blob: 1547b3719836ef522fcd6200c38ba2a49115f094 [file] [log] [blame]
/*
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "modules/audio_coding/include/audio_coding_module.h"
#include <assert.h>
#include <algorithm>
#include <cstdint>
#include "absl/strings/match.h"
#include "api/array_view.h"
#include "modules/audio_coding/acm2/acm_receiver.h"
#include "modules/audio_coding/acm2/acm_resampler.h"
#include "modules/include/module_common_types.h"
#include "modules/include/module_common_types_public.h"
#include "rtc_base/buffer.h"
#include "rtc_base/checks.h"
#include "rtc_base/critical_section.h"
#include "rtc_base/logging.h"
#include "rtc_base/numerics/safe_conversions.h"
#include "rtc_base/thread_annotations.h"
#include "system_wrappers/include/metrics.h"
namespace webrtc {
namespace {
class AudioCodingModuleImpl final : public AudioCodingModule {
public:
explicit AudioCodingModuleImpl(const AudioCodingModule::Config& config);
~AudioCodingModuleImpl() override;
/////////////////////////////////////////
// Sender
//
void ModifyEncoder(rtc::FunctionView<void(std::unique_ptr<AudioEncoder>*)>
modifier) override;
// Sets the bitrate to the specified value in bits/sec. In case the codec does
// not support the requested value it will choose an appropriate value
// instead.
void SetBitRate(int bitrate_bps) override;
// Register a transport callback which will be
// called to deliver the encoded buffers.
int RegisterTransportCallback(AudioPacketizationCallback* transport) override;
// Add 10 ms of raw (PCM) audio data to the encoder.
int Add10MsData(const AudioFrame& audio_frame) override;
/////////////////////////////////////////
// (FEC) Forward Error Correction (codec internal)
//
// Set target packet loss rate
int SetPacketLossRate(int loss_rate) override;
/////////////////////////////////////////
// (VAD) Voice Activity Detection
// and
// (CNG) Comfort Noise Generation
//
int RegisterVADCallback(ACMVADCallback* vad_callback) override;
/////////////////////////////////////////
// Receiver
//
// Initialize receiver, resets codec database etc.
int InitializeReceiver() override;
// Get current receive frequency.
int ReceiveFrequency() const override;
// Get current playout frequency.
int PlayoutFrequency() const override;
void SetReceiveCodecs(const std::map<int, SdpAudioFormat>& codecs) override;
// Get current received codec.
absl::optional<std::pair<int, SdpAudioFormat>> ReceiveCodec() const override;
// Incoming packet from network parsed and ready for decode.
int IncomingPacket(const uint8_t* incoming_payload,
const size_t payload_length,
const RTPHeader& rtp_info) override;
// Minimum playout delay.
int SetMinimumPlayoutDelay(int time_ms) override;
// Maximum playout delay.
int SetMaximumPlayoutDelay(int time_ms) override;
bool SetBaseMinimumPlayoutDelayMs(int delay_ms) override;
int GetBaseMinimumPlayoutDelayMs() const override;
absl::optional<uint32_t> PlayoutTimestamp() override;
int FilteredCurrentDelayMs() const override;
int TargetDelayMs() const override;
// Get 10 milliseconds of raw audio data to play out, and
// automatic resample to the requested frequency if > 0.
int PlayoutData10Ms(int desired_freq_hz,
AudioFrame* audio_frame,
bool* muted) override;
/////////////////////////////////////////
// Statistics
//
int GetNetworkStatistics(NetworkStatistics* statistics) override;
// If current send codec is Opus, informs it about the maximum playback rate
// the receiver will render.
int SetOpusMaxPlaybackRate(int frequency_hz) override;
int EnableOpusDtx() override;
int DisableOpusDtx() override;
int EnableNack(size_t max_nack_list_size) override;
void DisableNack() override;
std::vector<uint16_t> GetNackList(int64_t round_trip_time_ms) const override;
void GetDecodingCallStatistics(AudioDecodingCallStats* stats) const override;
ANAStats GetANAStats() const override;
private:
struct InputData {
uint32_t input_timestamp;
const int16_t* audio;
size_t length_per_channel;
size_t audio_channel;
// If a re-mix is required (up or down), this buffer will store a re-mixed
// version of the input.
int16_t buffer[WEBRTC_10MS_PCM_AUDIO];
};
// This member class writes values to the named UMA histogram, but only if
// the value has changed since the last time (and always for the first call).
class ChangeLogger {
public:
explicit ChangeLogger(const std::string& histogram_name)
: histogram_name_(histogram_name) {}
// Logs the new value if it is different from the last logged value, or if
// this is the first call.
void MaybeLog(int value);
private:
int last_value_ = 0;
int first_time_ = true;
const std::string histogram_name_;
};
int Add10MsDataInternal(const AudioFrame& audio_frame, InputData* input_data)
RTC_EXCLUSIVE_LOCKS_REQUIRED(acm_crit_sect_);
int Encode(const InputData& input_data)
RTC_EXCLUSIVE_LOCKS_REQUIRED(acm_crit_sect_);
int InitializeReceiverSafe() RTC_EXCLUSIVE_LOCKS_REQUIRED(acm_crit_sect_);
bool HaveValidEncoder(const char* caller_name) const
RTC_EXCLUSIVE_LOCKS_REQUIRED(acm_crit_sect_);
// Preprocessing of input audio, including resampling and down-mixing if
// required, before pushing audio into encoder's buffer.
//
// in_frame: input audio-frame
// ptr_out: pointer to output audio_frame. If no preprocessing is required
// |ptr_out| will be pointing to |in_frame|, otherwise pointing to
// |preprocess_frame_|.
//
// Return value:
// -1: if encountering an error.
// 0: otherwise.
int PreprocessToAddData(const AudioFrame& in_frame,
const AudioFrame** ptr_out)
RTC_EXCLUSIVE_LOCKS_REQUIRED(acm_crit_sect_);
// Change required states after starting to receive the codec corresponding
// to |index|.
int UpdateUponReceivingCodec(int index);
rtc::CriticalSection acm_crit_sect_;
rtc::Buffer encode_buffer_ RTC_GUARDED_BY(acm_crit_sect_);
uint32_t expected_codec_ts_ RTC_GUARDED_BY(acm_crit_sect_);
uint32_t expected_in_ts_ RTC_GUARDED_BY(acm_crit_sect_);
acm2::ACMResampler resampler_ RTC_GUARDED_BY(acm_crit_sect_);
acm2::AcmReceiver receiver_; // AcmReceiver has it's own internal lock.
ChangeLogger bitrate_logger_ RTC_GUARDED_BY(acm_crit_sect_);
// Current encoder stack, provided by a call to RegisterEncoder.
std::unique_ptr<AudioEncoder> encoder_stack_ RTC_GUARDED_BY(acm_crit_sect_);
std::unique_ptr<AudioDecoder> isac_decoder_16k_
RTC_GUARDED_BY(acm_crit_sect_);
std::unique_ptr<AudioDecoder> isac_decoder_32k_
RTC_GUARDED_BY(acm_crit_sect_);
// This is to keep track of CN instances where we can send DTMFs.
uint8_t previous_pltype_ RTC_GUARDED_BY(acm_crit_sect_);
bool receiver_initialized_ RTC_GUARDED_BY(acm_crit_sect_);
AudioFrame preprocess_frame_ RTC_GUARDED_BY(acm_crit_sect_);
bool first_10ms_data_ RTC_GUARDED_BY(acm_crit_sect_);
bool first_frame_ RTC_GUARDED_BY(acm_crit_sect_);
uint32_t last_timestamp_ RTC_GUARDED_BY(acm_crit_sect_);
uint32_t last_rtp_timestamp_ RTC_GUARDED_BY(acm_crit_sect_);
rtc::CriticalSection callback_crit_sect_;
AudioPacketizationCallback* packetization_callback_
RTC_GUARDED_BY(callback_crit_sect_);
ACMVADCallback* vad_callback_ RTC_GUARDED_BY(callback_crit_sect_);
int codec_histogram_bins_log_[static_cast<size_t>(
AudioEncoder::CodecType::kMaxLoggedAudioCodecTypes)];
int number_of_consecutive_empty_packets_;
};
// Adds a codec usage sample to the histogram.
void UpdateCodecTypeHistogram(size_t codec_type) {
RTC_HISTOGRAM_ENUMERATION(
"WebRTC.Audio.Encoder.CodecType", static_cast<int>(codec_type),
static_cast<int>(
webrtc::AudioEncoder::CodecType::kMaxLoggedAudioCodecTypes));
}
// Stereo-to-mono can be used as in-place.
int DownMix(const AudioFrame& frame,
size_t length_out_buff,
int16_t* out_buff) {
RTC_DCHECK_EQ(frame.num_channels_, 2);
RTC_DCHECK_GE(length_out_buff, frame.samples_per_channel_);
if (!frame.muted()) {
const int16_t* frame_data = frame.data();
for (size_t n = 0; n < frame.samples_per_channel_; ++n) {
out_buff[n] =
static_cast<int16_t>((static_cast<int32_t>(frame_data[2 * n]) +
static_cast<int32_t>(frame_data[2 * n + 1])) >>
1);
}
} else {
std::fill(out_buff, out_buff + frame.samples_per_channel_, 0);
}
return 0;
}
// Mono-to-stereo can be used as in-place.
int UpMix(const AudioFrame& frame, size_t length_out_buff, int16_t* out_buff) {
RTC_DCHECK_EQ(frame.num_channels_, 1);
RTC_DCHECK_GE(length_out_buff, 2 * frame.samples_per_channel_);
if (!frame.muted()) {
const int16_t* frame_data = frame.data();
for (size_t n = frame.samples_per_channel_; n != 0; --n) {
size_t i = n - 1;
int16_t sample = frame_data[i];
out_buff[2 * i + 1] = sample;
out_buff[2 * i] = sample;
}
} else {
std::fill(out_buff, out_buff + frame.samples_per_channel_ * 2, 0);
}
return 0;
}
void ConvertEncodedInfoToFragmentationHeader(
const AudioEncoder::EncodedInfo& info,
RTPFragmentationHeader* frag) {
if (info.redundant.empty()) {
frag->fragmentationVectorSize = 0;
return;
}
frag->VerifyAndAllocateFragmentationHeader(
static_cast<uint16_t>(info.redundant.size()));
frag->fragmentationVectorSize = static_cast<uint16_t>(info.redundant.size());
size_t offset = 0;
for (size_t i = 0; i < info.redundant.size(); ++i) {
frag->fragmentationOffset[i] = offset;
offset += info.redundant[i].encoded_bytes;
frag->fragmentationLength[i] = info.redundant[i].encoded_bytes;
frag->fragmentationTimeDiff[i] = rtc::dchecked_cast<uint16_t>(
info.encoded_timestamp - info.redundant[i].encoded_timestamp);
frag->fragmentationPlType[i] = info.redundant[i].payload_type;
}
}
void AudioCodingModuleImpl::ChangeLogger::MaybeLog(int value) {
if (value != last_value_ || first_time_) {
first_time_ = false;
last_value_ = value;
RTC_HISTOGRAM_COUNTS_SPARSE_100(histogram_name_, value);
}
}
AudioCodingModuleImpl::AudioCodingModuleImpl(
const AudioCodingModule::Config& config)
: expected_codec_ts_(0xD87F3F9F),
expected_in_ts_(0xD87F3F9F),
receiver_(config),
bitrate_logger_("WebRTC.Audio.TargetBitrateInKbps"),
encoder_stack_(nullptr),
previous_pltype_(255),
receiver_initialized_(false),
first_10ms_data_(false),
first_frame_(true),
packetization_callback_(NULL),
vad_callback_(NULL),
codec_histogram_bins_log_(),
number_of_consecutive_empty_packets_(0) {
if (InitializeReceiverSafe() < 0) {
RTC_LOG(LS_ERROR) << "Cannot initialize receiver";
}
RTC_LOG(LS_INFO) << "Created";
}
AudioCodingModuleImpl::~AudioCodingModuleImpl() = default;
int32_t AudioCodingModuleImpl::Encode(const InputData& input_data) {
AudioEncoder::EncodedInfo encoded_info;
uint8_t previous_pltype;
// Check if there is an encoder before.
if (!HaveValidEncoder("Process"))
return -1;
if (!first_frame_) {
RTC_DCHECK(IsNewerTimestamp(input_data.input_timestamp, last_timestamp_))
<< "Time should not move backwards";
}
// Scale the timestamp to the codec's RTP timestamp rate.
uint32_t rtp_timestamp =
first_frame_ ? input_data.input_timestamp
: last_rtp_timestamp_ +
rtc::CheckedDivExact(
input_data.input_timestamp - last_timestamp_,
static_cast<uint32_t>(rtc::CheckedDivExact(
encoder_stack_->SampleRateHz(),
encoder_stack_->RtpTimestampRateHz())));
last_timestamp_ = input_data.input_timestamp;
last_rtp_timestamp_ = rtp_timestamp;
first_frame_ = false;
// Clear the buffer before reuse - encoded data will get appended.
encode_buffer_.Clear();
encoded_info = encoder_stack_->Encode(
rtp_timestamp,
rtc::ArrayView<const int16_t>(
input_data.audio,
input_data.audio_channel * input_data.length_per_channel),
&encode_buffer_);
bitrate_logger_.MaybeLog(encoder_stack_->GetTargetBitrate() / 1000);
if (encode_buffer_.size() == 0 && !encoded_info.send_even_if_empty) {
// Not enough data.
return 0;
}
previous_pltype = previous_pltype_; // Read it while we have the critsect.
// Log codec type to histogram once every 500 packets.
if (encoded_info.encoded_bytes == 0) {
++number_of_consecutive_empty_packets_;
} else {
size_t codec_type = static_cast<size_t>(encoded_info.encoder_type);
codec_histogram_bins_log_[codec_type] +=
number_of_consecutive_empty_packets_ + 1;
number_of_consecutive_empty_packets_ = 0;
if (codec_histogram_bins_log_[codec_type] >= 500) {
codec_histogram_bins_log_[codec_type] -= 500;
UpdateCodecTypeHistogram(codec_type);
}
}
RTPFragmentationHeader my_fragmentation;
ConvertEncodedInfoToFragmentationHeader(encoded_info, &my_fragmentation);
FrameType frame_type;
if (encode_buffer_.size() == 0 && encoded_info.send_even_if_empty) {
frame_type = kEmptyFrame;
encoded_info.payload_type = previous_pltype;
} else {
RTC_DCHECK_GT(encode_buffer_.size(), 0);
frame_type = encoded_info.speech ? kAudioFrameSpeech : kAudioFrameCN;
}
{
rtc::CritScope lock(&callback_crit_sect_);
if (packetization_callback_) {
packetization_callback_->SendData(
frame_type, encoded_info.payload_type, encoded_info.encoded_timestamp,
encode_buffer_.data(), encode_buffer_.size(),
my_fragmentation.fragmentationVectorSize > 0 ? &my_fragmentation
: nullptr);
}
if (vad_callback_) {
// Callback with VAD decision.
vad_callback_->InFrameType(frame_type);
}
}
previous_pltype_ = encoded_info.payload_type;
return static_cast<int32_t>(encode_buffer_.size());
}
/////////////////////////////////////////
// Sender
//
void AudioCodingModuleImpl::ModifyEncoder(
rtc::FunctionView<void(std::unique_ptr<AudioEncoder>*)> modifier) {
rtc::CritScope lock(&acm_crit_sect_);
modifier(&encoder_stack_);
}
void AudioCodingModuleImpl::SetBitRate(int bitrate_bps) {
rtc::CritScope lock(&acm_crit_sect_);
if (encoder_stack_) {
encoder_stack_->OnReceivedUplinkBandwidth(bitrate_bps, absl::nullopt);
}
}
// Register a transport callback which will be called to deliver
// the encoded buffers.
int AudioCodingModuleImpl::RegisterTransportCallback(
AudioPacketizationCallback* transport) {
rtc::CritScope lock(&callback_crit_sect_);
packetization_callback_ = transport;
return 0;
}
// Add 10MS of raw (PCM) audio data to the encoder.
int AudioCodingModuleImpl::Add10MsData(const AudioFrame& audio_frame) {
InputData input_data;
rtc::CritScope lock(&acm_crit_sect_);
int r = Add10MsDataInternal(audio_frame, &input_data);
return r < 0 ? r : Encode(input_data);
}
int AudioCodingModuleImpl::Add10MsDataInternal(const AudioFrame& audio_frame,
InputData* input_data) {
if (audio_frame.samples_per_channel_ == 0) {
assert(false);
RTC_LOG(LS_ERROR) << "Cannot Add 10 ms audio, payload length is zero";
return -1;
}
if (audio_frame.sample_rate_hz_ > 48000) {
assert(false);
RTC_LOG(LS_ERROR) << "Cannot Add 10 ms audio, input frequency not valid";
return -1;
}
// If the length and frequency matches. We currently just support raw PCM.
if (static_cast<size_t>(audio_frame.sample_rate_hz_ / 100) !=
audio_frame.samples_per_channel_) {
RTC_LOG(LS_ERROR)
<< "Cannot Add 10 ms audio, input frequency and length doesn't match";
return -1;
}
if (audio_frame.num_channels_ != 1 && audio_frame.num_channels_ != 2 &&
audio_frame.num_channels_ != 4 && audio_frame.num_channels_ != 6 &&
audio_frame.num_channels_ != 8) {
RTC_LOG(LS_ERROR) << "Cannot Add 10 ms audio, invalid number of channels.";
return -1;
}
// Do we have a codec registered?
if (!HaveValidEncoder("Add10MsData")) {
return -1;
}
const AudioFrame* ptr_frame;
// Perform a resampling, also down-mix if it is required and can be
// performed before resampling (a down mix prior to resampling will take
// place if both primary and secondary encoders are mono and input is in
// stereo).
if (PreprocessToAddData(audio_frame, &ptr_frame) < 0) {
return -1;
}
// Check whether we need an up-mix or down-mix?
const size_t current_num_channels = encoder_stack_->NumChannels();
const bool same_num_channels =
ptr_frame->num_channels_ == current_num_channels;
if (!same_num_channels) {
if (ptr_frame->num_channels_ == 1) {
if (UpMix(*ptr_frame, WEBRTC_10MS_PCM_AUDIO, input_data->buffer) < 0)
return -1;
} else {
if (DownMix(*ptr_frame, WEBRTC_10MS_PCM_AUDIO, input_data->buffer) < 0)
return -1;
}
}
// When adding data to encoders this pointer is pointing to an audio buffer
// with correct number of channels.
const int16_t* ptr_audio = ptr_frame->data();
// For pushing data to primary, point the |ptr_audio| to correct buffer.
if (!same_num_channels)
ptr_audio = input_data->buffer;
// TODO(yujo): Skip encode of muted frames.
input_data->input_timestamp = ptr_frame->timestamp_;
input_data->audio = ptr_audio;
input_data->length_per_channel = ptr_frame->samples_per_channel_;
input_data->audio_channel = current_num_channels;
return 0;
}
// Perform a resampling and down-mix if required. We down-mix only if
// encoder is mono and input is stereo. In case of dual-streaming, both
// encoders has to be mono for down-mix to take place.
// |*ptr_out| will point to the pre-processed audio-frame. If no pre-processing
// is required, |*ptr_out| points to |in_frame|.
// TODO(yujo): Make this more efficient for muted frames.
int AudioCodingModuleImpl::PreprocessToAddData(const AudioFrame& in_frame,
const AudioFrame** ptr_out) {
const bool resample =
in_frame.sample_rate_hz_ != encoder_stack_->SampleRateHz();
// This variable is true if primary codec and secondary codec (if exists)
// are both mono and input is stereo.
// TODO(henrik.lundin): This condition should probably be
// in_frame.num_channels_ > encoder_stack_->NumChannels()
const bool down_mix =
in_frame.num_channels_ == 2 && encoder_stack_->NumChannels() == 1;
if (!first_10ms_data_) {
expected_in_ts_ = in_frame.timestamp_;
expected_codec_ts_ = in_frame.timestamp_;
first_10ms_data_ = true;
} else if (in_frame.timestamp_ != expected_in_ts_) {
RTC_LOG(LS_WARNING) << "Unexpected input timestamp: " << in_frame.timestamp_
<< ", expected: " << expected_in_ts_;
expected_codec_ts_ +=
(in_frame.timestamp_ - expected_in_ts_) *
static_cast<uint32_t>(
static_cast<double>(encoder_stack_->SampleRateHz()) /
static_cast<double>(in_frame.sample_rate_hz_));
expected_in_ts_ = in_frame.timestamp_;
}
if (!down_mix && !resample) {
// No pre-processing is required.
if (expected_in_ts_ == expected_codec_ts_) {
// If we've never resampled, we can use the input frame as-is
*ptr_out = &in_frame;
} else {
// Otherwise we'll need to alter the timestamp. Since in_frame is const,
// we'll have to make a copy of it.
preprocess_frame_.CopyFrom(in_frame);
preprocess_frame_.timestamp_ = expected_codec_ts_;
*ptr_out = &preprocess_frame_;
}
expected_in_ts_ += static_cast<uint32_t>(in_frame.samples_per_channel_);
expected_codec_ts_ += static_cast<uint32_t>(in_frame.samples_per_channel_);
return 0;
}
*ptr_out = &preprocess_frame_;
preprocess_frame_.num_channels_ = in_frame.num_channels_;
int16_t audio[WEBRTC_10MS_PCM_AUDIO];
const int16_t* src_ptr_audio = in_frame.data();
if (down_mix) {
// If a resampling is required the output of a down-mix is written into a
// local buffer, otherwise, it will be written to the output frame.
int16_t* dest_ptr_audio =
resample ? audio : preprocess_frame_.mutable_data();
if (DownMix(in_frame, WEBRTC_10MS_PCM_AUDIO, dest_ptr_audio) < 0)
return -1;
preprocess_frame_.num_channels_ = 1;
// Set the input of the resampler is the down-mixed signal.
src_ptr_audio = audio;
}
preprocess_frame_.timestamp_ = expected_codec_ts_;
preprocess_frame_.samples_per_channel_ = in_frame.samples_per_channel_;
preprocess_frame_.sample_rate_hz_ = in_frame.sample_rate_hz_;
// If it is required, we have to do a resampling.
if (resample) {
// The result of the resampler is written to output frame.
int16_t* dest_ptr_audio = preprocess_frame_.mutable_data();
int samples_per_channel = resampler_.Resample10Msec(
src_ptr_audio, in_frame.sample_rate_hz_, encoder_stack_->SampleRateHz(),
preprocess_frame_.num_channels_, AudioFrame::kMaxDataSizeSamples,
dest_ptr_audio);
if (samples_per_channel < 0) {
RTC_LOG(LS_ERROR) << "Cannot add 10 ms audio, resampling failed";
return -1;
}
preprocess_frame_.samples_per_channel_ =
static_cast<size_t>(samples_per_channel);
preprocess_frame_.sample_rate_hz_ = encoder_stack_->SampleRateHz();
}
expected_codec_ts_ +=
static_cast<uint32_t>(preprocess_frame_.samples_per_channel_);
expected_in_ts_ += static_cast<uint32_t>(in_frame.samples_per_channel_);
return 0;
}
/////////////////////////////////////////
// (FEC) Forward Error Correction (codec internal)
//
int AudioCodingModuleImpl::SetPacketLossRate(int loss_rate) {
rtc::CritScope lock(&acm_crit_sect_);
if (HaveValidEncoder("SetPacketLossRate")) {
encoder_stack_->OnReceivedUplinkPacketLossFraction(loss_rate / 100.0);
}
return 0;
}
/////////////////////////////////////////
// Receiver
//
int AudioCodingModuleImpl::InitializeReceiver() {
rtc::CritScope lock(&acm_crit_sect_);
return InitializeReceiverSafe();
}
// Initialize receiver, resets codec database etc.
int AudioCodingModuleImpl::InitializeReceiverSafe() {
// If the receiver is already initialized then we want to destroy any
// existing decoders. After a call to this function, we should have a clean
// start-up.
if (receiver_initialized_)
receiver_.RemoveAllCodecs();
receiver_.FlushBuffers();
receiver_initialized_ = true;
return 0;
}
// Get current receive frequency.
int AudioCodingModuleImpl::ReceiveFrequency() const {
const auto last_packet_sample_rate = receiver_.last_packet_sample_rate_hz();
return last_packet_sample_rate ? *last_packet_sample_rate
: receiver_.last_output_sample_rate_hz();
}
// Get current playout frequency.
int AudioCodingModuleImpl::PlayoutFrequency() const {
return receiver_.last_output_sample_rate_hz();
}
void AudioCodingModuleImpl::SetReceiveCodecs(
const std::map<int, SdpAudioFormat>& codecs) {
rtc::CritScope lock(&acm_crit_sect_);
receiver_.SetCodecs(codecs);
}
absl::optional<std::pair<int, SdpAudioFormat>>
AudioCodingModuleImpl::ReceiveCodec() const {
rtc::CritScope lock(&acm_crit_sect_);
return receiver_.LastDecoder();
}
// Incoming packet from network parsed and ready for decode.
int AudioCodingModuleImpl::IncomingPacket(const uint8_t* incoming_payload,
const size_t payload_length,
const RTPHeader& rtp_header) {
RTC_DCHECK_EQ(payload_length == 0, incoming_payload == nullptr);
return receiver_.InsertPacket(
rtp_header,
rtc::ArrayView<const uint8_t>(incoming_payload, payload_length));
}
// Minimum playout delay (Used for lip-sync).
int AudioCodingModuleImpl::SetMinimumPlayoutDelay(int time_ms) {
if ((time_ms < 0) || (time_ms > 10000)) {
RTC_LOG(LS_ERROR) << "Delay must be in the range of 0-10000 milliseconds.";
return -1;
}
return receiver_.SetMinimumDelay(time_ms);
}
int AudioCodingModuleImpl::SetMaximumPlayoutDelay(int time_ms) {
if ((time_ms < 0) || (time_ms > 10000)) {
RTC_LOG(LS_ERROR) << "Delay must be in the range of 0-10000 milliseconds.";
return -1;
}
return receiver_.SetMaximumDelay(time_ms);
}
bool AudioCodingModuleImpl::SetBaseMinimumPlayoutDelayMs(int delay_ms) {
// All necessary validation happens on NetEq level.
return receiver_.SetBaseMinimumDelayMs(delay_ms);
}
int AudioCodingModuleImpl::GetBaseMinimumPlayoutDelayMs() const {
return receiver_.GetBaseMinimumDelayMs();
}
// Get 10 milliseconds of raw audio data to play out.
// Automatic resample to the requested frequency.
int AudioCodingModuleImpl::PlayoutData10Ms(int desired_freq_hz,
AudioFrame* audio_frame,
bool* muted) {
// GetAudio always returns 10 ms, at the requested sample rate.
if (receiver_.GetAudio(desired_freq_hz, audio_frame, muted) != 0) {
RTC_LOG(LS_ERROR) << "PlayoutData failed, RecOut Failed";
return -1;
}
return 0;
}
/////////////////////////////////////////
// Statistics
//
// TODO(turajs) change the return value to void. Also change the corresponding
// NetEq function.
int AudioCodingModuleImpl::GetNetworkStatistics(NetworkStatistics* statistics) {
receiver_.GetNetworkStatistics(statistics);
return 0;
}
int AudioCodingModuleImpl::RegisterVADCallback(ACMVADCallback* vad_callback) {
RTC_LOG(LS_VERBOSE) << "RegisterVADCallback()";
rtc::CritScope lock(&callback_crit_sect_);
vad_callback_ = vad_callback;
return 0;
}
// Informs Opus encoder of the maximum playback rate the receiver will render.
int AudioCodingModuleImpl::SetOpusMaxPlaybackRate(int frequency_hz) {
rtc::CritScope lock(&acm_crit_sect_);
if (!HaveValidEncoder("SetOpusMaxPlaybackRate")) {
return -1;
}
encoder_stack_->SetMaxPlaybackRate(frequency_hz);
return 0;
}
int AudioCodingModuleImpl::EnableOpusDtx() {
rtc::CritScope lock(&acm_crit_sect_);
if (!HaveValidEncoder("EnableOpusDtx")) {
return -1;
}
return encoder_stack_->SetDtx(true) ? 0 : -1;
}
int AudioCodingModuleImpl::DisableOpusDtx() {
rtc::CritScope lock(&acm_crit_sect_);
if (!HaveValidEncoder("DisableOpusDtx")) {
return -1;
}
return encoder_stack_->SetDtx(false) ? 0 : -1;
}
absl::optional<uint32_t> AudioCodingModuleImpl::PlayoutTimestamp() {
return receiver_.GetPlayoutTimestamp();
}
int AudioCodingModuleImpl::FilteredCurrentDelayMs() const {
return receiver_.FilteredCurrentDelayMs();
}
int AudioCodingModuleImpl::TargetDelayMs() const {
return receiver_.TargetDelayMs();
}
bool AudioCodingModuleImpl::HaveValidEncoder(const char* caller_name) const {
if (!encoder_stack_) {
RTC_LOG(LS_ERROR) << caller_name << " failed: No send codec is registered.";
return false;
}
return true;
}
int AudioCodingModuleImpl::EnableNack(size_t max_nack_list_size) {
return receiver_.EnableNack(max_nack_list_size);
}
void AudioCodingModuleImpl::DisableNack() {
receiver_.DisableNack();
}
std::vector<uint16_t> AudioCodingModuleImpl::GetNackList(
int64_t round_trip_time_ms) const {
return receiver_.GetNackList(round_trip_time_ms);
}
void AudioCodingModuleImpl::GetDecodingCallStatistics(
AudioDecodingCallStats* call_stats) const {
receiver_.GetDecodingCallStatistics(call_stats);
}
ANAStats AudioCodingModuleImpl::GetANAStats() const {
rtc::CritScope lock(&acm_crit_sect_);
if (encoder_stack_)
return encoder_stack_->GetANAStats();
// If no encoder is set, return default stats.
return ANAStats();
}
} // namespace
AudioCodingModule::Config::Config(
rtc::scoped_refptr<AudioDecoderFactory> decoder_factory)
: neteq_config(),
clock(Clock::GetRealTimeClock()),
decoder_factory(decoder_factory) {
// Post-decode VAD is disabled by default in NetEq, however, Audio
// Conference Mixer relies on VAD decisions and fails without them.
neteq_config.enable_post_decode_vad = true;
}
AudioCodingModule::Config::Config(const Config&) = default;
AudioCodingModule::Config::~Config() = default;
AudioCodingModule* AudioCodingModule::Create(const Config& config) {
return new AudioCodingModuleImpl(config);
}
} // namespace webrtc