| // Copyright 2018 The Abseil Authors. |
| // |
| // Licensed under the Apache License, Version 2.0 (the "License"); |
| // you may not use this file except in compliance with the License. |
| // You may obtain a copy of the License at |
| // |
| // https://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, software |
| // distributed under the License is distributed on an "AS IS" BASIS, |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| // See the License for the specific language governing permissions and |
| // limitations under the License. |
| |
| #include "absl/hash/hash.h" |
| |
| #include <array> |
| #include <bitset> |
| #include <cstring> |
| #include <deque> |
| #include <forward_list> |
| #include <functional> |
| #include <iterator> |
| #include <limits> |
| #include <list> |
| #include <map> |
| #include <memory> |
| #include <numeric> |
| #include <random> |
| #include <set> |
| #include <string> |
| #include <tuple> |
| #include <type_traits> |
| #include <unordered_map> |
| #include <utility> |
| #include <vector> |
| |
| #include "gmock/gmock.h" |
| #include "gtest/gtest.h" |
| #include "absl/container/flat_hash_set.h" |
| #include "absl/hash/hash_testing.h" |
| #include "absl/hash/internal/spy_hash_state.h" |
| #include "absl/meta/type_traits.h" |
| #include "absl/numeric/int128.h" |
| |
| namespace { |
| |
| using absl::Hash; |
| using absl::hash_internal::SpyHashState; |
| |
| template <typename T> |
| class HashValueIntTest : public testing::Test { |
| }; |
| TYPED_TEST_SUITE_P(HashValueIntTest); |
| |
| template <typename T> |
| SpyHashState SpyHash(const T& value) { |
| return SpyHashState::combine(SpyHashState(), value); |
| } |
| |
| // Helper trait to verify if T is hashable. We use absl::Hash's poison status to |
| // detect it. |
| template <typename T> |
| using is_hashable = std::is_default_constructible<absl::Hash<T>>; |
| |
| TYPED_TEST_P(HashValueIntTest, BasicUsage) { |
| EXPECT_TRUE((is_hashable<TypeParam>::value)); |
| |
| TypeParam n = 42; |
| EXPECT_EQ(SpyHash(n), SpyHash(TypeParam{42})); |
| EXPECT_NE(SpyHash(n), SpyHash(TypeParam{0})); |
| EXPECT_NE(SpyHash(std::numeric_limits<TypeParam>::max()), |
| SpyHash(std::numeric_limits<TypeParam>::min())); |
| } |
| |
| TYPED_TEST_P(HashValueIntTest, FastPath) { |
| // Test the fast-path to make sure the values are the same. |
| TypeParam n = 42; |
| EXPECT_EQ(absl::Hash<TypeParam>{}(n), |
| absl::Hash<std::tuple<TypeParam>>{}(std::tuple<TypeParam>(n))); |
| } |
| |
| REGISTER_TYPED_TEST_CASE_P(HashValueIntTest, BasicUsage, FastPath); |
| using IntTypes = testing::Types<unsigned char, char, int, int32_t, int64_t, uint32_t, |
| uint64_t, size_t>; |
| INSTANTIATE_TYPED_TEST_CASE_P(My, HashValueIntTest, IntTypes); |
| |
| enum LegacyEnum { kValue1, kValue2, kValue3 }; |
| |
| enum class EnumClass { kValue4, kValue5, kValue6 }; |
| |
| TEST(HashValueTest, EnumAndBool) { |
| EXPECT_TRUE((is_hashable<LegacyEnum>::value)); |
| EXPECT_TRUE((is_hashable<EnumClass>::value)); |
| EXPECT_TRUE((is_hashable<bool>::value)); |
| |
| EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(std::make_tuple( |
| LegacyEnum::kValue1, LegacyEnum::kValue2, LegacyEnum::kValue3))); |
| EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(std::make_tuple( |
| EnumClass::kValue4, EnumClass::kValue5, EnumClass::kValue6))); |
| EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly( |
| std::make_tuple(true, false))); |
| } |
| |
| TEST(HashValueTest, FloatingPoint) { |
| EXPECT_TRUE((is_hashable<float>::value)); |
| EXPECT_TRUE((is_hashable<double>::value)); |
| EXPECT_TRUE((is_hashable<long double>::value)); |
| |
| EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly( |
| std::make_tuple(42.f, 0.f, -0.f, std::numeric_limits<float>::infinity(), |
| -std::numeric_limits<float>::infinity()))); |
| |
| EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly( |
| std::make_tuple(42., 0., -0., std::numeric_limits<double>::infinity(), |
| -std::numeric_limits<double>::infinity()))); |
| |
| EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(std::make_tuple( |
| // Add some values with small exponent to test that NORMAL values also |
| // append their category. |
| .5L, 1.L, 2.L, 4.L, 42.L, 0.L, -0.L, |
| 17 * static_cast<long double>(std::numeric_limits<double>::max()), |
| std::numeric_limits<long double>::infinity(), |
| -std::numeric_limits<long double>::infinity()))); |
| } |
| |
| TEST(HashValueTest, Pointer) { |
| EXPECT_TRUE((is_hashable<int*>::value)); |
| |
| int i; |
| int* ptr = &i; |
| int* n = nullptr; |
| |
| EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly( |
| std::make_tuple(&i, ptr, nullptr, ptr + 1, n))); |
| } |
| |
| TEST(HashValueTest, PointerAlignment) { |
| // We want to make sure that pointer alignment will not cause bits to be |
| // stuck. |
| |
| constexpr size_t kTotalSize = 1 << 20; |
| std::unique_ptr<char[]> data(new char[kTotalSize]); |
| constexpr size_t kLog2NumValues = 5; |
| constexpr size_t kNumValues = 1 << kLog2NumValues; |
| |
| for (size_t align = 1; align < kTotalSize / kNumValues; |
| align < 8 ? align += 1 : align < 1024 ? align += 8 : align += 32) { |
| SCOPED_TRACE(align); |
| ASSERT_LE(align * kNumValues, kTotalSize); |
| |
| size_t bits_or = 0; |
| size_t bits_and = ~size_t{}; |
| |
| for (size_t i = 0; i < kNumValues; ++i) { |
| size_t hash = absl::Hash<void*>()(data.get() + i * align); |
| bits_or |= hash; |
| bits_and &= hash; |
| } |
| |
| // Limit the scope to the bits we would be using for Swisstable. |
| constexpr size_t kMask = (1 << (kLog2NumValues + 7)) - 1; |
| size_t stuck_bits = (~bits_or | bits_and) & kMask; |
| EXPECT_EQ(stuck_bits, 0) << "0x" << std::hex << stuck_bits; |
| } |
| } |
| |
| TEST(HashValueTest, PairAndTuple) { |
| EXPECT_TRUE((is_hashable<std::pair<int, int>>::value)); |
| EXPECT_TRUE((is_hashable<std::pair<const int&, const int&>>::value)); |
| EXPECT_TRUE((is_hashable<std::tuple<int&, int&>>::value)); |
| EXPECT_TRUE((is_hashable<std::tuple<int&&, int&&>>::value)); |
| |
| EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(std::make_tuple( |
| std::make_pair(0, 42), std::make_pair(0, 42), std::make_pair(42, 0), |
| std::make_pair(0, 0), std::make_pair(42, 42), std::make_pair(1, 42)))); |
| |
| EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly( |
| std::make_tuple(std::make_tuple(0, 0, 0), std::make_tuple(0, 0, 42), |
| std::make_tuple(0, 23, 0), std::make_tuple(17, 0, 0), |
| std::make_tuple(42, 0, 0), std::make_tuple(3, 9, 9), |
| std::make_tuple(0, 0, -42)))); |
| |
| // Test that tuples of lvalue references work (so we need a few lvalues): |
| int a = 0, b = 1, c = 17, d = 23; |
| EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(std::make_tuple( |
| std::tie(a, a), std::tie(a, b), std::tie(b, c), std::tie(c, d)))); |
| |
| // Test that tuples of rvalue references work: |
| EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(std::make_tuple( |
| std::forward_as_tuple(0, 0, 0), std::forward_as_tuple(0, 0, 42), |
| std::forward_as_tuple(0, 23, 0), std::forward_as_tuple(17, 0, 0), |
| std::forward_as_tuple(42, 0, 0), std::forward_as_tuple(3, 9, 9), |
| std::forward_as_tuple(0, 0, -42)))); |
| } |
| |
| TEST(HashValueTest, CombineContiguousWorks) { |
| std::vector<std::tuple<int>> v1 = {std::make_tuple(1), std::make_tuple(3)}; |
| std::vector<std::tuple<int>> v2 = {std::make_tuple(1), std::make_tuple(2)}; |
| |
| auto vh1 = SpyHash(v1); |
| auto vh2 = SpyHash(v2); |
| EXPECT_NE(vh1, vh2); |
| } |
| |
| struct DummyDeleter { |
| template <typename T> |
| void operator() (T* ptr) {} |
| }; |
| |
| struct SmartPointerEq { |
| template <typename T, typename U> |
| bool operator()(const T& t, const U& u) const { |
| return GetPtr(t) == GetPtr(u); |
| } |
| |
| template <typename T> |
| static auto GetPtr(const T& t) -> decltype(&*t) { |
| return t ? &*t : nullptr; |
| } |
| |
| static std::nullptr_t GetPtr(std::nullptr_t) { return nullptr; } |
| }; |
| |
| TEST(HashValueTest, SmartPointers) { |
| EXPECT_TRUE((is_hashable<std::unique_ptr<int>>::value)); |
| EXPECT_TRUE((is_hashable<std::unique_ptr<int, DummyDeleter>>::value)); |
| EXPECT_TRUE((is_hashable<std::shared_ptr<int>>::value)); |
| |
| int i, j; |
| std::unique_ptr<int, DummyDeleter> unique1(&i); |
| std::unique_ptr<int, DummyDeleter> unique2(&i); |
| std::unique_ptr<int, DummyDeleter> unique_other(&j); |
| std::unique_ptr<int, DummyDeleter> unique_null; |
| |
| std::shared_ptr<int> shared1(&i, DummyDeleter()); |
| std::shared_ptr<int> shared2(&i, DummyDeleter()); |
| std::shared_ptr<int> shared_other(&j, DummyDeleter()); |
| std::shared_ptr<int> shared_null; |
| |
| // Sanity check of the Eq function. |
| ASSERT_TRUE(SmartPointerEq{}(unique1, shared1)); |
| ASSERT_FALSE(SmartPointerEq{}(unique1, shared_other)); |
| ASSERT_TRUE(SmartPointerEq{}(unique_null, nullptr)); |
| ASSERT_FALSE(SmartPointerEq{}(shared2, nullptr)); |
| |
| EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly( |
| std::forward_as_tuple(&i, nullptr, // |
| unique1, unique2, unique_null, // |
| absl::make_unique<int>(), // |
| shared1, shared2, shared_null, // |
| std::make_shared<int>()), |
| SmartPointerEq{})); |
| } |
| |
| TEST(HashValueTest, FunctionPointer) { |
| using Func = int (*)(); |
| EXPECT_TRUE(is_hashable<Func>::value); |
| |
| Func p1 = [] { return 2; }, p2 = [] { return 1; }; |
| EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly( |
| std::make_tuple(p1, p2, nullptr))); |
| } |
| |
| struct WrapInTuple { |
| template <typename T> |
| std::tuple<int, T, size_t> operator()(const T& t) const { |
| return std::make_tuple(7, t, 0xdeadbeef); |
| } |
| }; |
| |
| TEST(HashValueTest, Strings) { |
| EXPECT_TRUE((is_hashable<std::string>::value)); |
| |
| const std::string small = "foo"; |
| const std::string dup = "foofoo"; |
| const std::string large = "large"; |
| const std::string huge = std::string(5000, 'a'); |
| |
| EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(std::make_tuple( |
| std::string(), absl::string_view(), |
| std::string(""), absl::string_view(""), |
| std::string(small), absl::string_view(small), |
| std::string(dup), absl::string_view(dup), |
| std::string(large), absl::string_view(large), |
| std::string(huge), absl::string_view(huge)))); |
| |
| // Also check that nested types maintain the same hash. |
| const WrapInTuple t{}; |
| EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(std::make_tuple( |
| // |
| t(std::string()), t(absl::string_view()), |
| t(std::string("")), t(absl::string_view("")), |
| t(std::string(small)), t(absl::string_view(small)), |
| t(std::string(dup)), t(absl::string_view(dup)), |
| t(std::string(large)), t(absl::string_view(large)), |
| t(std::string(huge)), t(absl::string_view(huge))))); |
| |
| // Make sure that hashing a `const char*` does not use its std::string-value. |
| EXPECT_NE(SpyHash(static_cast<const char*>("ABC")), |
| SpyHash(absl::string_view("ABC"))); |
| } |
| |
| TEST(HashValueTest, StdArray) { |
| EXPECT_TRUE((is_hashable<std::array<int, 3>>::value)); |
| |
| EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly( |
| std::make_tuple(std::array<int, 3>{}, std::array<int, 3>{{0, 23, 42}}))); |
| } |
| |
| TEST(HashValueTest, StdBitset) { |
| EXPECT_TRUE((is_hashable<std::bitset<257>>::value)); |
| |
| EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly( |
| {std::bitset<2>("00"), std::bitset<2>("01"), std::bitset<2>("10"), |
| std::bitset<2>("11")})); |
| EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly( |
| {std::bitset<5>("10101"), std::bitset<5>("10001"), std::bitset<5>()})); |
| |
| constexpr int kNumBits = 256; |
| std::array<std::string, 6> bit_strings; |
| bit_strings.fill(std::string(kNumBits, '1')); |
| bit_strings[1][0] = '0'; |
| bit_strings[2][1] = '0'; |
| bit_strings[3][kNumBits / 3] = '0'; |
| bit_strings[4][kNumBits - 2] = '0'; |
| bit_strings[5][kNumBits - 1] = '0'; |
| EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly( |
| {std::bitset<kNumBits>(bit_strings[0].c_str()), |
| std::bitset<kNumBits>(bit_strings[1].c_str()), |
| std::bitset<kNumBits>(bit_strings[2].c_str()), |
| std::bitset<kNumBits>(bit_strings[3].c_str()), |
| std::bitset<kNumBits>(bit_strings[4].c_str()), |
| std::bitset<kNumBits>(bit_strings[5].c_str())})); |
| } // namespace |
| |
| template <typename T> |
| class HashValueSequenceTest : public testing::Test { |
| }; |
| TYPED_TEST_SUITE_P(HashValueSequenceTest); |
| |
| TYPED_TEST_P(HashValueSequenceTest, BasicUsage) { |
| EXPECT_TRUE((is_hashable<TypeParam>::value)); |
| |
| using ValueType = typename TypeParam::value_type; |
| auto a = static_cast<ValueType>(0); |
| auto b = static_cast<ValueType>(23); |
| auto c = static_cast<ValueType>(42); |
| |
| EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly( |
| std::make_tuple(TypeParam(), TypeParam{}, TypeParam{a, b, c}, |
| TypeParam{a, b}, TypeParam{b, c}))); |
| } |
| |
| REGISTER_TYPED_TEST_CASE_P(HashValueSequenceTest, BasicUsage); |
| using IntSequenceTypes = |
| testing::Types<std::deque<int>, std::forward_list<int>, std::list<int>, |
| std::vector<int>, std::vector<bool>, std::set<int>, |
| std::multiset<int>>; |
| INSTANTIATE_TYPED_TEST_CASE_P(My, HashValueSequenceTest, IntSequenceTypes); |
| |
| // Private type that only supports AbslHashValue to make sure our chosen hash |
| // implentation is recursive within absl::Hash. |
| // It uses std::abs() on the value to provide different bitwise representations |
| // of the same logical value. |
| struct Private { |
| int i; |
| template <typename H> |
| friend H AbslHashValue(H h, Private p) { |
| return H::combine(std::move(h), std::abs(p.i)); |
| } |
| |
| friend bool operator==(Private a, Private b) { |
| return std::abs(a.i) == std::abs(b.i); |
| } |
| |
| friend std::ostream& operator<<(std::ostream& o, Private p) { |
| return o << p.i; |
| } |
| }; |
| |
| TEST(HashValueTest, PrivateSanity) { |
| // Sanity check that Private is working as the tests below expect it to work. |
| EXPECT_TRUE(is_hashable<Private>::value); |
| EXPECT_NE(SpyHash(Private{0}), SpyHash(Private{1})); |
| EXPECT_EQ(SpyHash(Private{1}), SpyHash(Private{1})); |
| } |
| |
| TEST(HashValueTest, Optional) { |
| EXPECT_TRUE(is_hashable<absl::optional<Private>>::value); |
| |
| using O = absl::optional<Private>; |
| EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly( |
| std::make_tuple(O{}, O{{1}}, O{{-1}}, O{{10}}))); |
| } |
| |
| TEST(HashValueTest, Variant) { |
| using V = absl::variant<Private, std::string>; |
| EXPECT_TRUE(is_hashable<V>::value); |
| |
| EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(std::make_tuple( |
| V(Private{1}), V(Private{-1}), V(Private{2}), V("ABC"), V("BCD")))); |
| |
| #if ABSL_META_INTERNAL_STD_HASH_SFINAE_FRIENDLY_ |
| struct S {}; |
| EXPECT_FALSE(is_hashable<absl::variant<S>>::value); |
| #endif |
| } |
| |
| TEST(HashValueTest, Maps) { |
| EXPECT_TRUE((is_hashable<std::map<int, std::string>>::value)); |
| |
| using M = std::map<int, std::string>; |
| EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(std::make_tuple( |
| M{}, M{{0, "foo"}}, M{{1, "foo"}}, M{{0, "bar"}}, M{{1, "bar"}}, |
| M{{0, "foo"}, {42, "bar"}}, M{{1, "foo"}, {42, "bar"}}, |
| M{{1, "foo"}, {43, "bar"}}, M{{1, "foo"}, {43, "baz"}}))); |
| |
| using MM = std::multimap<int, std::string>; |
| EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(std::make_tuple( |
| MM{}, MM{{0, "foo"}}, MM{{1, "foo"}}, MM{{0, "bar"}}, MM{{1, "bar"}}, |
| MM{{0, "foo"}, {0, "bar"}}, MM{{0, "bar"}, {0, "foo"}}, |
| MM{{0, "foo"}, {42, "bar"}}, MM{{1, "foo"}, {42, "bar"}}, |
| MM{{1, "foo"}, {1, "foo"}, {43, "bar"}}, MM{{1, "foo"}, {43, "baz"}}))); |
| } |
| |
| template <typename T, typename = void> |
| struct IsHashCallble : std::false_type {}; |
| |
| template <typename T> |
| struct IsHashCallble<T, absl::void_t<decltype(std::declval<absl::Hash<T>>()( |
| std::declval<const T&>()))>> : std::true_type {}; |
| |
| template <typename T, typename = void> |
| struct IsAggregateInitializable : std::false_type {}; |
| |
| template <typename T> |
| struct IsAggregateInitializable<T, absl::void_t<decltype(T{})>> |
| : std::true_type {}; |
| |
| TEST(IsHashableTest, ValidHash) { |
| EXPECT_TRUE((is_hashable<int>::value)); |
| EXPECT_TRUE(std::is_default_constructible<absl::Hash<int>>::value); |
| EXPECT_TRUE(std::is_copy_constructible<absl::Hash<int>>::value); |
| EXPECT_TRUE(std::is_move_constructible<absl::Hash<int>>::value); |
| EXPECT_TRUE(absl::is_copy_assignable<absl::Hash<int>>::value); |
| EXPECT_TRUE(absl::is_move_assignable<absl::Hash<int>>::value); |
| EXPECT_TRUE(IsHashCallble<int>::value); |
| EXPECT_TRUE(IsAggregateInitializable<absl::Hash<int>>::value); |
| } |
| |
| #if ABSL_META_INTERNAL_STD_HASH_SFINAE_FRIENDLY_ |
| TEST(IsHashableTest, PoisonHash) { |
| struct X {}; |
| EXPECT_FALSE((is_hashable<X>::value)); |
| EXPECT_FALSE(std::is_default_constructible<absl::Hash<X>>::value); |
| EXPECT_FALSE(std::is_copy_constructible<absl::Hash<X>>::value); |
| EXPECT_FALSE(std::is_move_constructible<absl::Hash<X>>::value); |
| EXPECT_FALSE(absl::is_copy_assignable<absl::Hash<X>>::value); |
| EXPECT_FALSE(absl::is_move_assignable<absl::Hash<X>>::value); |
| EXPECT_FALSE(IsHashCallble<X>::value); |
| EXPECT_FALSE(IsAggregateInitializable<absl::Hash<X>>::value); |
| } |
| #endif // ABSL_META_INTERNAL_STD_HASH_SFINAE_FRIENDLY_ |
| |
| // Hashable types |
| // |
| // These types exist simply to exercise various AbslHashValue behaviors, so |
| // they are named by what their AbslHashValue overload does. |
| struct NoOp { |
| template <typename HashCode> |
| friend HashCode AbslHashValue(HashCode h, NoOp n) { |
| return std::move(h); |
| } |
| }; |
| |
| struct EmptyCombine { |
| template <typename HashCode> |
| friend HashCode AbslHashValue(HashCode h, EmptyCombine e) { |
| return HashCode::combine(std::move(h)); |
| } |
| }; |
| |
| template <typename Int> |
| struct CombineIterative { |
| template <typename HashCode> |
| friend HashCode AbslHashValue(HashCode h, CombineIterative c) { |
| for (int i = 0; i < 5; ++i) { |
| h = HashCode::combine(std::move(h), Int(i)); |
| } |
| return h; |
| } |
| }; |
| |
| template <typename Int> |
| struct CombineVariadic { |
| template <typename HashCode> |
| friend HashCode AbslHashValue(HashCode h, CombineVariadic c) { |
| return HashCode::combine(std::move(h), Int(0), Int(1), Int(2), Int(3), |
| Int(4)); |
| } |
| }; |
| enum class InvokeTag { |
| kUniquelyRepresented, |
| kHashValue, |
| #if ABSL_HASH_INTERNAL_SUPPORT_LEGACY_HASH_ |
| kLegacyHash, |
| #endif // ABSL_HASH_INTERNAL_SUPPORT_LEGACY_HASH_ |
| kStdHash, |
| kNone |
| }; |
| |
| template <InvokeTag T> |
| using InvokeTagConstant = std::integral_constant<InvokeTag, T>; |
| |
| template <InvokeTag... Tags> |
| struct MinTag; |
| |
| template <InvokeTag a, InvokeTag b, InvokeTag... Tags> |
| struct MinTag<a, b, Tags...> : MinTag<(a < b ? a : b), Tags...> {}; |
| |
| template <InvokeTag a> |
| struct MinTag<a> : InvokeTagConstant<a> {}; |
| |
| template <InvokeTag... Tags> |
| struct CustomHashType { |
| size_t value; |
| }; |
| |
| template <InvokeTag allowed, InvokeTag... tags> |
| struct EnableIfContained |
| : std::enable_if<absl::disjunction< |
| std::integral_constant<bool, allowed == tags>...>::value> {}; |
| |
| template < |
| typename H, InvokeTag... Tags, |
| typename = typename EnableIfContained<InvokeTag::kHashValue, Tags...>::type> |
| H AbslHashValue(H state, CustomHashType<Tags...> t) { |
| static_assert(MinTag<Tags...>::value == InvokeTag::kHashValue, ""); |
| return H::combine(std::move(state), |
| t.value + static_cast<int>(InvokeTag::kHashValue)); |
| } |
| |
| } // namespace |
| |
| namespace absl { |
| namespace hash_internal { |
| template <InvokeTag... Tags> |
| struct is_uniquely_represented< |
| CustomHashType<Tags...>, |
| typename EnableIfContained<InvokeTag::kUniquelyRepresented, Tags...>::type> |
| : std::true_type {}; |
| } // namespace hash_internal |
| } // namespace absl |
| |
| #if ABSL_HASH_INTERNAL_SUPPORT_LEGACY_HASH_ |
| namespace ABSL_INTERNAL_LEGACY_HASH_NAMESPACE { |
| template <InvokeTag... Tags> |
| struct hash<CustomHashType<Tags...>> { |
| template <InvokeTag... TagsIn, typename = typename EnableIfContained< |
| InvokeTag::kLegacyHash, TagsIn...>::type> |
| size_t operator()(CustomHashType<TagsIn...> t) const { |
| static_assert(MinTag<Tags...>::value == InvokeTag::kLegacyHash, ""); |
| return t.value + static_cast<int>(InvokeTag::kLegacyHash); |
| } |
| }; |
| } // namespace ABSL_INTERNAL_LEGACY_HASH_NAMESPACE |
| #endif // ABSL_HASH_INTERNAL_SUPPORT_LEGACY_HASH_ |
| |
| namespace std { |
| template <InvokeTag... Tags> // NOLINT |
| struct hash<CustomHashType<Tags...>> { |
| template <InvokeTag... TagsIn, typename = typename EnableIfContained< |
| InvokeTag::kStdHash, TagsIn...>::type> |
| size_t operator()(CustomHashType<TagsIn...> t) const { |
| static_assert(MinTag<Tags...>::value == InvokeTag::kStdHash, ""); |
| return t.value + static_cast<int>(InvokeTag::kStdHash); |
| } |
| }; |
| } // namespace std |
| |
| namespace { |
| |
| template <typename... T> |
| void TestCustomHashType(InvokeTagConstant<InvokeTag::kNone>, T...) { |
| using type = CustomHashType<T::value...>; |
| SCOPED_TRACE(testing::PrintToString(std::vector<InvokeTag>{T::value...})); |
| EXPECT_TRUE(is_hashable<type>()); |
| EXPECT_TRUE(is_hashable<const type>()); |
| EXPECT_TRUE(is_hashable<const type&>()); |
| |
| const size_t offset = static_cast<int>(std::min({T::value...})); |
| EXPECT_EQ(SpyHash(type{7}), SpyHash(size_t{7 + offset})); |
| } |
| |
| void TestCustomHashType(InvokeTagConstant<InvokeTag::kNone>) { |
| #if ABSL_META_INTERNAL_STD_HASH_SFINAE_FRIENDLY_ |
| // is_hashable is false if we don't support any of the hooks. |
| using type = CustomHashType<>; |
| EXPECT_FALSE(is_hashable<type>()); |
| EXPECT_FALSE(is_hashable<const type>()); |
| EXPECT_FALSE(is_hashable<const type&>()); |
| #endif // ABSL_META_INTERNAL_STD_HASH_SFINAE_FRIENDLY_ |
| } |
| |
| template <InvokeTag Tag, typename... T> |
| void TestCustomHashType(InvokeTagConstant<Tag> tag, T... t) { |
| constexpr auto next = static_cast<InvokeTag>(static_cast<int>(Tag) + 1); |
| TestCustomHashType(InvokeTagConstant<next>(), tag, t...); |
| TestCustomHashType(InvokeTagConstant<next>(), t...); |
| } |
| |
| TEST(HashTest, CustomHashType) { |
| TestCustomHashType(InvokeTagConstant<InvokeTag{}>()); |
| } |
| |
| TEST(HashTest, NoOpsAreEquivalent) { |
| EXPECT_EQ(Hash<NoOp>()({}), Hash<NoOp>()({})); |
| EXPECT_EQ(Hash<NoOp>()({}), Hash<EmptyCombine>()({})); |
| } |
| |
| template <typename T> |
| class HashIntTest : public testing::Test { |
| }; |
| TYPED_TEST_SUITE_P(HashIntTest); |
| |
| TYPED_TEST_P(HashIntTest, BasicUsage) { |
| EXPECT_NE(Hash<NoOp>()({}), Hash<TypeParam>()(0)); |
| EXPECT_NE(Hash<NoOp>()({}), |
| Hash<TypeParam>()(std::numeric_limits<TypeParam>::max())); |
| if (std::numeric_limits<TypeParam>::min() != 0) { |
| EXPECT_NE(Hash<NoOp>()({}), |
| Hash<TypeParam>()(std::numeric_limits<TypeParam>::min())); |
| } |
| |
| EXPECT_EQ(Hash<CombineIterative<TypeParam>>()({}), |
| Hash<CombineVariadic<TypeParam>>()({})); |
| } |
| |
| REGISTER_TYPED_TEST_CASE_P(HashIntTest, BasicUsage); |
| using IntTypes = testing::Types<unsigned char, char, int, int32_t, int64_t, uint32_t, |
| uint64_t, size_t>; |
| INSTANTIATE_TYPED_TEST_CASE_P(My, HashIntTest, IntTypes); |
| |
| struct StructWithPadding { |
| char c; |
| int i; |
| |
| template <typename H> |
| friend H AbslHashValue(H hash_state, const StructWithPadding& s) { |
| return H::combine(std::move(hash_state), s.c, s.i); |
| } |
| }; |
| |
| static_assert(sizeof(StructWithPadding) > sizeof(char) + sizeof(int), |
| "StructWithPadding doesn't have padding"); |
| static_assert(std::is_standard_layout<StructWithPadding>::value, ""); |
| |
| // This check has to be disabled because libstdc++ doesn't support it. |
| // static_assert(std::is_trivially_constructible<StructWithPadding>::value, ""); |
| |
| template <typename T> |
| struct ArraySlice { |
| T* begin; |
| T* end; |
| |
| template <typename H> |
| friend H AbslHashValue(H hash_state, const ArraySlice& slice) { |
| for (auto t = slice.begin; t != slice.end; ++t) { |
| hash_state = H::combine(std::move(hash_state), *t); |
| } |
| return hash_state; |
| } |
| }; |
| |
| TEST(HashTest, HashNonUniquelyRepresentedType) { |
| // Create equal StructWithPadding objects that are known to have non-equal |
| // padding bytes. |
| static const size_t kNumStructs = 10; |
| unsigned char buffer1[kNumStructs * sizeof(StructWithPadding)]; |
| std::memset(buffer1, 0, sizeof(buffer1)); |
| auto* s1 = reinterpret_cast<StructWithPadding*>(buffer1); |
| |
| unsigned char buffer2[kNumStructs * sizeof(StructWithPadding)]; |
| std::memset(buffer2, 255, sizeof(buffer2)); |
| auto* s2 = reinterpret_cast<StructWithPadding*>(buffer2); |
| for (int i = 0; i < kNumStructs; ++i) { |
| SCOPED_TRACE(i); |
| s1[i].c = s2[i].c = '0' + i; |
| s1[i].i = s2[i].i = i; |
| ASSERT_FALSE(memcmp(buffer1 + i * sizeof(StructWithPadding), |
| buffer2 + i * sizeof(StructWithPadding), |
| sizeof(StructWithPadding)) == 0) |
| << "Bug in test code: objects do not have unequal" |
| << " object representations"; |
| } |
| |
| EXPECT_EQ(Hash<StructWithPadding>()(s1[0]), Hash<StructWithPadding>()(s2[0])); |
| EXPECT_EQ(Hash<ArraySlice<StructWithPadding>>()({s1, s1 + kNumStructs}), |
| Hash<ArraySlice<StructWithPadding>>()({s2, s2 + kNumStructs})); |
| } |
| |
| TEST(HashTest, StandardHashContainerUsage) { |
| std::unordered_map<int, std::string, Hash<int>> map = {{0, "foo"}, |
| {42, "bar"}}; |
| |
| EXPECT_NE(map.find(0), map.end()); |
| EXPECT_EQ(map.find(1), map.end()); |
| EXPECT_NE(map.find(0u), map.end()); |
| } |
| |
| struct ConvertibleFromNoOp { |
| ConvertibleFromNoOp(NoOp) {} // NOLINT(runtime/explicit) |
| |
| template <typename H> |
| friend H AbslHashValue(H hash_state, ConvertibleFromNoOp) { |
| return H::combine(std::move(hash_state), 1); |
| } |
| }; |
| |
| TEST(HashTest, HeterogeneousCall) { |
| EXPECT_NE(Hash<ConvertibleFromNoOp>()(NoOp()), |
| Hash<NoOp>()(NoOp())); |
| } |
| |
| TEST(IsUniquelyRepresentedTest, SanityTest) { |
| using absl::hash_internal::is_uniquely_represented; |
| |
| EXPECT_TRUE(is_uniquely_represented<unsigned char>::value); |
| EXPECT_TRUE(is_uniquely_represented<int>::value); |
| EXPECT_FALSE(is_uniquely_represented<bool>::value); |
| EXPECT_FALSE(is_uniquely_represented<int*>::value); |
| } |
| |
| struct IntAndString { |
| int i; |
| std::string s; |
| |
| template <typename H> |
| friend H AbslHashValue(H hash_state, IntAndString int_and_string) { |
| return H::combine(std::move(hash_state), int_and_string.s, |
| int_and_string.i); |
| } |
| }; |
| |
| TEST(HashTest, SmallValueOn64ByteBoundary) { |
| Hash<IntAndString>()(IntAndString{0, std::string(63, '0')}); |
| } |
| |
| struct TypeErased { |
| size_t n; |
| |
| template <typename H> |
| friend H AbslHashValue(H hash_state, const TypeErased& v) { |
| v.HashValue(absl::HashState::Create(&hash_state)); |
| return hash_state; |
| } |
| |
| void HashValue(absl::HashState state) const { |
| absl::HashState::combine(std::move(state), n); |
| } |
| }; |
| |
| TEST(HashTest, TypeErased) { |
| EXPECT_TRUE((is_hashable<TypeErased>::value)); |
| EXPECT_TRUE((is_hashable<std::pair<TypeErased, int>>::value)); |
| |
| EXPECT_EQ(SpyHash(TypeErased{7}), SpyHash(size_t{7})); |
| EXPECT_NE(SpyHash(TypeErased{7}), SpyHash(size_t{13})); |
| |
| EXPECT_EQ(SpyHash(std::make_pair(TypeErased{7}, 17)), |
| SpyHash(std::make_pair(size_t{7}, 17))); |
| } |
| |
| struct ValueWithBoolConversion { |
| operator bool() const { return false; } |
| int i; |
| }; |
| |
| } // namespace |
| namespace std { |
| template <> |
| struct hash<ValueWithBoolConversion> { |
| size_t operator()(ValueWithBoolConversion v) { return v.i; } |
| }; |
| } // namespace std |
| |
| namespace { |
| |
| TEST(HashTest, DoesNotUseImplicitConversionsToBool) { |
| EXPECT_NE(absl::Hash<ValueWithBoolConversion>()(ValueWithBoolConversion{0}), |
| absl::Hash<ValueWithBoolConversion>()(ValueWithBoolConversion{1})); |
| } |
| |
| } // namespace |