blob: b5e0f67c001c1384513fc67c0be0d7704002bb3a [file] [log] [blame] [edit]
/*
* Copyright (c) 2017 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "rtc_base/cpu_time.h"
#include "rtc_base/platform_thread.h"
#include "rtc_base/time_utils.h"
#include "system_wrappers/include/sleep.h"
#include "test/gtest.h"
// Only run these tests on non-instrumented builds, because timing on
// instrumented builds is unreliable, causing the test to be flaky.
#if defined(THREAD_SANITIZER) || defined(MEMORY_SANITIZER) || \
defined(ADDRESS_SANITIZER)
#define MAYBE_TEST(test_name) DISABLED_##test_name
#else
#define MAYBE_TEST(test_name) test_name
#endif
namespace {
const int kAllowedErrorMillisecs = 30;
const int kProcessingTimeMillisecs = 300;
const int kWorkingThreads = 2;
// Consumes approximately kProcessingTimeMillisecs of CPU time in single thread.
bool WorkingFunction(void* counter_pointer) {
int64_t* counter = reinterpret_cast<int64_t*>(counter_pointer);
*counter = 0;
int64_t stop_cpu_time =
rtc::GetThreadCpuTimeNanos() +
kProcessingTimeMillisecs * rtc::kNumNanosecsPerMillisec;
while (rtc::GetThreadCpuTimeNanos() < stop_cpu_time) {
(*counter)++;
}
return false;
}
} // namespace
namespace rtc {
// A minimal test which can be run on instrumented builds, so that they're at
// least exercising the code to check for memory leaks/etc.
TEST(CpuTimeTest, BasicTest) {
int64_t process_start_time_nanos = GetProcessCpuTimeNanos();
int64_t thread_start_time_nanos = GetThreadCpuTimeNanos();
int64_t process_duration_nanos =
GetProcessCpuTimeNanos() - process_start_time_nanos;
int64_t thread_duration_nanos =
GetThreadCpuTimeNanos() - thread_start_time_nanos;
EXPECT_GE(process_duration_nanos, 0);
EXPECT_GE(thread_duration_nanos, 0);
}
TEST(CpuTimeTest, MAYBE_TEST(TwoThreads)) {
int64_t process_start_time_nanos = GetProcessCpuTimeNanos();
int64_t thread_start_time_nanos = GetThreadCpuTimeNanos();
int64_t counter1;
int64_t counter2;
PlatformThread thread1(WorkingFunction, reinterpret_cast<void*>(&counter1),
"Thread1");
PlatformThread thread2(WorkingFunction, reinterpret_cast<void*>(&counter2),
"Thread2");
thread1.Start();
thread2.Start();
thread1.Stop();
thread2.Stop();
EXPECT_GE(counter1, 0);
EXPECT_GE(counter2, 0);
int64_t process_duration_nanos =
GetProcessCpuTimeNanos() - process_start_time_nanos;
int64_t thread_duration_nanos =
GetThreadCpuTimeNanos() - thread_start_time_nanos;
// This thread did almost nothing.
// Therefore GetThreadCpuTime is not a wall clock.
EXPECT_LE(thread_duration_nanos,
kAllowedErrorMillisecs * kNumNanosecsPerMillisec);
// Total process time is at least twice working threads' CPU time.
// Therefore process and thread times are correctly related.
EXPECT_GE(process_duration_nanos,
kWorkingThreads *
(kProcessingTimeMillisecs - kAllowedErrorMillisecs) *
kNumNanosecsPerMillisec);
}
TEST(CpuTimeTest, MAYBE_TEST(Sleeping)) {
int64_t process_start_time_nanos = GetProcessCpuTimeNanos();
webrtc::SleepMs(kProcessingTimeMillisecs);
int64_t process_duration_nanos =
GetProcessCpuTimeNanos() - process_start_time_nanos;
// Sleeping should not introduce any additional CPU time.
// Therefore GetProcessCpuTime is not a wall clock.
EXPECT_LE(process_duration_nanos,
kWorkingThreads * kAllowedErrorMillisecs * kNumNanosecsPerMillisec);
}
} // namespace rtc