blob: a08ca7a47400ff469002801d52a95183a86e4557 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-only
/* Copyright (c) 2015-2018, The Linux Foundation. All rights reserved.
*/
#include <linux/delay.h>
#include "dpu_hwio.h"
#include "dpu_hw_ctl.h"
#include "dpu_kms.h"
#include "dpu_trace.h"
#define CTL_LAYER(lm) \
(((lm) == LM_5) ? (0x024) : (((lm) - LM_0) * 0x004))
#define CTL_LAYER_EXT(lm) \
(0x40 + (((lm) - LM_0) * 0x004))
#define CTL_LAYER_EXT2(lm) \
(0x70 + (((lm) - LM_0) * 0x004))
#define CTL_LAYER_EXT3(lm) \
(0xA0 + (((lm) - LM_0) * 0x004))
#define CTL_TOP 0x014
#define CTL_FLUSH 0x018
#define CTL_START 0x01C
#define CTL_PREPARE 0x0d0
#define CTL_SW_RESET 0x030
#define CTL_LAYER_EXTN_OFFSET 0x40
#define CTL_MIXER_BORDER_OUT BIT(24)
#define CTL_FLUSH_MASK_CTL BIT(17)
#define DPU_REG_RESET_TIMEOUT_US 2000
static struct dpu_ctl_cfg *_ctl_offset(enum dpu_ctl ctl,
struct dpu_mdss_cfg *m,
void __iomem *addr,
struct dpu_hw_blk_reg_map *b)
{
int i;
for (i = 0; i < m->ctl_count; i++) {
if (ctl == m->ctl[i].id) {
b->base_off = addr;
b->blk_off = m->ctl[i].base;
b->length = m->ctl[i].len;
b->hwversion = m->hwversion;
b->log_mask = DPU_DBG_MASK_CTL;
return &m->ctl[i];
}
}
return ERR_PTR(-ENOMEM);
}
static int _mixer_stages(const struct dpu_lm_cfg *mixer, int count,
enum dpu_lm lm)
{
int i;
int stages = -EINVAL;
for (i = 0; i < count; i++) {
if (lm == mixer[i].id) {
stages = mixer[i].sblk->maxblendstages;
break;
}
}
return stages;
}
static inline u32 dpu_hw_ctl_get_flush_register(struct dpu_hw_ctl *ctx)
{
struct dpu_hw_blk_reg_map *c = &ctx->hw;
return DPU_REG_READ(c, CTL_FLUSH);
}
static inline void dpu_hw_ctl_trigger_start(struct dpu_hw_ctl *ctx)
{
trace_dpu_hw_ctl_trigger_start(ctx->pending_flush_mask,
dpu_hw_ctl_get_flush_register(ctx));
DPU_REG_WRITE(&ctx->hw, CTL_START, 0x1);
}
static inline void dpu_hw_ctl_trigger_pending(struct dpu_hw_ctl *ctx)
{
trace_dpu_hw_ctl_trigger_prepare(ctx->pending_flush_mask,
dpu_hw_ctl_get_flush_register(ctx));
DPU_REG_WRITE(&ctx->hw, CTL_PREPARE, 0x1);
}
static inline void dpu_hw_ctl_clear_pending_flush(struct dpu_hw_ctl *ctx)
{
trace_dpu_hw_ctl_clear_pending_flush(ctx->pending_flush_mask,
dpu_hw_ctl_get_flush_register(ctx));
ctx->pending_flush_mask = 0x0;
}
static inline void dpu_hw_ctl_update_pending_flush(struct dpu_hw_ctl *ctx,
u32 flushbits)
{
trace_dpu_hw_ctl_update_pending_flush(flushbits,
ctx->pending_flush_mask);
ctx->pending_flush_mask |= flushbits;
}
static u32 dpu_hw_ctl_get_pending_flush(struct dpu_hw_ctl *ctx)
{
return ctx->pending_flush_mask;
}
static inline void dpu_hw_ctl_trigger_flush(struct dpu_hw_ctl *ctx)
{
trace_dpu_hw_ctl_trigger_pending_flush(ctx->pending_flush_mask,
dpu_hw_ctl_get_flush_register(ctx));
DPU_REG_WRITE(&ctx->hw, CTL_FLUSH, ctx->pending_flush_mask);
}
static uint32_t dpu_hw_ctl_get_bitmask_sspp(struct dpu_hw_ctl *ctx,
enum dpu_sspp sspp)
{
uint32_t flushbits = 0;
switch (sspp) {
case SSPP_VIG0:
flushbits = BIT(0);
break;
case SSPP_VIG1:
flushbits = BIT(1);
break;
case SSPP_VIG2:
flushbits = BIT(2);
break;
case SSPP_VIG3:
flushbits = BIT(18);
break;
case SSPP_RGB0:
flushbits = BIT(3);
break;
case SSPP_RGB1:
flushbits = BIT(4);
break;
case SSPP_RGB2:
flushbits = BIT(5);
break;
case SSPP_RGB3:
flushbits = BIT(19);
break;
case SSPP_DMA0:
flushbits = BIT(11);
break;
case SSPP_DMA1:
flushbits = BIT(12);
break;
case SSPP_DMA2:
flushbits = BIT(24);
break;
case SSPP_DMA3:
flushbits = BIT(25);
break;
case SSPP_CURSOR0:
flushbits = BIT(22);
break;
case SSPP_CURSOR1:
flushbits = BIT(23);
break;
default:
break;
}
return flushbits;
}
static uint32_t dpu_hw_ctl_get_bitmask_mixer(struct dpu_hw_ctl *ctx,
enum dpu_lm lm)
{
uint32_t flushbits = 0;
switch (lm) {
case LM_0:
flushbits = BIT(6);
break;
case LM_1:
flushbits = BIT(7);
break;
case LM_2:
flushbits = BIT(8);
break;
case LM_3:
flushbits = BIT(9);
break;
case LM_4:
flushbits = BIT(10);
break;
case LM_5:
flushbits = BIT(20);
break;
default:
return -EINVAL;
}
flushbits |= CTL_FLUSH_MASK_CTL;
return flushbits;
}
static int dpu_hw_ctl_get_bitmask_intf(struct dpu_hw_ctl *ctx,
u32 *flushbits, enum dpu_intf intf)
{
switch (intf) {
case INTF_0:
*flushbits |= BIT(31);
break;
case INTF_1:
*flushbits |= BIT(30);
break;
case INTF_2:
*flushbits |= BIT(29);
break;
case INTF_3:
*flushbits |= BIT(28);
break;
default:
return -EINVAL;
}
return 0;
}
static u32 dpu_hw_ctl_poll_reset_status(struct dpu_hw_ctl *ctx, u32 timeout_us)
{
struct dpu_hw_blk_reg_map *c = &ctx->hw;
ktime_t timeout;
u32 status;
timeout = ktime_add_us(ktime_get(), timeout_us);
/*
* it takes around 30us to have mdp finish resetting its ctl path
* poll every 50us so that reset should be completed at 1st poll
*/
do {
status = DPU_REG_READ(c, CTL_SW_RESET);
status &= 0x1;
if (status)
usleep_range(20, 50);
} while (status && ktime_compare_safe(ktime_get(), timeout) < 0);
return status;
}
static int dpu_hw_ctl_reset_control(struct dpu_hw_ctl *ctx)
{
struct dpu_hw_blk_reg_map *c = &ctx->hw;
pr_debug("issuing hw ctl reset for ctl:%d\n", ctx->idx);
DPU_REG_WRITE(c, CTL_SW_RESET, 0x1);
if (dpu_hw_ctl_poll_reset_status(ctx, DPU_REG_RESET_TIMEOUT_US))
return -EINVAL;
return 0;
}
static int dpu_hw_ctl_wait_reset_status(struct dpu_hw_ctl *ctx)
{
struct dpu_hw_blk_reg_map *c = &ctx->hw;
u32 status;
status = DPU_REG_READ(c, CTL_SW_RESET);
status &= 0x01;
if (!status)
return 0;
pr_debug("hw ctl reset is set for ctl:%d\n", ctx->idx);
if (dpu_hw_ctl_poll_reset_status(ctx, DPU_REG_RESET_TIMEOUT_US)) {
pr_err("hw recovery is not complete for ctl:%d\n", ctx->idx);
return -EINVAL;
}
return 0;
}
static void dpu_hw_ctl_clear_all_blendstages(struct dpu_hw_ctl *ctx)
{
struct dpu_hw_blk_reg_map *c = &ctx->hw;
int i;
for (i = 0; i < ctx->mixer_count; i++) {
enum dpu_lm mixer_id = ctx->mixer_hw_caps[i].id;
DPU_REG_WRITE(c, CTL_LAYER(mixer_id), 0);
DPU_REG_WRITE(c, CTL_LAYER_EXT(mixer_id), 0);
DPU_REG_WRITE(c, CTL_LAYER_EXT2(mixer_id), 0);
DPU_REG_WRITE(c, CTL_LAYER_EXT3(mixer_id), 0);
}
}
static void dpu_hw_ctl_setup_blendstage(struct dpu_hw_ctl *ctx,
enum dpu_lm lm, struct dpu_hw_stage_cfg *stage_cfg)
{
struct dpu_hw_blk_reg_map *c = &ctx->hw;
u32 mixercfg = 0, mixercfg_ext = 0, mix, ext;
u32 mixercfg_ext2 = 0, mixercfg_ext3 = 0;
int i, j;
int stages;
int pipes_per_stage;
stages = _mixer_stages(ctx->mixer_hw_caps, ctx->mixer_count, lm);
if (stages < 0)
return;
if (test_bit(DPU_MIXER_SOURCESPLIT,
&ctx->mixer_hw_caps->features))
pipes_per_stage = PIPES_PER_STAGE;
else
pipes_per_stage = 1;
mixercfg = CTL_MIXER_BORDER_OUT; /* always set BORDER_OUT */
if (!stage_cfg)
goto exit;
for (i = 0; i <= stages; i++) {
/* overflow to ext register if 'i + 1 > 7' */
mix = (i + 1) & 0x7;
ext = i >= 7;
for (j = 0 ; j < pipes_per_stage; j++) {
enum dpu_sspp_multirect_index rect_index =
stage_cfg->multirect_index[i][j];
switch (stage_cfg->stage[i][j]) {
case SSPP_VIG0:
if (rect_index == DPU_SSPP_RECT_1) {
mixercfg_ext3 |= ((i + 1) & 0xF) << 0;
} else {
mixercfg |= mix << 0;
mixercfg_ext |= ext << 0;
}
break;
case SSPP_VIG1:
if (rect_index == DPU_SSPP_RECT_1) {
mixercfg_ext3 |= ((i + 1) & 0xF) << 4;
} else {
mixercfg |= mix << 3;
mixercfg_ext |= ext << 2;
}
break;
case SSPP_VIG2:
if (rect_index == DPU_SSPP_RECT_1) {
mixercfg_ext3 |= ((i + 1) & 0xF) << 8;
} else {
mixercfg |= mix << 6;
mixercfg_ext |= ext << 4;
}
break;
case SSPP_VIG3:
if (rect_index == DPU_SSPP_RECT_1) {
mixercfg_ext3 |= ((i + 1) & 0xF) << 12;
} else {
mixercfg |= mix << 26;
mixercfg_ext |= ext << 6;
}
break;
case SSPP_RGB0:
mixercfg |= mix << 9;
mixercfg_ext |= ext << 8;
break;
case SSPP_RGB1:
mixercfg |= mix << 12;
mixercfg_ext |= ext << 10;
break;
case SSPP_RGB2:
mixercfg |= mix << 15;
mixercfg_ext |= ext << 12;
break;
case SSPP_RGB3:
mixercfg |= mix << 29;
mixercfg_ext |= ext << 14;
break;
case SSPP_DMA0:
if (rect_index == DPU_SSPP_RECT_1) {
mixercfg_ext2 |= ((i + 1) & 0xF) << 8;
} else {
mixercfg |= mix << 18;
mixercfg_ext |= ext << 16;
}
break;
case SSPP_DMA1:
if (rect_index == DPU_SSPP_RECT_1) {
mixercfg_ext2 |= ((i + 1) & 0xF) << 12;
} else {
mixercfg |= mix << 21;
mixercfg_ext |= ext << 18;
}
break;
case SSPP_DMA2:
if (rect_index == DPU_SSPP_RECT_1) {
mixercfg_ext2 |= ((i + 1) & 0xF) << 16;
} else {
mix |= (i + 1) & 0xF;
mixercfg_ext2 |= mix << 0;
}
break;
case SSPP_DMA3:
if (rect_index == DPU_SSPP_RECT_1) {
mixercfg_ext2 |= ((i + 1) & 0xF) << 20;
} else {
mix |= (i + 1) & 0xF;
mixercfg_ext2 |= mix << 4;
}
break;
case SSPP_CURSOR0:
mixercfg_ext |= ((i + 1) & 0xF) << 20;
break;
case SSPP_CURSOR1:
mixercfg_ext |= ((i + 1) & 0xF) << 26;
break;
default:
break;
}
}
}
exit:
DPU_REG_WRITE(c, CTL_LAYER(lm), mixercfg);
DPU_REG_WRITE(c, CTL_LAYER_EXT(lm), mixercfg_ext);
DPU_REG_WRITE(c, CTL_LAYER_EXT2(lm), mixercfg_ext2);
DPU_REG_WRITE(c, CTL_LAYER_EXT3(lm), mixercfg_ext3);
}
static void dpu_hw_ctl_intf_cfg(struct dpu_hw_ctl *ctx,
struct dpu_hw_intf_cfg *cfg)
{
struct dpu_hw_blk_reg_map *c = &ctx->hw;
u32 intf_cfg = 0;
intf_cfg |= (cfg->intf & 0xF) << 4;
if (cfg->mode_3d) {
intf_cfg |= BIT(19);
intf_cfg |= (cfg->mode_3d - 0x1) << 20;
}
switch (cfg->intf_mode_sel) {
case DPU_CTL_MODE_SEL_VID:
intf_cfg &= ~BIT(17);
intf_cfg &= ~(0x3 << 15);
break;
case DPU_CTL_MODE_SEL_CMD:
intf_cfg |= BIT(17);
intf_cfg |= ((cfg->stream_sel & 0x3) << 15);
break;
default:
pr_err("unknown interface type %d\n", cfg->intf_mode_sel);
return;
}
DPU_REG_WRITE(c, CTL_TOP, intf_cfg);
}
static void _setup_ctl_ops(struct dpu_hw_ctl_ops *ops,
unsigned long cap)
{
ops->clear_pending_flush = dpu_hw_ctl_clear_pending_flush;
ops->update_pending_flush = dpu_hw_ctl_update_pending_flush;
ops->get_pending_flush = dpu_hw_ctl_get_pending_flush;
ops->trigger_flush = dpu_hw_ctl_trigger_flush;
ops->get_flush_register = dpu_hw_ctl_get_flush_register;
ops->trigger_start = dpu_hw_ctl_trigger_start;
ops->trigger_pending = dpu_hw_ctl_trigger_pending;
ops->setup_intf_cfg = dpu_hw_ctl_intf_cfg;
ops->reset = dpu_hw_ctl_reset_control;
ops->wait_reset_status = dpu_hw_ctl_wait_reset_status;
ops->clear_all_blendstages = dpu_hw_ctl_clear_all_blendstages;
ops->setup_blendstage = dpu_hw_ctl_setup_blendstage;
ops->get_bitmask_sspp = dpu_hw_ctl_get_bitmask_sspp;
ops->get_bitmask_mixer = dpu_hw_ctl_get_bitmask_mixer;
ops->get_bitmask_intf = dpu_hw_ctl_get_bitmask_intf;
};
static struct dpu_hw_blk_ops dpu_hw_ops;
struct dpu_hw_ctl *dpu_hw_ctl_init(enum dpu_ctl idx,
void __iomem *addr,
struct dpu_mdss_cfg *m)
{
struct dpu_hw_ctl *c;
struct dpu_ctl_cfg *cfg;
c = kzalloc(sizeof(*c), GFP_KERNEL);
if (!c)
return ERR_PTR(-ENOMEM);
cfg = _ctl_offset(idx, m, addr, &c->hw);
if (IS_ERR_OR_NULL(cfg)) {
kfree(c);
pr_err("failed to create dpu_hw_ctl %d\n", idx);
return ERR_PTR(-EINVAL);
}
c->caps = cfg;
_setup_ctl_ops(&c->ops, c->caps->features);
c->idx = idx;
c->mixer_count = m->mixer_count;
c->mixer_hw_caps = m->mixer;
dpu_hw_blk_init(&c->base, DPU_HW_BLK_CTL, idx, &dpu_hw_ops);
return c;
}
void dpu_hw_ctl_destroy(struct dpu_hw_ctl *ctx)
{
if (ctx)
dpu_hw_blk_destroy(&ctx->base);
kfree(ctx);
}