blob: 7893b97b3a27aee6673a43a09489a137f6d5663f [file] [log] [blame]
/*
* Copyright (c) 2018 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "modules/audio_processing/aec3/fullband_erle_estimator.h"
#include <algorithm>
#include <memory>
#include <numeric>
#include "absl/types/optional.h"
#include "api/array_view.h"
#include "modules/audio_processing/aec3/aec3_common.h"
#include "modules/audio_processing/logging/apm_data_dumper.h"
#include "rtc_base/checks.h"
#include "rtc_base/numerics/safe_minmax.h"
namespace webrtc {
namespace {
constexpr float kEpsilon = 1e-3f;
constexpr float kX2BandEnergyThreshold = 44015068.0f;
constexpr int kBlocksToHoldErle = 100;
constexpr int kPointsToAccumulate = 6;
} // namespace
FullBandErleEstimator::FullBandErleEstimator(float min_erle, float max_erle_lf)
: min_erle_log2_(FastApproxLog2f(min_erle + kEpsilon)),
max_erle_lf_log2(FastApproxLog2f(max_erle_lf + kEpsilon)) {
Reset();
}
FullBandErleEstimator::~FullBandErleEstimator() = default;
void FullBandErleEstimator::Reset() {
instantaneous_erle_.Reset();
erle_time_domain_log2_ = min_erle_log2_;
hold_counter_time_domain_ = 0;
}
void FullBandErleEstimator::Update(rtc::ArrayView<const float> X2,
rtc::ArrayView<const float> Y2,
rtc::ArrayView<const float> E2,
bool converged_filter) {
if (converged_filter) {
// Computes the fullband ERLE.
const float X2_sum = std::accumulate(X2.begin(), X2.end(), 0.0f);
if (X2_sum > kX2BandEnergyThreshold * X2.size()) {
const float Y2_sum = std::accumulate(Y2.begin(), Y2.end(), 0.0f);
const float E2_sum = std::accumulate(E2.begin(), E2.end(), 0.0f);
if (instantaneous_erle_.Update(Y2_sum, E2_sum)) {
hold_counter_time_domain_ = kBlocksToHoldErle;
erle_time_domain_log2_ +=
0.1f * ((instantaneous_erle_.GetInstErleLog2().value()) -
erle_time_domain_log2_);
erle_time_domain_log2_ = rtc::SafeClamp(
erle_time_domain_log2_, min_erle_log2_, max_erle_lf_log2);
}
}
}
--hold_counter_time_domain_;
if (hold_counter_time_domain_ <= 0) {
erle_time_domain_log2_ =
std::max(min_erle_log2_, erle_time_domain_log2_ - 0.044f);
}
if (hold_counter_time_domain_ == 0) {
instantaneous_erle_.ResetAccumulators();
}
}
void FullBandErleEstimator::Dump(
const std::unique_ptr<ApmDataDumper>& data_dumper) const {
data_dumper->DumpRaw("aec3_fullband_erle_log2", FullbandErleLog2());
instantaneous_erle_.Dump(data_dumper);
}
FullBandErleEstimator::ErleInstantaneous::ErleInstantaneous() {
Reset();
}
FullBandErleEstimator::ErleInstantaneous::~ErleInstantaneous() = default;
bool FullBandErleEstimator::ErleInstantaneous::Update(const float Y2_sum,
const float E2_sum) {
bool update_estimates = false;
E2_acum_ += E2_sum;
Y2_acum_ += Y2_sum;
num_points_++;
if (num_points_ == kPointsToAccumulate) {
if (E2_acum_ > 0.f) {
update_estimates = true;
erle_log2_ = FastApproxLog2f(Y2_acum_ / E2_acum_ + kEpsilon);
}
num_points_ = 0;
E2_acum_ = 0.f;
Y2_acum_ = 0.f;
}
if (update_estimates) {
UpdateMaxMin();
UpdateQualityEstimate();
}
return update_estimates;
}
void FullBandErleEstimator::ErleInstantaneous::Reset() {
ResetAccumulators();
max_erle_log2_ = -10.f; // -30 dB.
min_erle_log2_ = 33.f; // 100 dB.
inst_quality_estimate_ = 0.f;
}
void FullBandErleEstimator::ErleInstantaneous::ResetAccumulators() {
erle_log2_ = absl::nullopt;
inst_quality_estimate_ = 0.f;
num_points_ = 0;
E2_acum_ = 0.f;
Y2_acum_ = 0.f;
}
void FullBandErleEstimator::ErleInstantaneous::Dump(
const std::unique_ptr<ApmDataDumper>& data_dumper) const {
data_dumper->DumpRaw("aec3_fullband_erle_inst_log2",
erle_log2_ ? *erle_log2_ : -10.f);
data_dumper->DumpRaw(
"aec3_erle_instantaneous_quality",
GetQualityEstimate() ? GetQualityEstimate().value() : 0.f);
data_dumper->DumpRaw("aec3_fullband_erle_max_log2", max_erle_log2_);
data_dumper->DumpRaw("aec3_fullband_erle_min_log2", min_erle_log2_);
}
void FullBandErleEstimator::ErleInstantaneous::UpdateMaxMin() {
RTC_DCHECK(erle_log2_);
if (erle_log2_.value() > max_erle_log2_) {
max_erle_log2_ = erle_log2_.value();
} else {
max_erle_log2_ -= 0.0004; // Forget factor, approx 1dB every 3 sec.
}
if (erle_log2_.value() < min_erle_log2_) {
min_erle_log2_ = erle_log2_.value();
} else {
min_erle_log2_ += 0.0004; // Forget factor, approx 1dB every 3 sec.
}
}
void FullBandErleEstimator::ErleInstantaneous::UpdateQualityEstimate() {
const float alpha = 0.07f;
float quality_estimate = 0.f;
RTC_DCHECK(erle_log2_);
if (max_erle_log2_ > min_erle_log2_) {
quality_estimate = (erle_log2_.value() - min_erle_log2_) /
(max_erle_log2_ - min_erle_log2_);
}
if (quality_estimate > inst_quality_estimate_) {
inst_quality_estimate_ = quality_estimate;
} else {
inst_quality_estimate_ +=
alpha * (quality_estimate - inst_quality_estimate_);
}
}
} // namespace webrtc