blob: 88128b5c568fbc232a882d23d598ddab4ec52df5 [file] [log] [blame]
/*
* Copyright 2018 The WebRTC Project Authors. All rights reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "rtc_base/task_queue_stdlib.h"
#include <string.h>
#include <algorithm>
#include <map>
#include <queue>
#include <utility>
#include "absl/memory/memory.h"
#include "absl/strings/string_view.h"
#include "api/task_queue/queued_task.h"
#include "api/task_queue/task_queue_base.h"
#include "rtc_base/checks.h"
#include "rtc_base/critical_section.h"
#include "rtc_base/event.h"
#include "rtc_base/logging.h"
#include "rtc_base/platform_thread.h"
#include "rtc_base/thread_annotations.h"
#include "rtc_base/time_utils.h"
namespace webrtc {
namespace {
rtc::ThreadPriority TaskQueuePriorityToThreadPriority(
TaskQueueFactory::Priority priority) {
switch (priority) {
case TaskQueueFactory::Priority::HIGH:
return rtc::kRealtimePriority;
case TaskQueueFactory::Priority::LOW:
return rtc::kLowPriority;
case TaskQueueFactory::Priority::NORMAL:
return rtc::kNormalPriority;
default:
RTC_NOTREACHED();
return rtc::kNormalPriority;
}
}
class TaskQueueStdlib final : public TaskQueueBase {
public:
TaskQueueStdlib(absl::string_view queue_name, rtc::ThreadPriority priority);
~TaskQueueStdlib() override = default;
void Delete() override;
void PostTask(std::unique_ptr<QueuedTask> task) override;
void PostDelayedTask(std::unique_ptr<QueuedTask> task,
uint32_t milliseconds) override;
private:
using OrderId = uint64_t;
struct DelayedEntryTimeout {
int64_t next_fire_at_ms_{};
OrderId order_{};
bool operator<(const DelayedEntryTimeout& o) const {
return std::tie(next_fire_at_ms_, order_) <
std::tie(o.next_fire_at_ms_, o.order_);
}
};
struct NextTask {
bool final_task_{false};
std::unique_ptr<QueuedTask> run_task_;
int64_t sleep_time_ms_{};
};
NextTask GetNextTask();
static void ThreadMain(void* context);
void ProcessTasks();
void NotifyWake();
// Indicates if the thread has started.
rtc::Event started_;
// Indicates if the thread has stopped.
rtc::Event stopped_;
// Signaled whenever a new task is pending.
rtc::Event flag_notify_;
// Contains the active worker thread assigned to processing
// tasks (including delayed tasks).
rtc::PlatformThread thread_;
rtc::CriticalSection pending_lock_;
// Indicates if the worker thread needs to shutdown now.
bool thread_should_quit_ RTC_GUARDED_BY(pending_lock_){false};
// Holds the next order to use for the next task to be
// put into one of the pending queues.
OrderId thread_posting_order_ RTC_GUARDED_BY(pending_lock_){};
// The list of all pending tasks that need to be processed in the
// FIFO queue ordering on the worker thread.
std::queue<std::pair<OrderId, std::unique_ptr<QueuedTask>>> pending_queue_
RTC_GUARDED_BY(pending_lock_);
// The list of all pending tasks that need to be processed at a future
// time based upon a delay. On the off change the delayed task should
// happen at exactly the same time interval as another task then the
// task is processed based on FIFO ordering. std::priority_queue was
// considered but rejected due to its inability to extract the
// std::unique_ptr out of the queue without the presence of a hack.
std::map<DelayedEntryTimeout, std::unique_ptr<QueuedTask>> delayed_queue_
RTC_GUARDED_BY(pending_lock_);
};
TaskQueueStdlib::TaskQueueStdlib(absl::string_view queue_name,
rtc::ThreadPriority priority)
: started_(/*manual_reset=*/false, /*initially_signaled=*/false),
stopped_(/*manual_reset=*/false, /*initially_signaled=*/false),
flag_notify_(/*manual_reset=*/false, /*initially_signaled=*/false),
thread_(&TaskQueueStdlib::ThreadMain, this, queue_name, priority) {
thread_.Start();
started_.Wait(rtc::Event::kForever);
}
void TaskQueueStdlib::Delete() {
RTC_DCHECK(!IsCurrent());
{
rtc::CritScope lock(&pending_lock_);
thread_should_quit_ = true;
}
NotifyWake();
stopped_.Wait(rtc::Event::kForever);
thread_.Stop();
delete this;
}
void TaskQueueStdlib::PostTask(std::unique_ptr<QueuedTask> task) {
{
rtc::CritScope lock(&pending_lock_);
OrderId order = thread_posting_order_++;
pending_queue_.push(std::pair<OrderId, std::unique_ptr<QueuedTask>>(
order, std::move(task)));
}
NotifyWake();
}
void TaskQueueStdlib::PostDelayedTask(std::unique_ptr<QueuedTask> task,
uint32_t milliseconds) {
auto fire_at = rtc::TimeMillis() + milliseconds;
DelayedEntryTimeout delay;
delay.next_fire_at_ms_ = fire_at;
{
rtc::CritScope lock(&pending_lock_);
delay.order_ = ++thread_posting_order_;
delayed_queue_[delay] = std::move(task);
}
NotifyWake();
}
TaskQueueStdlib::NextTask TaskQueueStdlib::GetNextTask() {
NextTask result{};
auto tick = rtc::TimeMillis();
rtc::CritScope lock(&pending_lock_);
if (thread_should_quit_) {
result.final_task_ = true;
return result;
}
if (delayed_queue_.size() > 0) {
auto delayed_entry = delayed_queue_.begin();
const auto& delay_info = delayed_entry->first;
auto& delay_run = delayed_entry->second;
if (tick >= delay_info.next_fire_at_ms_) {
if (pending_queue_.size() > 0) {
auto& entry = pending_queue_.front();
auto& entry_order = entry.first;
auto& entry_run = entry.second;
if (entry_order < delay_info.order_) {
result.run_task_ = std::move(entry_run);
pending_queue_.pop();
return result;
}
}
result.run_task_ = std::move(delay_run);
delayed_queue_.erase(delayed_entry);
return result;
}
result.sleep_time_ms_ = delay_info.next_fire_at_ms_ - tick;
}
if (pending_queue_.size() > 0) {
auto& entry = pending_queue_.front();
result.run_task_ = std::move(entry.second);
pending_queue_.pop();
}
return result;
}
// static
void TaskQueueStdlib::ThreadMain(void* context) {
TaskQueueStdlib* me = static_cast<TaskQueueStdlib*>(context);
CurrentTaskQueueSetter set_current(me);
me->ProcessTasks();
}
void TaskQueueStdlib::ProcessTasks() {
started_.Set();
while (true) {
auto task = GetNextTask();
if (task.final_task_)
break;
if (task.run_task_) {
// process entry immediately then try again
QueuedTask* release_ptr = task.run_task_.release();
if (release_ptr->Run())
delete release_ptr;
// attempt to sleep again
continue;
}
if (0 == task.sleep_time_ms_)
flag_notify_.Wait(rtc::Event::kForever);
else
flag_notify_.Wait(task.sleep_time_ms_);
}
stopped_.Set();
}
void TaskQueueStdlib::NotifyWake() {
// The queue holds pending tasks to complete. Either tasks are to be
// executed immediately or tasks are to be run at some future delayed time.
// For immediate tasks the task queue's thread is busy running the task and
// the thread will not be waiting on the flag_notify_ event. If no immediate
// tasks are available but a delayed task is pending then the thread will be
// waiting on flag_notify_ with a delayed time-out of the nearest timed task
// to run. If no immediate or pending tasks are available, the thread will
// wait on flag_notify_ until signaled that a task has been added (or the
// thread to be told to shutdown).
// In all cases, when a new immediate task, delayed task, or request to
// shutdown the thread is added the flag_notify_ is signaled after. If the
// thread was waiting then the thread will wake up immediately and re-assess
// what task needs to be run next (i.e. run a task now, wait for the nearest
// timed delayed task, or shutdown the thread). If the thread was not waiting
// then the thread will remained signaled to wake up the next time any
// attempt to wait on the flag_notify_ event occurs.
// Any immediate or delayed pending task (or request to shutdown the thread)
// must always be added to the queue prior to signaling flag_notify_ to wake
// up the possibly sleeping thread. This prevents a race condition where the
// thread is notified to wake up but the task queue's thread finds nothing to
// do so it waits once again to be signaled where such a signal may never
// happen.
flag_notify_.Set();
}
class TaskQueueStdlibFactory final : public TaskQueueFactory {
public:
std::unique_ptr<TaskQueueBase, TaskQueueDeleter> CreateTaskQueue(
absl::string_view name,
Priority priority) const override {
return std::unique_ptr<TaskQueueBase, TaskQueueDeleter>(
new TaskQueueStdlib(name, TaskQueuePriorityToThreadPriority(priority)));
}
};
} // namespace
std::unique_ptr<TaskQueueFactory> CreateTaskQueueStdlibFactory() {
return absl::make_unique<TaskQueueStdlibFactory>();
}
} // namespace webrtc