blob: 03b3de491b5e6a780c731c6d28e1c77bf57cc193 [file] [log] [blame]
/* SPDX-License-Identifier: GPL-2.0 */
/*
* Copyright (C) 1994 Linus Torvalds
*
* Pentium III FXSR, SSE support
* General FPU state handling cleanups
* Gareth Hughes <gareth@valinux.com>, May 2000
* x86-64 work by Andi Kleen 2002
*/
#ifndef _ASM_X86_FPU_INTERNAL_H
#define _ASM_X86_FPU_INTERNAL_H
#include <linux/compat.h>
#include <linux/sched.h>
#include <linux/slab.h>
#include <linux/mm.h>
#include <asm/user.h>
#include <asm/fpu/api.h>
#include <asm/fpu/xstate.h>
#include <asm/cpufeature.h>
#include <asm/trace/fpu.h>
/*
* High level FPU state handling functions:
*/
extern void fpu__prepare_read(struct fpu *fpu);
extern void fpu__prepare_write(struct fpu *fpu);
extern void fpu__save(struct fpu *fpu);
extern int fpu__restore_sig(void __user *buf, int ia32_frame);
extern void fpu__drop(struct fpu *fpu);
extern int fpu__copy(struct task_struct *dst, struct task_struct *src);
extern void fpu__clear(struct fpu *fpu);
extern int fpu__exception_code(struct fpu *fpu, int trap_nr);
extern int dump_fpu(struct pt_regs *ptregs, struct user_i387_struct *fpstate);
/*
* Boot time FPU initialization functions:
*/
extern void fpu__init_cpu(void);
extern void fpu__init_system_xstate(void);
extern void fpu__init_cpu_xstate(void);
extern void fpu__init_system(struct cpuinfo_x86 *c);
extern void fpu__init_check_bugs(void);
extern void fpu__resume_cpu(void);
extern u64 fpu__get_supported_xfeatures_mask(void);
/*
* Debugging facility:
*/
#ifdef CONFIG_X86_DEBUG_FPU
# define WARN_ON_FPU(x) WARN_ON_ONCE(x)
#else
# define WARN_ON_FPU(x) ({ (void)(x); 0; })
#endif
/*
* FPU related CPU feature flag helper routines:
*/
static __always_inline __pure bool use_xsaveopt(void)
{
return static_cpu_has(X86_FEATURE_XSAVEOPT);
}
static __always_inline __pure bool use_xsave(void)
{
return static_cpu_has(X86_FEATURE_XSAVE);
}
static __always_inline __pure bool use_fxsr(void)
{
return static_cpu_has(X86_FEATURE_FXSR);
}
/*
* fpstate handling functions:
*/
extern union fpregs_state init_fpstate;
extern void fpstate_init(union fpregs_state *state);
#ifdef CONFIG_MATH_EMULATION
extern void fpstate_init_soft(struct swregs_state *soft);
#else
static inline void fpstate_init_soft(struct swregs_state *soft) {}
#endif
static inline void fpstate_init_xstate(struct xregs_state *xsave)
{
/*
* XRSTORS requires these bits set in xcomp_bv, or it will
* trigger #GP:
*/
xsave->header.xcomp_bv = XCOMP_BV_COMPACTED_FORMAT | xfeatures_mask;
}
static inline void fpstate_init_fxstate(struct fxregs_state *fx)
{
fx->cwd = 0x37f;
fx->mxcsr = MXCSR_DEFAULT;
}
extern void fpstate_sanitize_xstate(struct fpu *fpu);
/* Returns 0 or the negated trap number, which results in -EFAULT for #PF */
#define user_insn(insn, output, input...) \
({ \
int err; \
\
might_fault(); \
\
asm volatile(ASM_STAC "\n" \
"1: " #insn "\n" \
"2: " ASM_CLAC "\n" \
".section .fixup,\"ax\"\n" \
"3: negl %%eax\n" \
" jmp 2b\n" \
".previous\n" \
_ASM_EXTABLE_FAULT(1b, 3b) \
: [err] "=a" (err), output \
: "0"(0), input); \
err; \
})
#define kernel_insn_err(insn, output, input...) \
({ \
int err; \
asm volatile("1:" #insn "\n\t" \
"2:\n" \
".section .fixup,\"ax\"\n" \
"3: movl $-1,%[err]\n" \
" jmp 2b\n" \
".previous\n" \
_ASM_EXTABLE(1b, 3b) \
: [err] "=r" (err), output \
: "0"(0), input); \
err; \
})
#define kernel_insn(insn, output, input...) \
asm volatile("1:" #insn "\n\t" \
"2:\n" \
_ASM_EXTABLE_HANDLE(1b, 2b, ex_handler_fprestore) \
: output : input)
static inline int copy_fregs_to_user(struct fregs_state __user *fx)
{
return user_insn(fnsave %[fx]; fwait, [fx] "=m" (*fx), "m" (*fx));
}
static inline int copy_fxregs_to_user(struct fxregs_state __user *fx)
{
if (IS_ENABLED(CONFIG_X86_32))
return user_insn(fxsave %[fx], [fx] "=m" (*fx), "m" (*fx));
else
return user_insn(fxsaveq %[fx], [fx] "=m" (*fx), "m" (*fx));
}
static inline void copy_kernel_to_fxregs(struct fxregs_state *fx)
{
if (IS_ENABLED(CONFIG_X86_32))
kernel_insn(fxrstor %[fx], "=m" (*fx), [fx] "m" (*fx));
else
kernel_insn(fxrstorq %[fx], "=m" (*fx), [fx] "m" (*fx));
}
static inline int copy_kernel_to_fxregs_err(struct fxregs_state *fx)
{
if (IS_ENABLED(CONFIG_X86_32))
return kernel_insn_err(fxrstor %[fx], "=m" (*fx), [fx] "m" (*fx));
else
return kernel_insn_err(fxrstorq %[fx], "=m" (*fx), [fx] "m" (*fx));
}
static inline int copy_user_to_fxregs(struct fxregs_state __user *fx)
{
if (IS_ENABLED(CONFIG_X86_32))
return user_insn(fxrstor %[fx], "=m" (*fx), [fx] "m" (*fx));
else
return user_insn(fxrstorq %[fx], "=m" (*fx), [fx] "m" (*fx));
}
static inline void copy_kernel_to_fregs(struct fregs_state *fx)
{
kernel_insn(frstor %[fx], "=m" (*fx), [fx] "m" (*fx));
}
static inline int copy_kernel_to_fregs_err(struct fregs_state *fx)
{
return kernel_insn_err(frstor %[fx], "=m" (*fx), [fx] "m" (*fx));
}
static inline int copy_user_to_fregs(struct fregs_state __user *fx)
{
return user_insn(frstor %[fx], "=m" (*fx), [fx] "m" (*fx));
}
static inline void copy_fxregs_to_kernel(struct fpu *fpu)
{
if (IS_ENABLED(CONFIG_X86_32))
asm volatile( "fxsave %[fx]" : [fx] "=m" (fpu->state.fxsave));
else
asm volatile("fxsaveq %[fx]" : [fx] "=m" (fpu->state.fxsave));
}
static inline void fxsave(struct fxregs_state *fx)
{
if (IS_ENABLED(CONFIG_X86_32))
asm volatile( "fxsave %[fx]" : [fx] "=m" (*fx));
else
asm volatile("fxsaveq %[fx]" : [fx] "=m" (*fx));
}
/* These macros all use (%edi)/(%rdi) as the single memory argument. */
#define XSAVE ".byte " REX_PREFIX "0x0f,0xae,0x27"
#define XSAVEOPT ".byte " REX_PREFIX "0x0f,0xae,0x37"
#define XSAVES ".byte " REX_PREFIX "0x0f,0xc7,0x2f"
#define XRSTOR ".byte " REX_PREFIX "0x0f,0xae,0x2f"
#define XRSTORS ".byte " REX_PREFIX "0x0f,0xc7,0x1f"
/*
* After this @err contains 0 on success or the negated trap number when
* the operation raises an exception. For faults this results in -EFAULT.
*/
#define XSTATE_OP(op, st, lmask, hmask, err) \
asm volatile("1:" op "\n\t" \
"xor %[err], %[err]\n" \
"2:\n\t" \
".pushsection .fixup,\"ax\"\n\t" \
"3: negl %%eax\n\t" \
"jmp 2b\n\t" \
".popsection\n\t" \
_ASM_EXTABLE_FAULT(1b, 3b) \
: [err] "=a" (err) \
: "D" (st), "m" (*st), "a" (lmask), "d" (hmask) \
: "memory")
/*
* If XSAVES is enabled, it replaces XSAVEOPT because it supports a compact
* format and supervisor states in addition to modified optimization in
* XSAVEOPT.
*
* Otherwise, if XSAVEOPT is enabled, XSAVEOPT replaces XSAVE because XSAVEOPT
* supports modified optimization which is not supported by XSAVE.
*
* We use XSAVE as a fallback.
*
* The 661 label is defined in the ALTERNATIVE* macros as the address of the
* original instruction which gets replaced. We need to use it here as the
* address of the instruction where we might get an exception at.
*/
#define XSTATE_XSAVE(st, lmask, hmask, err) \
asm volatile(ALTERNATIVE_2(XSAVE, \
XSAVEOPT, X86_FEATURE_XSAVEOPT, \
XSAVES, X86_FEATURE_XSAVES) \
"\n" \
"xor %[err], %[err]\n" \
"3:\n" \
".pushsection .fixup,\"ax\"\n" \
"4: movl $-2, %[err]\n" \
"jmp 3b\n" \
".popsection\n" \
_ASM_EXTABLE(661b, 4b) \
: [err] "=r" (err) \
: "D" (st), "m" (*st), "a" (lmask), "d" (hmask) \
: "memory")
/*
* Use XRSTORS to restore context if it is enabled. XRSTORS supports compact
* XSAVE area format.
*/
#define XSTATE_XRESTORE(st, lmask, hmask) \
asm volatile(ALTERNATIVE(XRSTOR, \
XRSTORS, X86_FEATURE_XSAVES) \
"\n" \
"3:\n" \
_ASM_EXTABLE_HANDLE(661b, 3b, ex_handler_fprestore)\
: \
: "D" (st), "m" (*st), "a" (lmask), "d" (hmask) \
: "memory")
/*
* This function is called only during boot time when x86 caps are not set
* up and alternative can not be used yet.
*/
static inline void copy_kernel_to_xregs_booting(struct xregs_state *xstate)
{
u64 mask = -1;
u32 lmask = mask;
u32 hmask = mask >> 32;
int err;
WARN_ON(system_state != SYSTEM_BOOTING);
if (boot_cpu_has(X86_FEATURE_XSAVES))
XSTATE_OP(XRSTORS, xstate, lmask, hmask, err);
else
XSTATE_OP(XRSTOR, xstate, lmask, hmask, err);
/*
* We should never fault when copying from a kernel buffer, and the FPU
* state we set at boot time should be valid.
*/
WARN_ON_FPU(err);
}
/*
* Save processor xstate to xsave area.
*/
static inline void copy_xregs_to_kernel(struct xregs_state *xstate)
{
u64 mask = -1;
u32 lmask = mask;
u32 hmask = mask >> 32;
int err;
WARN_ON_FPU(!alternatives_patched);
XSTATE_XSAVE(xstate, lmask, hmask, err);
/* We should never fault when copying to a kernel buffer: */
WARN_ON_FPU(err);
}
/*
* Restore processor xstate from xsave area.
*/
static inline void copy_kernel_to_xregs(struct xregs_state *xstate, u64 mask)
{
u32 lmask = mask;
u32 hmask = mask >> 32;
XSTATE_XRESTORE(xstate, lmask, hmask);
}
/*
* Save xstate to user space xsave area.
*
* We don't use modified optimization because xrstor/xrstors might track
* a different application.
*
* We don't use compacted format xsave area for
* backward compatibility for old applications which don't understand
* compacted format of xsave area.
*/
static inline int copy_xregs_to_user(struct xregs_state __user *buf)
{
int err;
/*
* Clear the xsave header first, so that reserved fields are
* initialized to zero.
*/
err = __clear_user(&buf->header, sizeof(buf->header));
if (unlikely(err))
return -EFAULT;
stac();
XSTATE_OP(XSAVE, buf, -1, -1, err);
clac();
return err;
}
/*
* Restore xstate from user space xsave area.
*/
static inline int copy_user_to_xregs(struct xregs_state __user *buf, u64 mask)
{
struct xregs_state *xstate = ((__force struct xregs_state *)buf);
u32 lmask = mask;
u32 hmask = mask >> 32;
int err;
stac();
XSTATE_OP(XRSTOR, xstate, lmask, hmask, err);
clac();
return err;
}
/*
* Restore xstate from kernel space xsave area, return an error code instead of
* an exception.
*/
static inline int copy_kernel_to_xregs_err(struct xregs_state *xstate, u64 mask)
{
u32 lmask = mask;
u32 hmask = mask >> 32;
int err;
XSTATE_OP(XRSTOR, xstate, lmask, hmask, err);
return err;
}
/*
* These must be called with preempt disabled. Returns
* 'true' if the FPU state is still intact and we can
* keep registers active.
*
* The legacy FNSAVE instruction cleared all FPU state
* unconditionally, so registers are essentially destroyed.
* Modern FPU state can be kept in registers, if there are
* no pending FP exceptions.
*/
static inline int copy_fpregs_to_fpstate(struct fpu *fpu)
{
if (likely(use_xsave())) {
copy_xregs_to_kernel(&fpu->state.xsave);
/*
* AVX512 state is tracked here because its use is
* known to slow the max clock speed of the core.
*/
if (fpu->state.xsave.header.xfeatures & XFEATURE_MASK_AVX512)
fpu->avx512_timestamp = jiffies;
return 1;
}
if (likely(use_fxsr())) {
copy_fxregs_to_kernel(fpu);
return 1;
}
/*
* Legacy FPU register saving, FNSAVE always clears FPU registers,
* so we have to mark them inactive:
*/
asm volatile("fnsave %[fp]; fwait" : [fp] "=m" (fpu->state.fsave));
return 0;
}
static inline void __copy_kernel_to_fpregs(union fpregs_state *fpstate, u64 mask)
{
if (use_xsave()) {
copy_kernel_to_xregs(&fpstate->xsave, mask);
} else {
if (use_fxsr())
copy_kernel_to_fxregs(&fpstate->fxsave);
else
copy_kernel_to_fregs(&fpstate->fsave);
}
}
static inline void copy_kernel_to_fpregs(union fpregs_state *fpstate)
{
/*
* AMD K7/K8 CPUs don't save/restore FDP/FIP/FOP unless an exception is
* pending. Clear the x87 state here by setting it to fixed values.
* "m" is a random variable that should be in L1.
*/
if (unlikely(static_cpu_has_bug(X86_BUG_FXSAVE_LEAK))) {
asm volatile(
"fnclex\n\t"
"emms\n\t"
"fildl %P[addr]" /* set F?P to defined value */
: : [addr] "m" (fpstate));
}
__copy_kernel_to_fpregs(fpstate, -1);
}
extern int copy_fpstate_to_sigframe(void __user *buf, void __user *fp, int size);
/*
* FPU context switch related helper methods:
*/
DECLARE_PER_CPU(struct fpu *, fpu_fpregs_owner_ctx);
/*
* The in-register FPU state for an FPU context on a CPU is assumed to be
* valid if the fpu->last_cpu matches the CPU, and the fpu_fpregs_owner_ctx
* matches the FPU.
*
* If the FPU register state is valid, the kernel can skip restoring the
* FPU state from memory.
*
* Any code that clobbers the FPU registers or updates the in-memory
* FPU state for a task MUST let the rest of the kernel know that the
* FPU registers are no longer valid for this task.
*
* Either one of these invalidation functions is enough. Invalidate
* a resource you control: CPU if using the CPU for something else
* (with preemption disabled), FPU for the current task, or a task that
* is prevented from running by the current task.
*/
static inline void __cpu_invalidate_fpregs_state(void)
{
__this_cpu_write(fpu_fpregs_owner_ctx, NULL);
}
static inline void __fpu_invalidate_fpregs_state(struct fpu *fpu)
{
fpu->last_cpu = -1;
}
static inline int fpregs_state_valid(struct fpu *fpu, unsigned int cpu)
{
return fpu == this_cpu_read(fpu_fpregs_owner_ctx) && cpu == fpu->last_cpu;
}
/*
* These generally need preemption protection to work,
* do try to avoid using these on their own:
*/
static inline void fpregs_deactivate(struct fpu *fpu)
{
this_cpu_write(fpu_fpregs_owner_ctx, NULL);
trace_x86_fpu_regs_deactivated(fpu);
}
static inline void fpregs_activate(struct fpu *fpu)
{
this_cpu_write(fpu_fpregs_owner_ctx, fpu);
trace_x86_fpu_regs_activated(fpu);
}
/*
* Internal helper, do not use directly. Use switch_fpu_return() instead.
*/
static inline void __fpregs_load_activate(void)
{
struct fpu *fpu = &current->thread.fpu;
int cpu = smp_processor_id();
if (WARN_ON_ONCE(current->flags & PF_KTHREAD))
return;
if (!fpregs_state_valid(fpu, cpu)) {
copy_kernel_to_fpregs(&fpu->state);
fpregs_activate(fpu);
fpu->last_cpu = cpu;
}
clear_thread_flag(TIF_NEED_FPU_LOAD);
}
/*
* FPU state switching for scheduling.
*
* This is a two-stage process:
*
* - switch_fpu_prepare() saves the old state.
* This is done within the context of the old process.
*
* - switch_fpu_finish() sets TIF_NEED_FPU_LOAD; the floating point state
* will get loaded on return to userspace, or when the kernel needs it.
*
* If TIF_NEED_FPU_LOAD is cleared then the CPU's FPU registers
* are saved in the current thread's FPU register state.
*
* If TIF_NEED_FPU_LOAD is set then CPU's FPU registers may not
* hold current()'s FPU registers. It is required to load the
* registers before returning to userland or using the content
* otherwise.
*
* The FPU context is only stored/restored for a user task and
* PF_KTHREAD is used to distinguish between kernel and user threads.
*/
static inline void switch_fpu_prepare(struct fpu *old_fpu, int cpu)
{
if (static_cpu_has(X86_FEATURE_FPU) && !(current->flags & PF_KTHREAD)) {
if (!copy_fpregs_to_fpstate(old_fpu))
old_fpu->last_cpu = -1;
else
old_fpu->last_cpu = cpu;
/* But leave fpu_fpregs_owner_ctx! */
trace_x86_fpu_regs_deactivated(old_fpu);
}
}
/*
* Misc helper functions:
*/
/*
* Load PKRU from the FPU context if available. Delay loading of the
* complete FPU state until the return to userland.
*/
static inline void switch_fpu_finish(struct fpu *new_fpu)
{
u32 pkru_val = init_pkru_value;
struct pkru_state *pk;
if (!static_cpu_has(X86_FEATURE_FPU))
return;
set_thread_flag(TIF_NEED_FPU_LOAD);
if (!cpu_feature_enabled(X86_FEATURE_OSPKE))
return;
/*
* PKRU state is switched eagerly because it needs to be valid before we
* return to userland e.g. for a copy_to_user() operation.
*/
if (!(current->flags & PF_KTHREAD)) {
/*
* If the PKRU bit in xsave.header.xfeatures is not set,
* then the PKRU component was in init state, which means
* XRSTOR will set PKRU to 0. If the bit is not set then
* get_xsave_addr() will return NULL because the PKRU value
* in memory is not valid. This means pkru_val has to be
* set to 0 and not to init_pkru_value.
*/
pk = get_xsave_addr(&new_fpu->state.xsave, XFEATURE_PKRU);
pkru_val = pk ? pk->pkru : 0;
}
__write_pkru(pkru_val);
}
/*
* MXCSR and XCR definitions:
*/
static inline void ldmxcsr(u32 mxcsr)
{
asm volatile("ldmxcsr %0" :: "m" (mxcsr));
}
extern unsigned int mxcsr_feature_mask;
#define XCR_XFEATURE_ENABLED_MASK 0x00000000
static inline u64 xgetbv(u32 index)
{
u32 eax, edx;
asm volatile(".byte 0x0f,0x01,0xd0" /* xgetbv */
: "=a" (eax), "=d" (edx)
: "c" (index));
return eax + ((u64)edx << 32);
}
static inline void xsetbv(u32 index, u64 value)
{
u32 eax = value;
u32 edx = value >> 32;
asm volatile(".byte 0x0f,0x01,0xd1" /* xsetbv */
: : "a" (eax), "d" (edx), "c" (index));
}
#endif /* _ASM_X86_FPU_INTERNAL_H */