz,
dc_fixpt_from_int(data->taps.h_taps + 1)),
2);
inits->h_init.integer = dc_fixpt_floor(h_init);
inits->h_init.fraction = dc_fixpt_u0d19(h_init) << 5;
v_init =
dc_fixpt_div_int(
dc_fixpt_add(
data->ratios.vert,
dc_fixpt_from_int(data->taps.v_taps + 1)),
2);
inits->v_init.integer = dc_fixpt_floor(v_init);
inits->v_init.fraction = dc_fixpt_u0d19(v_init) << 5;
}
static void program_scl_ratios_inits(
struct dce_transform *xfm_dce,
struct scl_ratios_inits *inits)
{
REG_SET(SCL_HORZ_FILTER_SCALE_RATIO, 0,
SCL_H_SCALE_RATIO, inits->h_int_scale_ratio);
REG_SET(SCL_VERT_FILTER_SCALE_RATIO, 0,
SCL_V_SCALE_RATIO, inits->v_int_scale_ratio);
REG_SET_2(SCL_HORZ_FILTER_INIT, 0,
SCL_H_INIT_INT, inits->h_init.integer,
SCL_H_INIT_FRAC, inits->h_init.fraction);
REG_SET_2(SCL_VERT_FILTER_INIT, 0,
SCL_V_INIT_INT, inits->v_init.integer,
SCL_V_INIT_FRAC, inits->v_init.fraction);
REG_WRITE(SCL_AUTOMATIC_MODE_CONTROL, 0);
}
static const uint16_t *get_filter_coeffs_16p(int taps, struct fixed31_32 ratio)
{
if (taps == 4)
return get_filter_4tap_16p(ratio);
else if (taps == 3)
return get_filter_3tap_16p(ratio);
else if (taps == 2)
return get_filter_2tap_16p();
else if (taps == 1)
return NULL;
else {
/* should never happen, bug */
BREAK_TO_DEBUGGER();
return NULL;
}
}
static void dce_transform_set_scaler(
struct transform *xfm,
const struct scaler_data *data)
{
struct dce_transform *xfm_dce = TO_DCE_TRANSFORM(xfm);
bool is_scaling_required;
bool filter_updated = false;
const uint16_t *coeffs_v, *coeffs_h;
/*Use all three pieces of memory always*/
REG_SET_2(LB_MEMORY_CTRL, 0,
LB_MEMORY_CONFIG, 0,
LB_MEMORY_SIZE, xfm_dce->lb_memory_size);
/* Clear SCL_F_SHARP_CONTROL value to 0 */
REG_WRITE(SCL_F_SHARP_CONTROL, 0);
/* 1. Program overscan */
program_overscan(xfm_dce, data);
/* 2. Program taps and configuration */
is_scaling_required = setup_scaling_configuration(xfm_dce, data);
if (is_scaling_required) {
/* 3. Calculate and program ratio, filter initialization */
struct scl_ratios_inits inits = { 0 };
calculate_inits(xfm_dce, data, &inits);
program_scl_ratios_inits(xfm_dce, &inits);
coeffs_v = get_filter_coeffs_16p(data->taps.v_taps, data->ratios.vert);
coeffs_h = get_filter_coeffs_16p(data->taps.h_taps, data->ratios.horz);
if (coeffs_v != xfm_dce->filter_v || coeffs_h != xfm_dce->filter_h) {
/* 4. Program vertical filters */
if (xfm_dce->filter_v == NULL)
REG_SET(SCL_VERT_FILTER_CONTROL, 0,
SCL_V_2TAP_HARDCODE_COEF_EN, 0);
program_multi_taps_filter(
xfm_dce,
data->taps.v_taps,
coeffs_v,
FILTER_TYPE_RGB_Y_VERTICAL);
program_multi_taps_filter(
xfm_dce,
data->taps.v_taps,
coeffs_v,
FILTER_TYPE_ALPHA_VERTICAL);
/* 5. Program horizontal filters */
if (xfm_dce->filter_h == NULL)
REG_SET(SCL_HORZ_FILTER_CONTROL, 0,
SCL_H_2TAP_HARDCODE_COEF_EN, 0);
program_multi_taps_filter(
xfm_dce,
data->taps.h_taps,
coeffs_h,
FILTER_TYPE_RGB_Y_HORIZONTAL);
program_multi_taps_filter(
xfm_dce,
data->taps.h_taps,
coeffs_h,
FILTER_TYPE_ALPHA_HORIZONTAL);
xfm_dce->filter_v = coeffs_v;
xfm_dce->filter_h = coeffs_h;
filter_updated = true;
}
}
/* 6. Program the viewport */
program_viewport(xfm_dce, &data->viewport);
/* 7. Set bit to flip to new coefficient memory */
if (filter_updated)
REG_UPDATE(SCL_UPDATE, SCL_COEF_UPDATE_COMPLETE, 1);
REG_UPDATE(LB_DATA_FORMAT, ALPHA_EN, data->lb_params.alpha_en);
}
/*****************************************************************************
* set_clamp
*
* @param depth : bit depth to set the clamp to (should match denorm)
*
* @brief
* Programs clamp according to panel bit depth.
*
*******************************************************************************/
static void set_clamp(
struct dce_transform *xfm_dce,
enum dc_color_depth depth)
{
int clamp_max = 0;
/* At the clamp block the data will be MSB aligned, so we set the max
* clamp accordingly.
* For example, the max value for 6 bits MSB aligned (14 bit bus) would
* be "11 1111 0000 0000" in binary, so 0x3F00.
*/
switch (depth) {
case COLOR_DEPTH_666:
/* 6bit MSB aligned on 14 bit bus '11 1111 0000 0000' */
clamp_max = 0x3F00;
break;
case COLOR_DEPTH_888:
/* 8bit MSB aligned on 14 bit bus '11 1111 1100 0000' */
clamp_max = 0x3FC0;
break;
case COLOR_DEPTH_101010:
/* 10bit MSB aligned on 14 bit bus '11 1111 1111 1100' */
clamp_max = 0x3FFC;
break;
case COLOR_DEPTH_121212:
/* 12bit MSB aligned on 14 bit bus '11 1111 1111 1111' */
clamp_max = 0x3FFF;
break;
default:
clamp_max = 0x3FC0;
BREAK_TO_DEBUGGER(); /* Invalid clamp bit depth */
}
REG_SET_2(OUT_CLAMP_CONTROL_B_CB, 0,
OUT_CLAMP_MIN_B_CB, 0,
OUT_CLAMP_MAX_B_CB, clamp_max);
REG_SET_2(OUT_CLAMP_CONTROL_G_Y, 0,
OUT_CLAMP_MIN_G_Y, 0,
OUT_CLAMP_MAX_G_Y, clamp_max);
REG_SET_2(OUT_CLAMP_CONTROL_R_CR, 0,
OUT_CLAMP_MIN_R_CR, 0,
OUT_CLAMP_MAX_R_CR, clamp_max);
}
/*******************************************************************************
* set_round
*
* @brief
* Programs Round/Truncate
*
* @param [in] mode :round or truncate
* @param [in] depth :bit depth to round/truncate to
OUT_ROUND_TRUNC_MODE 3:0 0xA Output data round or truncate mode
POSSIBLE VALUES:
00 - truncate to u0.12
01 - truncate to u0.11
02 - truncate to u0.10
03 - truncate to u0.9
04 - truncate to u0.8
05 - reserved
06 - truncate to u0.14
07 - truncate to u0.13 set_reg_field_value(
value,
clamp_max,
OUT_CLAMP_CONTROL_R_CR,
OUT_CLAMP_MAX_R_CR);
08 - round to u0.12
09 - round to u0.11
10 - round to u0.10
11 - round to u0.9
12 - round to u0.8
13 - reserved
14 - round to u0.14
15 - round to u0.13
******************************************************************************/
static void set_round(
struct dce_transform *xfm_dce,
enum dcp_out_trunc_round_mode mode,
enum dcp_out_trunc_round_depth depth)
{
int depth_bits = 0;
int mode_bit = 0;
/* set up bit depth */
switch (depth) {
case DCP_OUT_TRUNC_ROUND_DEPTH_14BIT:
depth_bits = 6;
break;
case DCP_OUT_TRUNC_ROUND_DEPTH_13BIT:
depth_bits = 7;
break;
case DCP_OUT_TRUNC_ROUND_DEPTH_12BIT:
depth_bits = 0;
break;
case DCP_OUT_TRUNC_ROUND_DEPTH_11BIT:
depth_bits = 1;
break;
case DCP_OUT_TRUNC_ROUND_DEPTH_10BIT:
depth_bits = 2;
break;
case DCP_OUT_TRUNC_ROUND_DEPTH_9BIT:
depth_bits = 3;
break;
case DCP_OUT_TRUNC_ROUND_DEPTH_8BIT:
depth_bits = 4;
break;
default:
depth_bits = 4;
BREAK_TO_DEBUGGER(); /* Invalid dcp_out_trunc_round_depth */
}
/* set up round or truncate */
switch (mode) {
case DCP_OUT_TRUNC_ROUND_MODE_TRUNCATE:
mode_bit = 0;
break;
case DCP_OUT_TRUNC_ROUND_MODE_ROUND:
mode_bit = 1;
break;
default:
BREAK_TO_DEBUGGER(); /* Invalid dcp_out_trunc_round_mode */
}
depth_bits |= mode_bit << 3;
REG_SET(OUT_ROUND_CONTROL, 0, OUT_ROUND_TRUNC_MODE, depth_bits);
}
/*****************************************************************************
* set_dither
*
* @brief
* Programs Dither
*
* @param [in] dither_enable : enable dither
* @param [in] dither_mode : dither mode to set
* @param [in] dither_depth : bit depth to dither to
* @param [in] frame_random_enable : enable frame random
* @param [in] rgb_random_enable : enable rgb random
* @param [in] highpass_random_enable : enable highpass random
*
******************************************************************************/
static void set_dither(
struct dce_transform *xfm_dce,
bool dither_enable,
enum dcp_spatial_dither_mode dither_mode,
enum dcp_spatial_dither_depth dither_depth,
bool frame_random_enable,
bool rgb_random_enable,
bool highpass_random_enable)
{
int dither_depth_bits = 0;
int dither_mode_bits = 0;
switch (dither_mode) {
case DCP_SPATIAL_DITHER_MODE_AAAA:
dither_mode_bits = 0;
break;
case DCP_SPATIAL_DITHER_MODE_A_AA_A:
dither_mode_bits = 1;
break;
case DCP_SPATIAL_DITHER_MODE_AABBAABB:
dither_mode_bits = 2;
break;
case DCP_SPATIAL_DITHER_MODE_AABBCCAABBCC:
dither_mode_bits = 3;
break;
default:
/* Invalid dcp_spatial_dither_mode */
BREAK_TO_DEBUGGER();
}
switch (dither_depth) {
case DCP_SPATIAL_DITHER_DEPTH_30BPP:
dither_depth_bits = 0;
break;
case DCP_SPATIAL_DITHER_DEPTH_24BPP:
dither_depth_bits = 1;
break;
default:
/* Invalid dcp_spatial_dither_depth */
BREAK_TO_DEBUGGER();
}
/* write the register */
REG_SET_6(DCP_SPATIAL_DITHER_CNTL, 0,
DCP_SPATIAL_DITHER_EN, dither_enable,
DCP_SPATIAL_DITHER_MODE, dither_mode_bits,
DCP_SPATIAL_DITHER_DEPTH, dither_depth_bits,
DCP_FRAME_RANDOM_ENABLE, frame_random_enable,
DCP_RGB_RANDOM_ENABLE, rgb_random_enable,
DCP_HIGHPASS_RANDOM_ENABLE, highpass_random_enable);
}
/*****************************************************************************
* dce_transform_bit_depth_reduction_program
*
* @brief
* Programs the DCP bit depth reduction registers (Clamp, Round/Truncate,
* Dither) for dce
*
* @param depth : bit depth to set the clamp to (should match denorm)
*
******************************************************************************/
static void program_bit_depth_reduction(
struct dce_transform *xfm_dce,
enum dc_color_depth depth,
const struct bit_depth_reduction_params *bit_depth_params)
{
enum dcp_out_trunc_round_depth trunc_round_depth;
enum dcp_out_trunc_round_mode trunc_mode;
bool spatial_dither_enable;
ASSERT(depth < COLOR_DEPTH_121212); /* Invalid clamp bit depth */
spatial_dither_enable = bit_depth_params->flags.SPATIAL_DITHER_ENABLED;
/* Default to 12 bit truncation without rounding */
trunc_round_depth = DCP_OUT_TRUNC_ROUND_DEPTH_12BIT;
trunc_mode = DCP_OUT_TRUNC_ROUND_MODE_TRUNCATE;
if (bit_depth_params->flags.TRUNCATE_ENABLED) {
/* Don't enable dithering if truncation is enabled */
spatial_dither_enable = false;
trunc_mode = bit_depth_params->flags.TRUNCATE_MODE ?
DCP_OUT_TRUNC_ROUND_MODE_ROUND :
DCP_OUT_TRUNC_ROUND_MODE_TRUNCATE;
if (bit_depth_params->flags.TRUNCATE_DEPTH == 0 ||
bit_depth_params->flags.TRUNCATE_DEPTH == 1)
trunc_round_depth = DCP_OUT_TRUNC_ROUND_DEPTH_8BIT;
else if (bit_depth_params->flags.TRUNCATE_DEPTH == 2)
trunc_round_depth = DCP_OUT_TRUNC_ROUND_DEPTH_10BIT;
else {
/*
* Invalid truncate/round depth. Setting here to 12bit
* to prevent use-before-initialize errors.
*/
trunc_round_depth = DCP_OUT_TRUNC_ROUND_DEPTH_12BIT;
BREAK_TO_DEBUGGER();
}
}
set_clamp(xfm_dce, depth);
set_round(xfm_dce, trunc_mode, trunc_round_depth);
set_dither(xfm_dce,
spatial_dither_enable,
DCP_SPATIAL_DITHER_MODE_A_AA_A,
DCP_SPATIAL_DITHER_DEPTH_30BPP,
bit_depth_params->flags.FRAME_RANDOM,
bit_depth_params->flags.RGB_RANDOM,
bit_depth_params->flags.HIGHPASS_RANDOM);
}
static int dce_transform_get_max_num_of_supported_lines(
struct dce_transform *xfm_dce,
enum lb_pixel_depth depth,
int pixel_width)
{
int pixels_per_entries = 0;
int max_pixels_supports = 0;
ASSERT(pixel_width);
/* Find number of pixels that can fit into a single LB entry and
* take floor of the value since we cannot store a single pixel
* across multiple entries. */
switch (depth) {
case LB_PIXEL_DEPTH_18BPP:
pixels_per_entries = xfm_dce->lb_bits_per_entry / 18;
break;
case LB_PIXEL_DEPTH_24BPP:
pixels_per_entries = xfm_dce->lb_bits_per_entry / 24;
break;
case LB_PIXEL_DEPTH_30BPP:
pixels_per_entries = xfm_dce->lb_bits_per_entry / 30;
break;
case LB_PIXEL_DEPTH_36BPP:
pixels_per_entries = xfm_dce->lb_bits_per_entry / 36;
break;
default:
DC_LOG_WARNING("%s: Invalid LB pixel depth",
__func__);
BREAK_TO_DEBUGGER();
break;
}
ASSERT(pixels_per_entries);
max_pixels_supports =
pixels_per_entries *
xfm_dce->lb_memory_size;
return (max_pixels_supports / pixel_width);
}
static void set_denormalization(
struct dce_transform *xfm_dce,
enum dc_color_depth depth)
{
int denorm_mode = 0;
switch (depth) {
case COLOR_DEPTH_666:
/* 63/64 for 6 bit output color depth */
denorm_mode = 1;
break;
case COLOR_DEPTH_888:
/* Unity for 8 bit output color depth
* because prescale is disabled by default */
denorm_mode = 0;
break;
case COLOR_DEPTH_101010:
/* 1023/1024 for 10 bit output color depth */
denorm_mode = 3;
break;
case COLOR_DEPTH_121212:
/* 4095/4096 for 12 bit output color depth */
denorm_mode = 5;
break;
case COLOR_DEPTH_141414:
case COLOR_DEPTH_161616:
default:
/* not valid used case! */
break;
}
REG_SET(DENORM_CONTROL, 0, DENORM_MODE, denorm_mode);
}
static void dce_transform_set_pixel_storage_depth(
struct transform *xfm,
enum lb_pixel_depth depth,
const struct bit_depth_reduction_params *bit_depth_params)
{
struct dce_transform *xfm_dce = TO_DCE_TRANSFORM(xfm);
int pixel_depth, expan_mode;
enum dc_color_depth color_depth;
switch (depth) {
case LB_PIXEL_DEPTH_18BPP:
color_depth = COLOR_DEPTH_666;
pixel_depth = 2;
expan_mode = 1;
break;
case LB_PIXEL_DEPTH_24BPP:
color_depth = COLOR_DEPTH_888;
pixel_depth = 1;
expan_mode = 1;
break;
case LB_PIXEL_DEPTH_30BPP:
color_depth = COLOR_DEPTH_101010;
pixel_depth = 0;
expan_mode = 1;
break;
case LB_PIXEL_DEPTH_36BPP:
color_depth = COLOR_DEPTH_121212;
pixel_depth = 3;
expan_mode = 0;
break;
default:
color_depth = COLOR_DEPTH_101010;
pixel_depth = 0;
expan_mode = 1;
BREAK_TO_DEBUGGER();
break;
}
set_denormalization(xfm_dce, color_depth);
program_bit_depth_reduction(xfm_dce, color_depth, bit_depth_params);
REG_UPDATE_2(LB_DATA_FORMAT,
PIXEL_DEPTH, pixel_depth,
PIXEL_EXPAN_MODE, expan_mode);
if (!(xfm_dce->lb_pixel_depth_supported & depth)) {
/*we should use unsupported capabilities
* unless it is required by w/a*/
DC_LOG_WARNING("%s: Capability not supported",
__func__);
}
}
static void program_gamut_remap(
struct dce_transform *xfm_dce,
const uint16_t *reg_val)
{
if (reg_val) {
REG_SET_2(GAMUT_REMAP_C11_C12, 0,
GAMUT_REMAP_C11, reg_val[0],
GAMUT_REMAP_C12, reg_val[1]);
REG_SET_2(GAMUT_REMAP_C13_C14, 0,
GAMUT_REMAP_C13, reg_val[2],
GAMUT_REMAP_C14, reg_val[3]);
REG_SET_2(GAMUT_REMAP_C21_C22, 0,
GAMUT_REMAP_C21, reg_val[4],
GAMUT_REMAP_C22, reg_val[5]);
REG_SET_2(GAMUT_REMAP_C23_C24, 0,
GAMUT_REMAP_C23, reg_val[6],
GAMUT_REMAP_C24, reg_val[7]);
REG_SET_2(GAMUT_REMAP_C31_C32, 0,
GAMUT_REMAP_C31, reg_val[8],
GAMUT_REMAP_C32, reg_val[9]);
REG_SET_2(GAMUT_REMAP_C33_C34, 0,
GAMUT_REMAP_C33, reg_val[10],
GAMUT_REMAP_C34, reg_val[11]);
REG_SET(GAMUT_REMAP_CONTROL, 0, GRPH_GAMUT_REMAP_MODE, 1);
} else
REG_SET(GAMUT_REMAP_CONTROL, 0, GRPH_GAMUT_REMAP_MODE, 0);
}
/**
*****************************************************************************
* Function: dal_transform_wide_gamut_set_gamut_remap
*
* @param [in] const struct xfm_grph_csc_adjustment *adjust
*
* @return
* void
*
* @note calculate and apply color temperature adjustment to in Rgb color space
*
* @see
*
*****************************************************************************
*/
static void dce_transform_set_gamut_remap(
struct transform *xfm,
const struct xfm_grph_csc_adjustment *adjust)
{
struct dce_transform *xfm_dce = TO_DCE_TRANSFORM(xfm);
int i = 0;
if (adjust->gamut_adjust_type != GRAPHICS_GAMUT_ADJUST_TYPE_SW)
/* Bypass if type is bypass or hw */
program_gamut_remap(xfm_dce, NULL);
else {
struct fixed31_32 arr_matrix[GAMUT_MATRIX_SIZE];
uint16_t arr_reg_val[GAMUT_MATRIX_SIZE];
for (i = 0; i < GAMUT_MATRIX_SIZE; i++)
arr_matrix[i] = adjust->temperature_matrix[i];
convert_float_matrix(
arr_reg_val, arr_matrix, GAMUT_MATRIX_SIZE);
program_gamut_remap(xfm_dce, arr_reg_val);
}
}
static uint32_t decide_taps(struct fixed31_32 ratio, uint32_t in_taps, bool chroma)
{
uint32_t taps;
if (IDENTITY_RATIO(ratio)) {
return 1;
} else if (in_taps != 0) {
taps = in_taps;
} else {
taps = 4;
}
if (chroma) {
taps /= 2;
if (taps < 2)
taps = 2;
}
return taps;
}
bool dce_transform_get_optimal_number_of_taps(
struct transform *xfm,
struct scaler_data *scl_data,
const struct scaling_taps *in_taps)
{
struct dce_transform *xfm_dce = TO_DCE_TRANSFORM(xfm);
int pixel_width = scl_data->viewport.width;
int max_num_of_lines;
if (xfm_dce->prescaler_on &&
(scl_data->viewport.width > scl_data->recout.width))
pixel_width = scl_data->recout.width;
max_num_of_lines = dce_transform_get_max_num_of_supported_lines(
xfm_dce,
scl_data->lb_params.depth,
pixel_width);
/* Fail if in_taps are impossible */
if (in_taps->v_taps >= max_num_of_lines)
return false;
/*
* Set taps according to this policy (in this order)
* - Use 1 for no scaling
* - Use input taps
* - Use 4 and reduce as required by line buffer size
* - Decide chroma taps if chroma is scaled
*
* Ignore input chroma taps. Decide based on non-chroma
*/
scl_data->taps.h_taps = decide_taps(scl_data->ratios.horz, in_taps->h_taps, false);
scl_data->taps.v_taps = decide_taps(scl_data->ratios.vert, in_taps->v_taps, false);
scl_data->taps.h_taps_c = decide_taps(scl_data->ratios.horz_c, in_taps->h_taps, true);
scl_data->taps.v_taps_c = decide_taps(scl_data->ratios.vert_c, in_taps->v_taps, true);
if (!IDENTITY_RATIO(scl_data->ratios.vert)) {
/* reduce v_taps if needed but ensure we have at least two */
if (in_taps->v_taps == 0
&& max_num_of_lines <= scl_data->taps.v_taps
&& scl_data->taps.v_taps > 1) {
scl_data->taps.v_taps = max_num_of_lines - 1;
}
if (scl_data->taps.v_taps <= 1)
return false;
}
if (!IDENTITY_RATIO(scl_data->ratios.vert_c)) {
/* reduce chroma v_taps if needed but ensure we have at least two */
if (max_num_of_lines <= scl_data->taps.v_taps_c && scl_data->taps.v_taps_c > 1) {
scl_data->taps.v_taps_c = max_num_of_lines - 1;
}
if (scl_data->taps.v_taps_c <= 1)
return false;
}
/* we've got valid taps */
return true;
}
static void dce_transform_reset(struct transform *xfm)
{
struct dce_transform *xfm_dce = TO_DCE_TRANSFORM(xfm);
xfm_dce->filter_h = NULL;
xfm_dce->filter_v = NULL;
}
static void program_color_matrix(
struct dce_transform *xfm_dce,
const struct out_csc_color_matrix *tbl_entry,
enum grph_color_adjust_option options)
{
{
REG_SET_2(OUTPUT_CSC_C11_C12, 0,
OUTPUT_CSC_C11, tbl_entry->regval[0],
OUTPUT_CSC_C12, tbl_entry->regval[1]);
}
{
REG_SET_2(OUTPUT_CSC_C13_C14, 0,
OUTPUT_CSC_C11, tbl_entry->regval[2],
OUTPUT_CSC_C12, tbl_entry->regval[3]);
}
{
REG_SET_2(OUTPUT_CSC_C21_C22, 0,
OUTPUT_CSC_C11, tbl_entry->regval[4],
OUTPUT_CSC_C12, tbl_entry->regval[5]);
}
{
REG_SET_2(OUTPUT_CSC_C23_C24, 0,
OUTPUT_CSC_C11, tbl_entry->regval[6],
OUTPUT_CSC_C12, tbl_entry->regval[7]);
}
{
REG_SET_2(OUTPUT_CSC_C31_C32, 0,
OUTPUT_CSC_C11, tbl_entry->regval[8],
OUTPUT_CSC_C12, tbl_entry->regval[9]);
}
{
REG_SET_2(OUTPUT_CSC_C33_C34, 0,
OUTPUT_CSC_C11, tbl_entry->regval[10],
OUTPUT_CSC_C12, tbl_entry->regval[11]);
}
}
static bool configure_graphics_mode(
struct dce_transform *xfm_dce,
enum csc_color_mode config,
enum graphics_csc_adjust_type csc_adjust_type,
enum dc_color_space color_space)
{
REG_SET(OUTPUT_CSC_CONTROL, 0,
OUTPUT_CSC_GRPH_MODE, 0);
if (csc_adjust_type == GRAPHICS_CSC_ADJUST_TYPE_SW) {
if (config == CSC_COLOR_MODE_GRAPHICS_OUTPUT_CSC) {
REG_SET(OUTPUT_CSC_CONTROL, 0,
OUTPUT_CSC_GRPH_MODE, 4);
} else {
switch (color_space) {
case COLOR_SPACE_SRGB:
/* by pass */
REG_SET(OUTPUT_CSC_CONTROL, 0,
OUTPUT_CSC_GRPH_MODE, 0);
break;
case COLOR_SPACE_SRGB_LIMITED:
/* TV RGB */
REG_SET(OUTPUT_CSC_CONTROL, 0,
OUTPUT_CSC_GRPH_MODE, 1);
break;
case COLOR_SPACE_YCBCR601:
case COLOR_SPACE_YCBCR601_LIMITED:
/* YCbCr601 */
REG_SET(OUTPUT_CSC_CONTROL, 0,
OUTPUT_CSC_GRPH_MODE, 2);
break;
case COLOR_SPACE_YCBCR709:
case COLOR_SPACE_YCBCR709_LIMITED:
/* YCbCr709 */
REG_SET(OUTPUT_CSC_CONTROL, 0,
OUTPUT_CSC_GRPH_MODE, 3);
break;
default:
return false;
}
}
} else if (csc_adjust_type == GRAPHICS_CSC_ADJUST_TYPE_HW) {
switch (color_space) {
case COLOR_SPACE_SRGB:
/* by pass */
REG_SET(OUTPUT_CSC_CONTROL, 0,
OUTPUT_CSC_GRPH_MODE, 0);
break;
break;
case COLOR_SPACE_SRGB_LIMITED:
/* TV RGB */
REG_SET(OUTPUT_CSC_CONTROL, 0,
OUTPUT_CSC_GRPH_MODE, 1);
break;
case COLOR_SPACE_YCBCR601:
case COLOR_SPACE_YCBCR601_LIMITED:
/* YCbCr601 */
REG_SET(OUTPUT_CSC_CONTROL, 0,
OUTPUT_CSC_GRPH_MODE, 2);
break;
case COLOR_SPACE_YCBCR709:
case COLOR_SPACE_YCBCR709_LIMITED:
/* YCbCr709 */
REG_SET(OUTPUT_CSC_CONTROL, 0,
OUTPUT_CSC_GRPH_MODE, 3);
break;
default:
return false;
}
} else
/* by pass */
REG_SET(OUTPUT_CSC_CONTROL, 0,
OUTPUT_CSC_GRPH_MODE, 0);
return true;
}
void dce110_opp_set_csc_adjustment(
struct transform *xfm,
const struct out_csc_color_matrix *tbl_entry)
{
struct dce_transform *xfm_dce = TO_DCE_TRANSFORM(xfm);
enum csc_color_mode config =
CSC_COLOR_MODE_GRAPHICS_OUTPUT_CSC;
program_color_matrix(
xfm_dce, tbl_entry, GRPH_COLOR_MATRIX_SW);
/* We did everything ,now program DxOUTPUT_CSC_CONTROL */
configure_graphics_mode(xfm_dce, config, GRAPHICS_CSC_ADJUST_TYPE_SW,
tbl_entry->color_space);
}
void dce110_opp_set_csc_default(
struct transform *xfm,
const struct default_adjustment *default_adjust)
{
struct dce_transform *xfm_dce = TO_DCE_TRANSFORM(xfm);
enum csc_color_mode config =
CSC_COLOR_MODE_GRAPHICS_PREDEFINED;
if (default_adjust->force_hw_default == false) {
const struct out_csc_color_matrix *elm;
/* currently parameter not in use */
enum grph_color_adjust_option option =
GRPH_COLOR_MATRIX_HW_DEFAULT;
uint32_t i;
/*
* HW default false we program locally defined matrix
* HW default true we use predefined hw matrix and we
* do not need to program matrix
* OEM wants the HW default via runtime parameter.
*/
option = GRPH_COLOR_MATRIX_SW;
for (i = 0; i < ARRAY_SIZE(global_color_matrix); ++i) {
elm = &global_color_matrix[i];
if (elm->color_space != default_adjust->out_color_space)
continue;
/* program the matrix with default values from this
* file */
program_color_matrix(xfm_dce, elm, option);
config = CSC_COLOR_MODE_GRAPHICS_OUTPUT_CSC;
break;
}
}
/* configure the what we programmed :
* 1. Default values from this file
* 2. Use hardware default from ROM_A and we do not need to program
* matrix */
configure_graphics_mode(xfm_dce, config,
default_adjust->csc_adjust_type,
default_adjust->out_color_space);
}
static void program_pwl(struct dce_transform *xfm_dce,
const struct pwl_params *params)
{
int retval;
uint8_t max_tries = 10;
uint8_t counter = 0;
uint32_t i = 0;
const struct pwl_result_data *rgb = params->rgb_resulted;
/* Power on LUT memory */
if (REG(DCFE_MEM_PWR_CTRL))
REG_UPDATE(DCFE_MEM_PWR_CTRL,
DCP_REGAMMA_MEM_PWR_DIS, 1);
else
REG_UPDATE(DCFE_MEM_LIGHT_SLEEP_CNTL,
REGAMMA_LUT_LIGHT_SLEEP_DIS, 1);
while (counter < max_tries) {
if (REG(DCFE_MEM_PWR_STATUS)) {
REG_GET(DCFE_MEM_PWR_STATUS,
DCP_REGAMMA_MEM_PWR_STATE,
&retval);
if (retval == 0)
break;
++counter;
} else {
REG_GET(DCFE_MEM_LIGHT_SLEEP_CNTL,
REGAMMA_LUT_MEM_PWR_STATE,
&retval);
if (retval == 0)
break;
++counter;
}
}
if (counter == max_tries) {
DC_LOG_WARNING("%s: regamma lut was not powered on "
"in a timely manner,"
" programming still proceeds\n",
__func__);
}
REG_UPDATE(REGAMMA_LUT_WRITE_EN_MASK,
REGAMMA_LUT_WRITE_EN_MASK, 7);
REG_WRITE(REGAMMA_LUT_INDEX, 0);
/* Program REGAMMA_LUT_DATA */
while (i != params->hw_points_num) {
REG_WRITE(REGAMMA_LUT_DATA, rgb->red_reg);
REG_WRITE(REGAMMA_LUT_DATA, rgb->green_reg);
REG_WRITE(REGAMMA_LUT_DATA, rgb->blue_reg);
REG_WRITE(REGAMMA_LUT_DATA, rgb->delta_red_reg);
REG_WRITE(REGAMMA_LUT_DATA, rgb->delta_green_reg);
REG_WRITE(REGAMMA_LUT_DATA, rgb->delta_blue_reg);
++rgb;
++i;
}
/* we are done with DCP LUT memory; re-enable low power mode */
if (REG(DCFE_MEM_PWR_CTRL))
REG_UPDATE(DCFE_MEM_PWR_CTRL,
DCP_REGAMMA_MEM_PWR_DIS, 0);
else
REG_UPDATE(DCFE_MEM_LIGHT_SLEEP_CNTL,
REGAMMA_LUT_LIGHT_SLEEP_DIS, 0);
}
static void regamma_config_regions_and_segments(struct dce_transform *xfm_dce,
const struct pwl_params *params)
{
const struct gamma_curve *curve;
REG_SET_2(REGAMMA_CNTLA_START_CNTL, 0,
REGAMMA_CNTLA_EXP_REGION_START, params->arr_points[0].custom_float_x,
REGAMMA_CNTLA_EXP_REGION_START_SEGMENT, 0);
REG_SET(REGAMMA_CNTLA_SLOPE_CNTL, 0,
REGAMMA_CNTLA_EXP_REGION_LINEAR_SLOPE, params->arr_points[0].custom_float_slope);
REG_SET(REGAMMA_CNTLA_END_CNTL1, 0,
REGAMMA_CNTLA_EXP_REGION_END, params->arr_points[1].custom_float_x);
REG_SET_2(REGAMMA_CNTLA_END_CNTL2, 0,
REGAMMA_CNTLA_EXP_REGION_END_BASE, params->arr_points[1].custom_float_y,
REGAMMA_CNTLA_EXP_REGION_END_SLOPE, params->arr_points[1].custom_float_slope);
curve = params->arr_curve_points;
REG_SET_4(REGAMMA_CNTLA_REGION_0_1, 0,
REGAMMA_CNTLA_EXP_REGION0_LUT_OFFSET, curve[0].offset,
REGAMMA_CNTLA_EXP_REGION0_NUM_SEGMENTS, curve[0].segments_num,
REGAMMA_CNTLA_EXP_REGION1_LUT_OFFSET, curve[1].offset,
REGAMMA_CNTLA_EXP_REGION1_NUM_SEGMENTS, curve[1].segments_num);
curve += 2;
REG_SET_4(REGAMMA_CNTLA_REGION_2_3, 0,
REGAMMA_CNTLA_EXP_REGION0_LUT_OFFSET, curve[0].offset,
REGAMMA_CNTLA_EXP_REGION0_NUM_SEGMENTS, curve[0].segments_num,
REGAMMA_CNTLA_EXP_REGION1_LUT_OFFSET, curve[1].offset,
REGAMMA_CNTLA_EXP_REGION1_NUM_SEGMENTS, curve[1].segments_num);
curve += 2;
REG_SET_4(REGAMMA_CNTLA_REGION_4_5, 0,
REGAMMA_CNTLA_EXP_REGION0_LUT_OFFSET, curve[0].offset,
REGAMMA_CNTLA_EXP_REGION0_NUM_SEGMENTS, curve[0].segments_num,
REGAMMA_CNTLA_EXP_REGION1_LUT_OFFSET, curve[1].offset,
REGAMMA_CNTLA_EXP_REGION1_NUM_SEGMENTS, curve[1].segments_num);
curve += 2;
REG_SET_4(REGAMMA_CNTLA_REGION_6_7, 0,
REGAMMA_CNTLA_EXP_REGION0_LUT_OFFSET, curve[0].offset,
REGAMMA_CNTLA_EXP_REGION0_NUM_SEGMENTS, curve[0].segments_num,
REGAMMA_CNTLA_EXP_REGION1_LUT_OFFSET, curve[1].offset,
REGAMMA_CNTLA_EXP_REGION1_NUM_SEGMENTS, curve[1].segments_num);
curve += 2;
REG_SET_4(REGAMMA_CNTLA_REGION_8_9, 0,
REGAMMA_CNTLA_EXP_REGION0_LUT_OFFSET, curve[0].offset,
REGAMMA_CNTLA_EXP_REGION0_NUM_SEGMENTS, curve[0].segments_num,
REGAMMA_CNTLA_EXP_REGION1_LUT_OFFSET, curve[1].offset,
REGAMMA_CNTLA_EXP_REGION1_NUM_SEGMENTS, curve[1].segments_num);
curve += 2;
REG_SET_4(REGAMMA_CNTLA_REGION_10_11, 0,
REGAMMA_CNTLA_EXP_REGION0_LUT_OFFSET, curve[0].offset,
REGAMMA_CNTLA_EXP_REGION0_NUM_SEGMENTS, curve[0].segments_num,
REGAMMA_CNTLA_EXP_REGION1_LUT_OFFSET, curve[1].offset,
REGAMMA_CNTLA_EXP_REGION1_NUM_SEGMENTS, curve[1].segments_num);
curve += 2;
REG_SET_4(REGAMMA_CNTLA_REGION_12_13, 0,
REGAMMA_CNTLA_EXP_REGION0_LUT_OFFSET, curve[0].offset,
REGAMMA_CNTLA_EXP_REGION0_NUM_SEGMENTS, curve[0].segments_num,
REGAMMA_CNTLA_EXP_REGION1_LUT_OFFSET, curve[1].offset,
REGAMMA_CNTLA_EXP_REGION1_NUM_SEGMENTS, curve[1].segments_num);
curve += 2;
REG_SET_4(REGAMMA_CNTLA_REGION_14_15, 0,
REGAMMA_CNTLA_EXP_REGION0_LUT_OFFSET, curve[0].offset,
REGAMMA_CNTLA_EXP_REGION0_NUM_SEGMENTS, curve[0].segments_num,
REGAMMA_CNTLA_EXP_REGION1_LUT_OFFSET, curve[1].offset,
REGAMMA_CNTLA_EXP_REGION1_NUM_SEGMENTS, curve[1].segments_num);
}
void dce110_opp_program_regamma_pwl(struct transform *xfm,
const struct pwl_params *params)
{
struct dce_transform *xfm_dce = TO_DCE_TRANSFORM(xfm);
/* Setup regions */
regamma_config_regions_and_segments(xfm_dce, params);
/* Program PWL */
program_pwl(xfm_dce, params);
}
void dce110_opp_power_on_regamma_lut(struct transform *xfm,
bool power_on)
{
struct dce_transform *xfm_dce = TO_DCE_TRANSFORM(xfm);
if (REG(DCFE_MEM_PWR_CTRL))
REG_UPDATE_2(DCFE_MEM_PWR_CTRL,
DCP_REGAMMA_MEM_PWR_DIS, power_on,
DCP_LUT_MEM_PWR_DIS, power_on);
else
REG_UPDATE_2(DCFE_MEM_LIGHT_SLEEP_CNTL,
REGAMMA_LUT_LIGHT_SLEEP_DIS, power_on,
DCP_LUT_LIGHT_SLEEP_DIS, power_on);
}
void dce110_opp_set_regamma_mode(struct transform *xfm,
enum opp_regamma mode)
{
struct dce_transform *xfm_dce = TO_DCE_TRANSFORM(xfm);
REG_SET(REGAMMA_CONTROL, 0,
GRPH_REGAMMA_MODE, mode);
}
static const struct transform_funcs dce_transform_funcs = {
.transform_reset = dce_transform_reset,
.transform_set_scaler = dce_transform_set_scaler,
.transform_set_gamut_remap = dce_transform_set_gamut_remap,
.opp_set_csc_adjustment = dce110_opp_set_csc_adjustment,
.opp_set_csc_default = dce110_opp_set_csc_default,
.opp_power_on_regamma_lut = dce110_opp_power_on_regamma_lut,
.opp_program_regamma_pwl = dce110_opp_program_regamma_pwl,
.opp_set_regamma_mode = dce110_opp_set_regamma_mode,
.transform_set_pixel_storage_depth = dce_transform_set_pixel_storage_depth,
.transform_get_optimal_number_of_taps = dce_transform_get_optimal_number_of_taps
};
/*****************************************/
/* Constructor, Destructor */
/*****************************************/
void dce_transform_construct(
struct dce_transform *xfm_dce,
struct dc_context *ctx,
uint32_t inst,
const struct dce_transform_registers *regs,
const struct dce_transform_shift *xfm_shift,
const struct dce_transform_mask *xfm_mask)
{
xfm_dce->base.ctx = ctx;
xfm_dce->base.inst = inst;
xfm_dce->base.funcs = &dce_transform_funcs;
xfm_dce->regs = regs;
xfm_dce->xfm_shift = xfm_shift;
xfm_dce->xfm_mask = xfm_mask;
xfm_dce->prescaler_on = true;
xfm_dce->lb_pixel_depth_supported =
LB_PIXEL_DEPTH_18BPP |
LB_PIXEL_DEPTH_24BPP |
LB_PIXEL_DEPTH_30BPP;
xfm_dce->lb_bits_per_entry = LB_BITS_PER_ENTRY;
xfm_dce->lb_memory_size = LB_TOTAL_NUMBER_OF_ENTRIES; /*0x6B0*/
}