blob: 68a83b7c3e7daa6d7cc57fa2aecdaead566ffd48 [file] [log] [blame]
/*
* Device driver for monitoring ambient light intensity (lux)
* within the TAOS tsl258x family of devices (tsl2580, tsl2581, tsl2583).
*
* Copyright (c) 2011, TAOS Corporation.
* Copyright (c) 2016-2017 Brian Masney <masneyb@onstation.org>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*/
#include <linux/kernel.h>
#include <linux/i2c.h>
#include <linux/errno.h>
#include <linux/delay.h>
#include <linux/string.h>
#include <linux/mutex.h>
#include <linux/unistd.h>
#include <linux/slab.h>
#include <linux/module.h>
#include <linux/iio/iio.h>
#include <linux/iio/sysfs.h>
#include <linux/pm_runtime.h>
/* Device Registers and Masks */
#define TSL2583_CNTRL 0x00
#define TSL2583_ALS_TIME 0X01
#define TSL2583_INTERRUPT 0x02
#define TSL2583_GAIN 0x07
#define TSL2583_REVID 0x11
#define TSL2583_CHIPID 0x12
#define TSL2583_ALS_CHAN0LO 0x14
#define TSL2583_ALS_CHAN0HI 0x15
#define TSL2583_ALS_CHAN1LO 0x16
#define TSL2583_ALS_CHAN1HI 0x17
#define TSL2583_TMR_LO 0x18
#define TSL2583_TMR_HI 0x19
/* tsl2583 cmd reg masks */
#define TSL2583_CMD_REG 0x80
#define TSL2583_CMD_SPL_FN 0x60
#define TSL2583_CMD_ALS_INT_CLR 0x01
/* tsl2583 cntrl reg masks */
#define TSL2583_CNTL_ADC_ENBL 0x02
#define TSL2583_CNTL_PWR_OFF 0x00
#define TSL2583_CNTL_PWR_ON 0x01
/* tsl2583 status reg masks */
#define TSL2583_STA_ADC_VALID 0x01
#define TSL2583_STA_ADC_INTR 0x10
/* Lux calculation constants */
#define TSL2583_LUX_CALC_OVER_FLOW 65535
#define TSL2583_INTERRUPT_DISABLED 0x00
#define TSL2583_CHIP_ID 0x90
#define TSL2583_CHIP_ID_MASK 0xf0
#define TSL2583_POWER_OFF_DELAY_MS 2000
/* Per-device data */
struct tsl2583_als_info {
u16 als_ch0;
u16 als_ch1;
u16 lux;
};
struct tsl2583_lux {
unsigned int ratio;
unsigned int ch0;
unsigned int ch1;
};
static const struct tsl2583_lux tsl2583_default_lux[] = {
{ 9830, 8520, 15729 },
{ 12452, 10807, 23344 },
{ 14746, 6383, 11705 },
{ 17695, 4063, 6554 },
{ 0, 0, 0 } /* Termination segment */
};
#define TSL2583_MAX_LUX_TABLE_ENTRIES 11
struct tsl2583_settings {
int als_time;
int als_gain;
int als_gain_trim;
int als_cal_target;
/*
* This structure is intentionally large to accommodate updates via
* sysfs. Sized to 11 = max 10 segments + 1 termination segment.
* Assumption is that one and only one type of glass used.
*/
struct tsl2583_lux als_device_lux[TSL2583_MAX_LUX_TABLE_ENTRIES];
};
struct tsl2583_chip {
struct mutex als_mutex;
struct i2c_client *client;
struct tsl2583_als_info als_cur_info;
struct tsl2583_settings als_settings;
int als_time_scale;
int als_saturation;
};
struct gainadj {
s16 ch0;
s16 ch1;
s16 mean;
};
/* Index = (0 - 3) Used to validate the gain selection index */
static const struct gainadj gainadj[] = {
{ 1, 1, 1 },
{ 8, 8, 8 },
{ 16, 16, 16 },
{ 107, 115, 111 }
};
/*
* Provides initial operational parameter defaults.
* These defaults may be changed through the device's sysfs files.
*/
static void tsl2583_defaults(struct tsl2583_chip *chip)
{
/*
* The integration time must be a multiple of 50ms and within the
* range [50, 600] ms.
*/
chip->als_settings.als_time = 100;
/*
* This is an index into the gainadj table. Assume clear glass as the
* default.
*/
chip->als_settings.als_gain = 0;
/* Default gain trim to account for aperture effects */
chip->als_settings.als_gain_trim = 1000;
/* Known external ALS reading used for calibration */
chip->als_settings.als_cal_target = 130;
/* Default lux table. */
memcpy(chip->als_settings.als_device_lux, tsl2583_default_lux,
sizeof(tsl2583_default_lux));
}
/*
* Reads and calculates current lux value.
* The raw ch0 and ch1 values of the ambient light sensed in the last
* integration cycle are read from the device.
* Time scale factor array values are adjusted based on the integration time.
* The raw values are multiplied by a scale factor, and device gain is obtained
* using gain index. Limit checks are done next, then the ratio of a multiple
* of ch1 value, to the ch0 value, is calculated. The array als_device_lux[]
* declared above is then scanned to find the first ratio value that is just
* above the ratio we just calculated. The ch0 and ch1 multiplier constants in
* the array are then used along with the time scale factor array values, to
* calculate the lux.
*/
static int tsl2583_get_lux(struct iio_dev *indio_dev)
{
u16 ch0, ch1; /* separated ch0/ch1 data from device */
u32 lux; /* raw lux calculated from device data */
u64 lux64;
u32 ratio;
u8 buf[5];
struct tsl2583_lux *p;
struct tsl2583_chip *chip = iio_priv(indio_dev);
int i, ret;
ret = i2c_smbus_read_byte_data(chip->client, TSL2583_CMD_REG);
if (ret < 0) {
dev_err(&chip->client->dev, "%s: failed to read CMD_REG register\n",
__func__);
goto done;
}
/* is data new & valid */
if (!(ret & TSL2583_STA_ADC_INTR)) {
dev_err(&chip->client->dev, "%s: data not valid; returning last value\n",
__func__);
ret = chip->als_cur_info.lux; /* return LAST VALUE */
goto done;
}
for (i = 0; i < 4; i++) {
int reg = TSL2583_CMD_REG | (TSL2583_ALS_CHAN0LO + i);
ret = i2c_smbus_read_byte_data(chip->client, reg);
if (ret < 0) {
dev_err(&chip->client->dev, "%s: failed to read register %x\n",
__func__, reg);
goto done;
}
buf[i] = ret;
}
/*
* Clear the pending interrupt status bit on the chip to allow the next
* integration cycle to start. This has to be done even though this
* driver currently does not support interrupts.
*/
ret = i2c_smbus_write_byte(chip->client,
(TSL2583_CMD_REG | TSL2583_CMD_SPL_FN |
TSL2583_CMD_ALS_INT_CLR));
if (ret < 0) {
dev_err(&chip->client->dev, "%s: failed to clear the interrupt bit\n",
__func__);
goto done; /* have no data, so return failure */
}
/* extract ALS/lux data */
ch0 = le16_to_cpup((const __le16 *)&buf[0]);
ch1 = le16_to_cpup((const __le16 *)&buf[2]);
chip->als_cur_info.als_ch0 = ch0;
chip->als_cur_info.als_ch1 = ch1;
if ((ch0 >= chip->als_saturation) || (ch1 >= chip->als_saturation))
goto return_max;
if (!ch0) {
/*
* The sensor appears to be in total darkness so set the
* calculated lux to 0 and return early to avoid a division by
* zero below when calculating the ratio.
*/
ret = 0;
chip->als_cur_info.lux = 0;
goto done;
}
/* calculate ratio */
ratio = (ch1 << 15) / ch0;
/* convert to unscaled lux using the pointer to the table */
for (p = (struct tsl2583_lux *)chip->als_settings.als_device_lux;
p->ratio != 0 && p->ratio < ratio; p++)
;
if (p->ratio == 0) {
lux = 0;
} else {
u32 ch0lux, ch1lux;
ch0lux = ((ch0 * p->ch0) +
(gainadj[chip->als_settings.als_gain].ch0 >> 1))
/ gainadj[chip->als_settings.als_gain].ch0;
ch1lux = ((ch1 * p->ch1) +
(gainadj[chip->als_settings.als_gain].ch1 >> 1))
/ gainadj[chip->als_settings.als_gain].ch1;
/* note: lux is 31 bit max at this point */
if (ch1lux > ch0lux) {
dev_dbg(&chip->client->dev, "%s: No Data - Returning 0\n",
__func__);
ret = 0;
chip->als_cur_info.lux = 0;
goto done;
}
lux = ch0lux - ch1lux;
}
/* adjust for active time scale */
if (chip->als_time_scale == 0)
lux = 0;
else
lux = (lux + (chip->als_time_scale >> 1)) /
chip->als_time_scale;
/*
* Adjust for active gain scale.
* The tsl2583_default_lux tables above have a factor of 8192 built in,
* so we need to shift right.
* User-specified gain provides a multiplier.
* Apply user-specified gain before shifting right to retain precision.
* Use 64 bits to avoid overflow on multiplication.
* Then go back to 32 bits before division to avoid using div_u64().
*/
lux64 = lux;
lux64 = lux64 * chip->als_settings.als_gain_trim;
lux64 >>= 13;
lux = lux64;
lux = (lux + 500) / 1000;
if (lux > TSL2583_LUX_CALC_OVER_FLOW) { /* check for overflow */
return_max:
lux = TSL2583_LUX_CALC_OVER_FLOW;
}
/* Update the structure with the latest VALID lux. */
chip->als_cur_info.lux = lux;
ret = lux;
done:
return ret;
}
/*
* Obtain single reading and calculate the als_gain_trim (later used
* to derive actual lux).
* Return updated gain_trim value.
*/
static int tsl2583_als_calibrate(struct iio_dev *indio_dev)
{
struct tsl2583_chip *chip = iio_priv(indio_dev);
unsigned int gain_trim_val;
int ret;
int lux_val;
ret = i2c_smbus_read_byte_data(chip->client,
TSL2583_CMD_REG | TSL2583_CNTRL);
if (ret < 0) {
dev_err(&chip->client->dev,
"%s: failed to read from the CNTRL register\n",
__func__);
return ret;
}
if ((ret & (TSL2583_CNTL_ADC_ENBL | TSL2583_CNTL_PWR_ON))
!= (TSL2583_CNTL_ADC_ENBL | TSL2583_CNTL_PWR_ON)) {
dev_err(&chip->client->dev,
"%s: Device is not powered on and/or ADC is not enabled\n",
__func__);
return -EINVAL;
} else if ((ret & TSL2583_STA_ADC_VALID) != TSL2583_STA_ADC_VALID) {
dev_err(&chip->client->dev,
"%s: The two ADC channels have not completed an integration cycle\n",
__func__);
return -ENODATA;
}
lux_val = tsl2583_get_lux(indio_dev);
if (lux_val < 0) {
dev_err(&chip->client->dev, "%s: failed to get lux\n",
__func__);
return lux_val;
}
gain_trim_val = (unsigned int)(((chip->als_settings.als_cal_target)
* chip->als_settings.als_gain_trim) / lux_val);
if ((gain_trim_val < 250) || (gain_trim_val > 4000)) {
dev_err(&chip->client->dev,
"%s: trim_val of %d is not within the range [250, 4000]\n",
__func__, gain_trim_val);
return -ENODATA;
}
chip->als_settings.als_gain_trim = (int)gain_trim_val;
return 0;
}
static int tsl2583_set_als_time(struct tsl2583_chip *chip)
{
int als_count, als_time, ret;
u8 val;
/* determine als integration register */
als_count = (chip->als_settings.als_time * 100 + 135) / 270;
if (!als_count)
als_count = 1; /* ensure at least one cycle */
/* convert back to time (encompasses overrides) */
als_time = (als_count * 27 + 5) / 10;
val = 256 - als_count;
ret = i2c_smbus_write_byte_data(chip->client,
TSL2583_CMD_REG | TSL2583_ALS_TIME,
val);
if (ret < 0) {
dev_err(&chip->client->dev, "%s: failed to set the als time to %d\n",
__func__, val);
return ret;
}
/* set chip struct re scaling and saturation */
chip->als_saturation = als_count * 922; /* 90% of full scale */
chip->als_time_scale = (als_time + 25) / 50;
return ret;
}
static int tsl2583_set_als_gain(struct tsl2583_chip *chip)
{
int ret;
/* Set the gain based on als_settings struct */
ret = i2c_smbus_write_byte_data(chip->client,
TSL2583_CMD_REG | TSL2583_GAIN,
chip->als_settings.als_gain);
if (ret < 0)
dev_err(&chip->client->dev,
"%s: failed to set the gain to %d\n", __func__,
chip->als_settings.als_gain);
return ret;
}
static int tsl2583_set_power_state(struct tsl2583_chip *chip, u8 state)
{
int ret;
ret = i2c_smbus_write_byte_data(chip->client,
TSL2583_CMD_REG | TSL2583_CNTRL, state);
if (ret < 0)
dev_err(&chip->client->dev,
"%s: failed to set the power state to %d\n", __func__,
state);
return ret;
}
/*
* Turn the device on.
* Configuration must be set before calling this function.
*/
static int tsl2583_chip_init_and_power_on(struct iio_dev *indio_dev)
{
struct tsl2583_chip *chip = iio_priv(indio_dev);
int ret;
/* Power on the device; ADC off. */
ret = tsl2583_set_power_state(chip, TSL2583_CNTL_PWR_ON);
if (ret < 0)
return ret;
ret = i2c_smbus_write_byte_data(chip->client,
TSL2583_CMD_REG | TSL2583_INTERRUPT,
TSL2583_INTERRUPT_DISABLED);
if (ret < 0) {
dev_err(&chip->client->dev,
"%s: failed to disable interrupts\n", __func__);
return ret;
}
ret = tsl2583_set_als_time(chip);
if (ret < 0)
return ret;
ret = tsl2583_set_als_gain(chip);
if (ret < 0)
return ret;
usleep_range(3000, 3500);
ret = tsl2583_set_power_state(chip, TSL2583_CNTL_PWR_ON |
TSL2583_CNTL_ADC_ENBL);
if (ret < 0)
return ret;
return ret;
}
/* Sysfs Interface Functions */
static ssize_t in_illuminance_input_target_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct iio_dev *indio_dev = dev_to_iio_dev(dev);
struct tsl2583_chip *chip = iio_priv(indio_dev);
int ret;
mutex_lock(&chip->als_mutex);
ret = sprintf(buf, "%d\n", chip->als_settings.als_cal_target);
mutex_unlock(&chip->als_mutex);
return ret;
}
static ssize_t in_illuminance_input_target_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t len)
{
struct iio_dev *indio_dev = dev_to_iio_dev(dev);
struct tsl2583_chip *chip = iio_priv(indio_dev);
int value;
if (kstrtoint(buf, 0, &value) || !value)
return -EINVAL;
mutex_lock(&chip->als_mutex);
chip->als_settings.als_cal_target = value;
mutex_unlock(&chip->als_mutex);
return len;
}
static ssize_t in_illuminance_calibrate_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t len)
{
struct iio_dev *indio_dev = dev_to_iio_dev(dev);
struct tsl2583_chip *chip = iio_priv(indio_dev);
int value, ret;
if (kstrtoint(buf, 0, &value) || value != 1)
return -EINVAL;
mutex_lock(&chip->als_mutex);
ret = tsl2583_als_calibrate(indio_dev);
if (ret < 0)
goto done;
ret = len;
done:
mutex_unlock(&chip->als_mutex);
return ret;
}
static ssize_t in_illuminance_lux_table_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct iio_dev *indio_dev = dev_to_iio_dev(dev);
struct tsl2583_chip *chip = iio_priv(indio_dev);
unsigned int i;
int offset = 0;
for (i = 0; i < ARRAY_SIZE(chip->als_settings.als_device_lux); i++) {
offset += sprintf(buf + offset, "%u,%u,%u,",
chip->als_settings.als_device_lux[i].ratio,
chip->als_settings.als_device_lux[i].ch0,
chip->als_settings.als_device_lux[i].ch1);
if (chip->als_settings.als_device_lux[i].ratio == 0) {
/*
* We just printed the first "0" entry.
* Now get rid of the extra "," and break.
*/
offset--;
break;
}
}
offset += sprintf(buf + offset, "\n");
return offset;
}
static ssize_t in_illuminance_lux_table_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t len)
{
struct iio_dev *indio_dev = dev_to_iio_dev(dev);
struct tsl2583_chip *chip = iio_priv(indio_dev);
const unsigned int max_ints = TSL2583_MAX_LUX_TABLE_ENTRIES * 3;
int value[TSL2583_MAX_LUX_TABLE_ENTRIES * 3 + 1];
int ret = -EINVAL;
unsigned int n;
mutex_lock(&chip->als_mutex);
get_options(buf, ARRAY_SIZE(value), value);
/*
* We now have an array of ints starting at value[1], and
* enumerated by value[0].
* We expect each group of three ints is one table entry,
* and the last table entry is all 0.
*/
n = value[0];
if ((n % 3) || n < 6 || n > max_ints) {
dev_err(dev,
"%s: The number of entries in the lux table must be a multiple of 3 and within the range [6, %d]\n",
__func__, max_ints);
goto done;
}
if ((value[n - 2] | value[n - 1] | value[n]) != 0) {
dev_err(dev, "%s: The last 3 entries in the lux table must be zeros.\n",
__func__);
goto done;
}
memcpy(chip->als_settings.als_device_lux, &value[1],
value[0] * sizeof(value[1]));
ret = len;
done:
mutex_unlock(&chip->als_mutex);
return ret;
}
static IIO_CONST_ATTR(in_illuminance_calibscale_available, "1 8 16 111");
static IIO_CONST_ATTR(in_illuminance_integration_time_available,
"0.000050 0.000100 0.000150 0.000200 0.000250 0.000300 0.000350 0.000400 0.000450 0.000500 0.000550 0.000600 0.000650");
static IIO_DEVICE_ATTR_RW(in_illuminance_input_target, 0);
static IIO_DEVICE_ATTR_WO(in_illuminance_calibrate, 0);
static IIO_DEVICE_ATTR_RW(in_illuminance_lux_table, 0);
static struct attribute *sysfs_attrs_ctrl[] = {
&iio_const_attr_in_illuminance_calibscale_available.dev_attr.attr,
&iio_const_attr_in_illuminance_integration_time_available.dev_attr.attr,
&iio_dev_attr_in_illuminance_input_target.dev_attr.attr,
&iio_dev_attr_in_illuminance_calibrate.dev_attr.attr,
&iio_dev_attr_in_illuminance_lux_table.dev_attr.attr,
NULL
};
static const struct attribute_group tsl2583_attribute_group = {
.attrs = sysfs_attrs_ctrl,
};
static const struct iio_chan_spec tsl2583_channels[] = {
{
.type = IIO_LIGHT,
.modified = 1,
.channel2 = IIO_MOD_LIGHT_IR,
.info_mask_separate = BIT(IIO_CHAN_INFO_RAW),
},
{
.type = IIO_LIGHT,
.modified = 1,
.channel2 = IIO_MOD_LIGHT_BOTH,
.info_mask_separate = BIT(IIO_CHAN_INFO_RAW),
},
{
.type = IIO_LIGHT,
.info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED) |
BIT(IIO_CHAN_INFO_CALIBBIAS) |
BIT(IIO_CHAN_INFO_CALIBSCALE) |
BIT(IIO_CHAN_INFO_INT_TIME),
},
};
static int tsl2583_set_pm_runtime_busy(struct tsl2583_chip *chip, bool on)
{
int ret;
if (on) {
ret = pm_runtime_get_sync(&chip->client->dev);
if (ret < 0)
pm_runtime_put_noidle(&chip->client->dev);
} else {
pm_runtime_mark_last_busy(&chip->client->dev);
ret = pm_runtime_put_autosuspend(&chip->client->dev);
}
return ret;
}
static int tsl2583_read_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
int *val, int *val2, long mask)
{
struct tsl2583_chip *chip = iio_priv(indio_dev);
int ret, pm_ret;
ret = tsl2583_set_pm_runtime_busy(chip, true);
if (ret < 0)
return ret;
mutex_lock(&chip->als_mutex);
ret = -EINVAL;
switch (mask) {
case IIO_CHAN_INFO_RAW:
if (chan->type == IIO_LIGHT) {
ret = tsl2583_get_lux(indio_dev);
if (ret < 0)
goto read_done;
/*
* From page 20 of the TSL2581, TSL2583 data
* sheet (TAOS134 − MARCH 2011):
*
* One of the photodiodes (channel 0) is
* sensitive to both visible and infrared light,
* while the second photodiode (channel 1) is
* sensitive primarily to infrared light.
*/
if (chan->channel2 == IIO_MOD_LIGHT_BOTH)
*val = chip->als_cur_info.als_ch0;
else
*val = chip->als_cur_info.als_ch1;
ret = IIO_VAL_INT;
}
break;
case IIO_CHAN_INFO_PROCESSED:
if (chan->type == IIO_LIGHT) {
ret = tsl2583_get_lux(indio_dev);
if (ret < 0)
goto read_done;
*val = ret;
ret = IIO_VAL_INT;
}
break;
case IIO_CHAN_INFO_CALIBBIAS:
if (chan->type == IIO_LIGHT) {
*val = chip->als_settings.als_gain_trim;
ret = IIO_VAL_INT;
}
break;
case IIO_CHAN_INFO_CALIBSCALE:
if (chan->type == IIO_LIGHT) {
*val = gainadj[chip->als_settings.als_gain].mean;
ret = IIO_VAL_INT;
}
break;
case IIO_CHAN_INFO_INT_TIME:
if (chan->type == IIO_LIGHT) {
*val = 0;
*val2 = chip->als_settings.als_time;
ret = IIO_VAL_INT_PLUS_MICRO;
}
break;
default:
break;
}
read_done:
mutex_unlock(&chip->als_mutex);
if (ret < 0)
return ret;
/*
* Preserve the ret variable if the call to
* tsl2583_set_pm_runtime_busy() is successful so the reading
* (if applicable) is returned to user space.
*/
pm_ret = tsl2583_set_pm_runtime_busy(chip, false);
if (pm_ret < 0)
return pm_ret;
return ret;
}
static int tsl2583_write_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
int val, int val2, long mask)
{
struct tsl2583_chip *chip = iio_priv(indio_dev);
int ret;
ret = tsl2583_set_pm_runtime_busy(chip, true);
if (ret < 0)
return ret;
mutex_lock(&chip->als_mutex);
ret = -EINVAL;
switch (mask) {
case IIO_CHAN_INFO_CALIBBIAS:
if (chan->type == IIO_LIGHT) {
chip->als_settings.als_gain_trim = val;
ret = 0;
}
break;
case IIO_CHAN_INFO_CALIBSCALE:
if (chan->type == IIO_LIGHT) {
unsigned int i;
for (i = 0; i < ARRAY_SIZE(gainadj); i++) {
if (gainadj[i].mean == val) {
chip->als_settings.als_gain = i;
ret = tsl2583_set_als_gain(chip);
break;
}
}
}
break;
case IIO_CHAN_INFO_INT_TIME:
if (chan->type == IIO_LIGHT && !val && val2 >= 50 &&
val2 <= 650 && !(val2 % 50)) {
chip->als_settings.als_time = val2;
ret = tsl2583_set_als_time(chip);
}
break;
default:
break;
}
mutex_unlock(&chip->als_mutex);
if (ret < 0)
return ret;
ret = tsl2583_set_pm_runtime_busy(chip, false);
if (ret < 0)
return ret;
return ret;
}
static const struct iio_info tsl2583_info = {
.attrs = &tsl2583_attribute_group,
.driver_module = THIS_MODULE,
.read_raw = tsl2583_read_raw,
.write_raw = tsl2583_write_raw,
};
static int tsl2583_probe(struct i2c_client *clientp,
const struct i2c_device_id *idp)
{
int ret;
struct tsl2583_chip *chip;
struct iio_dev *indio_dev;
if (!i2c_check_functionality(clientp->adapter,
I2C_FUNC_SMBUS_BYTE_DATA)) {
dev_err(&clientp->dev, "%s: i2c smbus byte data functionality is unsupported\n",
__func__);
return -EOPNOTSUPP;
}
indio_dev = devm_iio_device_alloc(&clientp->dev, sizeof(*chip));
if (!indio_dev)
return -ENOMEM;
chip = iio_priv(indio_dev);
chip->client = clientp;
i2c_set_clientdata(clientp, indio_dev);
mutex_init(&chip->als_mutex);
ret = i2c_smbus_read_byte_data(clientp,
TSL2583_CMD_REG | TSL2583_CHIPID);
if (ret < 0) {
dev_err(&clientp->dev,
"%s: failed to read the chip ID register\n", __func__);
return ret;
}
if ((ret & TSL2583_CHIP_ID_MASK) != TSL2583_CHIP_ID) {
dev_err(&clientp->dev, "%s: received an unknown chip ID %x\n",
__func__, ret);
return -EINVAL;
}
indio_dev->info = &tsl2583_info;
indio_dev->channels = tsl2583_channels;
indio_dev->num_channels = ARRAY_SIZE(tsl2583_channels);
indio_dev->dev.parent = &clientp->dev;
indio_dev->modes = INDIO_DIRECT_MODE;
indio_dev->name = chip->client->name;
pm_runtime_enable(&clientp->dev);
pm_runtime_set_autosuspend_delay(&clientp->dev,
TSL2583_POWER_OFF_DELAY_MS);
pm_runtime_use_autosuspend(&clientp->dev);
ret = devm_iio_device_register(indio_dev->dev.parent, indio_dev);
if (ret) {
dev_err(&clientp->dev, "%s: iio registration failed\n",
__func__);
return ret;
}
/*
* This device is slow to resume - make it asynchronous
* To get full async, we must enable this on both i2c and iio devs
* and the i2c master.
*/
device_enable_async_suspend(&indio_dev->dev);
device_enable_async_suspend(&clientp->dev);
device_enable_async_suspend(&clientp->adapter->dev);
/* Load up the V2 defaults (these are hard coded defaults for now) */
tsl2583_defaults(chip);
dev_info(&clientp->dev, "Light sensor found.\n");
return 0;
}
static int tsl2583_remove(struct i2c_client *client)
{
struct iio_dev *indio_dev = i2c_get_clientdata(client);
struct tsl2583_chip *chip = iio_priv(indio_dev);
iio_device_unregister(indio_dev);
pm_runtime_disable(&client->dev);
pm_runtime_set_suspended(&client->dev);
pm_runtime_put_noidle(&client->dev);
return tsl2583_set_power_state(chip, TSL2583_CNTL_PWR_OFF);
}
static int __maybe_unused tsl2583_suspend(struct device *dev)
{
struct iio_dev *indio_dev = i2c_get_clientdata(to_i2c_client(dev));
struct tsl2583_chip *chip = iio_priv(indio_dev);
int ret;
mutex_lock(&chip->als_mutex);
ret = tsl2583_set_power_state(chip, TSL2583_CNTL_PWR_OFF);
mutex_unlock(&chip->als_mutex);
return ret;
}
static int __maybe_unused tsl2583_resume(struct device *dev)
{
struct iio_dev *indio_dev = i2c_get_clientdata(to_i2c_client(dev));
struct tsl2583_chip *chip = iio_priv(indio_dev);
int ret;
mutex_lock(&chip->als_mutex);
ret = tsl2583_chip_init_and_power_on(indio_dev);
mutex_unlock(&chip->als_mutex);
return ret;
}
static const struct dev_pm_ops tsl2583_pm_ops = {
SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
pm_runtime_force_resume)
SET_RUNTIME_PM_OPS(tsl2583_suspend, tsl2583_resume, NULL)
};
static const struct i2c_device_id tsl2583_idtable[] = {
{ "tsl2580", 0 },
{ "tsl2581", 1 },
{ "tsl2583", 2 },
{}
};
MODULE_DEVICE_TABLE(i2c, tsl2583_idtable);
static const struct of_device_id tsl2583_of_match[] = {
{ .compatible = "amstaos,tsl2580", },
{ .compatible = "amstaos,tsl2581", },
{ .compatible = "amstaos,tsl2583", },
{ },
};
MODULE_DEVICE_TABLE(of, tsl2583_of_match);
/* Driver definition */
static struct i2c_driver tsl2583_driver = {
.driver = {
.name = "tsl2583",
.pm = &tsl2583_pm_ops,
.of_match_table = tsl2583_of_match,
},
.id_table = tsl2583_idtable,
.probe = tsl2583_probe,
.remove = tsl2583_remove,
};
module_i2c_driver(tsl2583_driver);
MODULE_AUTHOR("J. August Brenner <jbrenner@taosinc.com>");
MODULE_AUTHOR("Brian Masney <masneyb@onstation.org>");
MODULE_DESCRIPTION("TAOS tsl2583 ambient light sensor driver");
MODULE_LICENSE("GPL");