blob: 9e79a7e92e1a6d0dee14ea89949c04f5fe71f49e [file] [log] [blame]
/*
* Copyright © 2016 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*
*/
#include "intel_drv.h"
#define CTM_COEFF_SIGN (1ULL << 63)
#define CTM_COEFF_1_0 (1ULL << 32)
#define CTM_COEFF_2_0 (CTM_COEFF_1_0 << 1)
#define CTM_COEFF_4_0 (CTM_COEFF_2_0 << 1)
#define CTM_COEFF_8_0 (CTM_COEFF_4_0 << 1)
#define CTM_COEFF_0_5 (CTM_COEFF_1_0 >> 1)
#define CTM_COEFF_0_25 (CTM_COEFF_0_5 >> 1)
#define CTM_COEFF_0_125 (CTM_COEFF_0_25 >> 1)
#define CTM_COEFF_LIMITED_RANGE ((235ULL - 16ULL) * CTM_COEFF_1_0 / 255)
#define CTM_COEFF_NEGATIVE(coeff) (((coeff) & CTM_COEFF_SIGN) != 0)
#define CTM_COEFF_ABS(coeff) ((coeff) & (CTM_COEFF_SIGN - 1))
#define LEGACY_LUT_LENGTH (sizeof(struct drm_color_lut) * 256)
/* Post offset values for RGB->YCBCR conversion */
#define POSTOFF_RGB_TO_YUV_HI 0x800
#define POSTOFF_RGB_TO_YUV_ME 0x100
#define POSTOFF_RGB_TO_YUV_LO 0x800
/*
* These values are direct register values specified in the Bspec,
* for RGB->YUV conversion matrix (colorspace BT709)
*/
#define CSC_RGB_TO_YUV_RU_GU 0x2ba809d8
#define CSC_RGB_TO_YUV_BU 0x37e80000
#define CSC_RGB_TO_YUV_RY_GY 0x1e089cc0
#define CSC_RGB_TO_YUV_BY 0xb5280000
#define CSC_RGB_TO_YUV_RV_GV 0xbce89ad8
#define CSC_RGB_TO_YUV_BV 0x1e080000
/*
* Extract the CSC coefficient from a CTM coefficient (in U32.32 fixed point
* format). This macro takes the coefficient we want transformed and the
* number of fractional bits.
*
* We only have a 9 bits precision window which slides depending on the value
* of the CTM coefficient and we write the value from bit 3. We also round the
* value.
*/
#define I9XX_CSC_COEFF_FP(coeff, fbits) \
(clamp_val(((coeff) >> (32 - (fbits) - 3)) + 4, 0, 0xfff) & 0xff8)
#define I9XX_CSC_COEFF_LIMITED_RANGE \
I9XX_CSC_COEFF_FP(CTM_COEFF_LIMITED_RANGE, 9)
#define I9XX_CSC_COEFF_1_0 \
((7 << 12) | I9XX_CSC_COEFF_FP(CTM_COEFF_1_0, 8))
static bool crtc_state_is_legacy_gamma(struct drm_crtc_state *state)
{
return !state->degamma_lut &&
!state->ctm &&
state->gamma_lut &&
state->gamma_lut->length == LEGACY_LUT_LENGTH;
}
/*
* When using limited range, multiply the matrix given by userspace by
* the matrix that we would use for the limited range.
*/
static void ctm_mult_by_limited(u64 *result, const u64 *input)
{
int i;
for (i = 0; i < 9; i++) {
u64 user_coeff = input[i];
u32 limited_coeff = CTM_COEFF_LIMITED_RANGE;
u32 abs_coeff = clamp_val(CTM_COEFF_ABS(user_coeff), 0,
CTM_COEFF_4_0 - 1) >> 2;
/*
* By scaling every co-efficient with limited range (16-235)
* vs full range (0-255) the final o/p will be scaled down to
* fit in the limited range supported by the panel.
*/
result[i] = mul_u32_u32(limited_coeff, abs_coeff) >> 30;
result[i] |= user_coeff & CTM_COEFF_SIGN;
}
}
static void i9xx_load_ycbcr_conversion_matrix(struct intel_crtc *intel_crtc)
{
int pipe = intel_crtc->pipe;
struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), CSC_RGB_TO_YUV_RU_GU);
I915_WRITE(PIPE_CSC_COEFF_BU(pipe), CSC_RGB_TO_YUV_BU);
I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), CSC_RGB_TO_YUV_RY_GY);
I915_WRITE(PIPE_CSC_COEFF_BY(pipe), CSC_RGB_TO_YUV_BY);
I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), CSC_RGB_TO_YUV_RV_GV);
I915_WRITE(PIPE_CSC_COEFF_BV(pipe), CSC_RGB_TO_YUV_BV);
I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), POSTOFF_RGB_TO_YUV_HI);
I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), POSTOFF_RGB_TO_YUV_ME);
I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), POSTOFF_RGB_TO_YUV_LO);
I915_WRITE(PIPE_CSC_MODE(pipe), 0);
}
/* Set up the pipe CSC unit. */
static void i9xx_load_csc_matrix(struct drm_crtc_state *crtc_state)
{
struct drm_crtc *crtc = crtc_state->crtc;
struct drm_i915_private *dev_priv = to_i915(crtc->dev);
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
int i, pipe = intel_crtc->pipe;
uint16_t coeffs[9] = { 0, };
struct intel_crtc_state *intel_crtc_state = to_intel_crtc_state(crtc_state);
if (intel_crtc_state->ycbcr420) {
i9xx_load_ycbcr_conversion_matrix(intel_crtc);
return;
} else if (crtc_state->ctm) {
struct drm_color_ctm *ctm =
(struct drm_color_ctm *)crtc_state->ctm->data;
uint64_t input[9] = { 0, };
if (intel_crtc_state->limited_color_range) {
ctm_mult_by_limited(input, ctm->matrix);
} else {
for (i = 0; i < ARRAY_SIZE(input); i++)
input[i] = ctm->matrix[i];
}
/*
* Convert fixed point S31.32 input to format supported by the
* hardware.
*/
for (i = 0; i < ARRAY_SIZE(coeffs); i++) {
uint64_t abs_coeff = ((1ULL << 63) - 1) & input[i];
/*
* Clamp input value to min/max supported by
* hardware.
*/
abs_coeff = clamp_val(abs_coeff, 0, CTM_COEFF_4_0 - 1);
/* sign bit */
if (CTM_COEFF_NEGATIVE(input[i]))
coeffs[i] |= 1 << 15;
if (abs_coeff < CTM_COEFF_0_125)
coeffs[i] |= (3 << 12) |
I9XX_CSC_COEFF_FP(abs_coeff, 12);
else if (abs_coeff < CTM_COEFF_0_25)
coeffs[i] |= (2 << 12) |
I9XX_CSC_COEFF_FP(abs_coeff, 11);
else if (abs_coeff < CTM_COEFF_0_5)
coeffs[i] |= (1 << 12) |
I9XX_CSC_COEFF_FP(abs_coeff, 10);
else if (abs_coeff < CTM_COEFF_1_0)
coeffs[i] |= I9XX_CSC_COEFF_FP(abs_coeff, 9);
else if (abs_coeff < CTM_COEFF_2_0)
coeffs[i] |= (7 << 12) |
I9XX_CSC_COEFF_FP(abs_coeff, 8);
else
coeffs[i] |= (6 << 12) |
I9XX_CSC_COEFF_FP(abs_coeff, 7);
}
} else {
/*
* Load an identity matrix if no coefficients are provided.
*
* TODO: Check what kind of values actually come out of the
* pipe with these coeff/postoff values and adjust to get the
* best accuracy. Perhaps we even need to take the bpc value
* into consideration.
*/
for (i = 0; i < 3; i++) {
if (intel_crtc_state->limited_color_range)
coeffs[i * 3 + i] =
I9XX_CSC_COEFF_LIMITED_RANGE;
else
coeffs[i * 3 + i] = I9XX_CSC_COEFF_1_0;
}
}
I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeffs[0] << 16 | coeffs[1]);
I915_WRITE(PIPE_CSC_COEFF_BY(pipe), coeffs[2] << 16);
I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeffs[3] << 16 | coeffs[4]);
I915_WRITE(PIPE_CSC_COEFF_BU(pipe), coeffs[5] << 16);
I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), coeffs[6] << 16 | coeffs[7]);
I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeffs[8] << 16);
I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
if (INTEL_GEN(dev_priv) > 6) {
uint16_t postoff = 0;
if (intel_crtc_state->limited_color_range)
postoff = (16 * (1 << 12) / 255) & 0x1fff;
I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
I915_WRITE(PIPE_CSC_MODE(pipe), 0);
} else {
uint32_t mode = CSC_MODE_YUV_TO_RGB;
if (intel_crtc_state->limited_color_range)
mode |= CSC_BLACK_SCREEN_OFFSET;
I915_WRITE(PIPE_CSC_MODE(pipe), mode);
}
}
/*
* Set up the pipe CSC unit on CherryView.
*/
static void cherryview_load_csc_matrix(struct drm_crtc_state *state)
{
struct drm_crtc *crtc = state->crtc;
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = to_i915(dev);
int pipe = to_intel_crtc(crtc)->pipe;
uint32_t mode;
if (state->ctm) {
struct drm_color_ctm *ctm =
(struct drm_color_ctm *) state->ctm->data;
uint16_t coeffs[9] = { 0, };
int i;
for (i = 0; i < ARRAY_SIZE(coeffs); i++) {
uint64_t abs_coeff =
((1ULL << 63) - 1) & ctm->matrix[i];
/* Round coefficient. */
abs_coeff += 1 << (32 - 13);
/* Clamp to hardware limits. */
abs_coeff = clamp_val(abs_coeff, 0, CTM_COEFF_8_0 - 1);
/* Write coefficients in S3.12 format. */
if (ctm->matrix[i] & (1ULL << 63))
coeffs[i] = 1 << 15;
coeffs[i] |= ((abs_coeff >> 32) & 7) << 12;
coeffs[i] |= (abs_coeff >> 20) & 0xfff;
}
I915_WRITE(CGM_PIPE_CSC_COEFF01(pipe),
coeffs[1] << 16 | coeffs[0]);
I915_WRITE(CGM_PIPE_CSC_COEFF23(pipe),
coeffs[3] << 16 | coeffs[2]);
I915_WRITE(CGM_PIPE_CSC_COEFF45(pipe),
coeffs[5] << 16 | coeffs[4]);
I915_WRITE(CGM_PIPE_CSC_COEFF67(pipe),
coeffs[7] << 16 | coeffs[6]);
I915_WRITE(CGM_PIPE_CSC_COEFF8(pipe), coeffs[8]);
}
mode = (state->ctm ? CGM_PIPE_MODE_CSC : 0);
if (!crtc_state_is_legacy_gamma(state)) {
mode |= (state->degamma_lut ? CGM_PIPE_MODE_DEGAMMA : 0) |
(state->gamma_lut ? CGM_PIPE_MODE_GAMMA : 0);
}
I915_WRITE(CGM_PIPE_MODE(pipe), mode);
}
void intel_color_set_csc(struct drm_crtc_state *crtc_state)
{
struct drm_device *dev = crtc_state->crtc->dev;
struct drm_i915_private *dev_priv = to_i915(dev);
if (dev_priv->display.load_csc_matrix)
dev_priv->display.load_csc_matrix(crtc_state);
}
/* Loads the legacy palette/gamma unit for the CRTC. */
static void i9xx_load_luts_internal(struct drm_crtc *crtc,
struct drm_property_blob *blob,
struct intel_crtc_state *crtc_state)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = to_i915(dev);
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
enum pipe pipe = intel_crtc->pipe;
int i;
if (HAS_GMCH_DISPLAY(dev_priv)) {
if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI))
assert_dsi_pll_enabled(dev_priv);
else
assert_pll_enabled(dev_priv, pipe);
}
if (blob) {
struct drm_color_lut *lut = (struct drm_color_lut *) blob->data;
for (i = 0; i < 256; i++) {
uint32_t word =
(drm_color_lut_extract(lut[i].red, 8) << 16) |
(drm_color_lut_extract(lut[i].green, 8) << 8) |
drm_color_lut_extract(lut[i].blue, 8);
if (HAS_GMCH_DISPLAY(dev_priv))
I915_WRITE(PALETTE(pipe, i), word);
else
I915_WRITE(LGC_PALETTE(pipe, i), word);
}
} else {
for (i = 0; i < 256; i++) {
uint32_t word = (i << 16) | (i << 8) | i;
if (HAS_GMCH_DISPLAY(dev_priv))
I915_WRITE(PALETTE(pipe, i), word);
else
I915_WRITE(LGC_PALETTE(pipe, i), word);
}
}
}
static void i9xx_load_luts(struct drm_crtc_state *crtc_state)
{
i9xx_load_luts_internal(crtc_state->crtc, crtc_state->gamma_lut,
to_intel_crtc_state(crtc_state));
}
/* Loads the legacy palette/gamma unit for the CRTC on Haswell. */
static void haswell_load_luts(struct drm_crtc_state *crtc_state)
{
struct drm_crtc *crtc = crtc_state->crtc;
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = to_i915(dev);
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
struct intel_crtc_state *intel_crtc_state =
to_intel_crtc_state(crtc_state);
bool reenable_ips = false;
/*
* Workaround : Do not read or write the pipe palette/gamma data while
* GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
*/
if (IS_HASWELL(dev_priv) && intel_crtc_state->ips_enabled &&
(intel_crtc_state->gamma_mode == GAMMA_MODE_MODE_SPLIT)) {
hsw_disable_ips(intel_crtc);
reenable_ips = true;
}
intel_crtc_state->gamma_mode = GAMMA_MODE_MODE_8BIT;
I915_WRITE(GAMMA_MODE(intel_crtc->pipe), GAMMA_MODE_MODE_8BIT);
i9xx_load_luts(crtc_state);
if (reenable_ips)
hsw_enable_ips(intel_crtc);
}
static void bdw_load_degamma_lut(struct drm_crtc_state *state)
{
struct drm_i915_private *dev_priv = to_i915(state->crtc->dev);
enum pipe pipe = to_intel_crtc(state->crtc)->pipe;
uint32_t i, lut_size = INTEL_INFO(dev_priv)->color.degamma_lut_size;
I915_WRITE(PREC_PAL_INDEX(pipe),
PAL_PREC_SPLIT_MODE | PAL_PREC_AUTO_INCREMENT);
if (state->degamma_lut) {
struct drm_color_lut *lut =
(struct drm_color_lut *) state->degamma_lut->data;
for (i = 0; i < lut_size; i++) {
uint32_t word =
drm_color_lut_extract(lut[i].red, 10) << 20 |
drm_color_lut_extract(lut[i].green, 10) << 10 |
drm_color_lut_extract(lut[i].blue, 10);
I915_WRITE(PREC_PAL_DATA(pipe), word);
}
} else {
for (i = 0; i < lut_size; i++) {
uint32_t v = (i * ((1 << 10) - 1)) / (lut_size - 1);
I915_WRITE(PREC_PAL_DATA(pipe),
(v << 20) | (v << 10) | v);
}
}
}
static void bdw_load_gamma_lut(struct drm_crtc_state *state, u32 offset)
{
struct drm_i915_private *dev_priv = to_i915(state->crtc->dev);
enum pipe pipe = to_intel_crtc(state->crtc)->pipe;
uint32_t i, lut_size = INTEL_INFO(dev_priv)->color.gamma_lut_size;
WARN_ON(offset & ~PAL_PREC_INDEX_VALUE_MASK);
I915_WRITE(PREC_PAL_INDEX(pipe),
(offset ? PAL_PREC_SPLIT_MODE : 0) |
PAL_PREC_AUTO_INCREMENT |
offset);
if (state->gamma_lut) {
struct drm_color_lut *lut =
(struct drm_color_lut *) state->gamma_lut->data;
for (i = 0; i < lut_size; i++) {
uint32_t word =
(drm_color_lut_extract(lut[i].red, 10) << 20) |
(drm_color_lut_extract(lut[i].green, 10) << 10) |
drm_color_lut_extract(lut[i].blue, 10);
I915_WRITE(PREC_PAL_DATA(pipe), word);
}
/* Program the max register to clamp values > 1.0. */
i = lut_size - 1;
I915_WRITE(PREC_PAL_GC_MAX(pipe, 0),
drm_color_lut_extract(lut[i].red, 16));
I915_WRITE(PREC_PAL_GC_MAX(pipe, 1),
drm_color_lut_extract(lut[i].green, 16));
I915_WRITE(PREC_PAL_GC_MAX(pipe, 2),
drm_color_lut_extract(lut[i].blue, 16));
} else {
for (i = 0; i < lut_size; i++) {
uint32_t v = (i * ((1 << 10) - 1)) / (lut_size - 1);
I915_WRITE(PREC_PAL_DATA(pipe),
(v << 20) | (v << 10) | v);
}
I915_WRITE(PREC_PAL_GC_MAX(pipe, 0), (1 << 16) - 1);
I915_WRITE(PREC_PAL_GC_MAX(pipe, 1), (1 << 16) - 1);
I915_WRITE(PREC_PAL_GC_MAX(pipe, 2), (1 << 16) - 1);
}
}
/* Loads the palette/gamma unit for the CRTC on Broadwell+. */
static void broadwell_load_luts(struct drm_crtc_state *state)
{
struct drm_i915_private *dev_priv = to_i915(state->crtc->dev);
struct intel_crtc_state *intel_state = to_intel_crtc_state(state);
enum pipe pipe = to_intel_crtc(state->crtc)->pipe;
if (crtc_state_is_legacy_gamma(state)) {
haswell_load_luts(state);
return;
}
bdw_load_degamma_lut(state);
bdw_load_gamma_lut(state,
INTEL_INFO(dev_priv)->color.degamma_lut_size);
intel_state->gamma_mode = GAMMA_MODE_MODE_SPLIT;
I915_WRITE(GAMMA_MODE(pipe), GAMMA_MODE_MODE_SPLIT);
POSTING_READ(GAMMA_MODE(pipe));
/*
* Reset the index, otherwise it prevents the legacy palette to be
* written properly.
*/
I915_WRITE(PREC_PAL_INDEX(pipe), 0);
}
static void glk_load_degamma_lut(struct drm_crtc_state *state)
{
struct drm_i915_private *dev_priv = to_i915(state->crtc->dev);
enum pipe pipe = to_intel_crtc(state->crtc)->pipe;
const uint32_t lut_size = 33;
uint32_t i;
/*
* When setting the auto-increment bit, the hardware seems to
* ignore the index bits, so we need to reset it to index 0
* separately.
*/
I915_WRITE(PRE_CSC_GAMC_INDEX(pipe), 0);
I915_WRITE(PRE_CSC_GAMC_INDEX(pipe), PRE_CSC_GAMC_AUTO_INCREMENT);
/*
* FIXME: The pipe degamma table in geminilake doesn't support
* different values per channel, so this just loads a linear table.
*/
for (i = 0; i < lut_size; i++) {
uint32_t v = (i * (1 << 16)) / (lut_size - 1);
I915_WRITE(PRE_CSC_GAMC_DATA(pipe), v);
}
/* Clamp values > 1.0. */
while (i++ < 35)
I915_WRITE(PRE_CSC_GAMC_DATA(pipe), (1 << 16));
}
static void glk_load_luts(struct drm_crtc_state *state)
{
struct drm_crtc *crtc = state->crtc;
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = to_i915(dev);
struct intel_crtc_state *intel_state = to_intel_crtc_state(state);
enum pipe pipe = to_intel_crtc(crtc)->pipe;
glk_load_degamma_lut(state);
if (crtc_state_is_legacy_gamma(state)) {
haswell_load_luts(state);
return;
}
bdw_load_gamma_lut(state, 0);
intel_state->gamma_mode = GAMMA_MODE_MODE_10BIT;
I915_WRITE(GAMMA_MODE(pipe), GAMMA_MODE_MODE_10BIT);
POSTING_READ(GAMMA_MODE(pipe));
}
/* Loads the palette/gamma unit for the CRTC on CherryView. */
static void cherryview_load_luts(struct drm_crtc_state *state)
{
struct drm_crtc *crtc = state->crtc;
struct drm_i915_private *dev_priv = to_i915(crtc->dev);
enum pipe pipe = to_intel_crtc(crtc)->pipe;
struct drm_color_lut *lut;
uint32_t i, lut_size;
uint32_t word0, word1;
if (crtc_state_is_legacy_gamma(state)) {
/* Turn off degamma/gamma on CGM block. */
I915_WRITE(CGM_PIPE_MODE(pipe),
(state->ctm ? CGM_PIPE_MODE_CSC : 0));
i9xx_load_luts_internal(crtc, state->gamma_lut,
to_intel_crtc_state(state));
return;
}
if (state->degamma_lut) {
lut = (struct drm_color_lut *) state->degamma_lut->data;
lut_size = INTEL_INFO(dev_priv)->color.degamma_lut_size;
for (i = 0; i < lut_size; i++) {
/* Write LUT in U0.14 format. */
word0 =
(drm_color_lut_extract(lut[i].green, 14) << 16) |
drm_color_lut_extract(lut[i].blue, 14);
word1 = drm_color_lut_extract(lut[i].red, 14);
I915_WRITE(CGM_PIPE_DEGAMMA(pipe, i, 0), word0);
I915_WRITE(CGM_PIPE_DEGAMMA(pipe, i, 1), word1);
}
}
if (state->gamma_lut) {
lut = (struct drm_color_lut *) state->gamma_lut->data;
lut_size = INTEL_INFO(dev_priv)->color.gamma_lut_size;
for (i = 0; i < lut_size; i++) {
/* Write LUT in U0.10 format. */
word0 =
(drm_color_lut_extract(lut[i].green, 10) << 16) |
drm_color_lut_extract(lut[i].blue, 10);
word1 = drm_color_lut_extract(lut[i].red, 10);
I915_WRITE(CGM_PIPE_GAMMA(pipe, i, 0), word0);
I915_WRITE(CGM_PIPE_GAMMA(pipe, i, 1), word1);
}
}
I915_WRITE(CGM_PIPE_MODE(pipe),
(state->ctm ? CGM_PIPE_MODE_CSC : 0) |
(state->degamma_lut ? CGM_PIPE_MODE_DEGAMMA : 0) |
(state->gamma_lut ? CGM_PIPE_MODE_GAMMA : 0));
/*
* Also program a linear LUT in the legacy block (behind the
* CGM block).
*/
i9xx_load_luts_internal(crtc, NULL, to_intel_crtc_state(state));
}
void intel_color_load_luts(struct drm_crtc_state *crtc_state)
{
struct drm_device *dev = crtc_state->crtc->dev;
struct drm_i915_private *dev_priv = to_i915(dev);
dev_priv->display.load_luts(crtc_state);
}
int intel_color_check(struct drm_crtc *crtc,
struct drm_crtc_state *crtc_state)
{
struct drm_i915_private *dev_priv = to_i915(crtc->dev);
size_t gamma_length, degamma_length;
degamma_length = INTEL_INFO(dev_priv)->color.degamma_lut_size *
sizeof(struct drm_color_lut);
gamma_length = INTEL_INFO(dev_priv)->color.gamma_lut_size *
sizeof(struct drm_color_lut);
/*
* We allow both degamma & gamma luts at the right size or
* NULL.
*/
if ((!crtc_state->degamma_lut ||
crtc_state->degamma_lut->length == degamma_length) &&
(!crtc_state->gamma_lut ||
crtc_state->gamma_lut->length == gamma_length))
return 0;
/*
* We also allow no degamma lut/ctm and a gamma lut at the legacy
* size (256 entries).
*/
if (crtc_state_is_legacy_gamma(crtc_state))
return 0;
return -EINVAL;
}
void intel_color_init(struct drm_crtc *crtc)
{
struct drm_i915_private *dev_priv = to_i915(crtc->dev);
drm_mode_crtc_set_gamma_size(crtc, 256);
if (IS_CHERRYVIEW(dev_priv)) {
dev_priv->display.load_csc_matrix = cherryview_load_csc_matrix;
dev_priv->display.load_luts = cherryview_load_luts;
} else if (IS_HASWELL(dev_priv)) {
dev_priv->display.load_csc_matrix = i9xx_load_csc_matrix;
dev_priv->display.load_luts = haswell_load_luts;
} else if (IS_BROADWELL(dev_priv) || IS_GEN9_BC(dev_priv) ||
IS_BROXTON(dev_priv)) {
dev_priv->display.load_csc_matrix = i9xx_load_csc_matrix;
dev_priv->display.load_luts = broadwell_load_luts;
} else if (IS_GEMINILAKE(dev_priv) || IS_CANNONLAKE(dev_priv)) {
dev_priv->display.load_csc_matrix = i9xx_load_csc_matrix;
dev_priv->display.load_luts = glk_load_luts;
} else {
dev_priv->display.load_luts = i9xx_load_luts;
}
/* Enable color management support when we have degamma & gamma LUTs. */
if (INTEL_INFO(dev_priv)->color.degamma_lut_size != 0 &&
INTEL_INFO(dev_priv)->color.gamma_lut_size != 0)
drm_crtc_enable_color_mgmt(crtc,
INTEL_INFO(dev_priv)->color.degamma_lut_size,
true,
INTEL_INFO(dev_priv)->color.gamma_lut_size);
}