blob: 8ee2369e1558d9fb11f9cc693659445eac530016 [file] [log] [blame]
/*
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#ifndef MODULES_INCLUDE_MODULE_COMMON_TYPES_H_
#define MODULES_INCLUDE_MODULE_COMMON_TYPES_H_
#include <assert.h>
#include <string.h> // memcpy
#include <algorithm>
#include <limits>
#include "absl/types/optional.h"
#include "api/rtp_headers.h"
#include "api/transport/network_types.h"
#include "api/video/video_rotation.h"
#include "common_types.h" // NOLINT(build/include)
#include "modules/include/module_common_types_public.h"
#include "modules/include/module_fec_types.h"
#include "modules/rtp_rtcp/source/rtp_video_header.h"
#include "rtc_base/constructormagic.h"
#include "rtc_base/deprecation.h"
#include "rtc_base/numerics/safe_conversions.h"
#include "rtc_base/timeutils.h"
namespace webrtc {
struct WebRtcRTPHeader {
RTPVideoHeader& video_header() { return video; }
const RTPVideoHeader& video_header() const { return video; }
RTPVideoHeader video;
RTPHeader header;
FrameType frameType;
// NTP time of the capture time in local timebase in milliseconds.
int64_t ntp_time_ms;
};
class RTPFragmentationHeader {
public:
RTPFragmentationHeader()
: fragmentationVectorSize(0),
fragmentationOffset(NULL),
fragmentationLength(NULL),
fragmentationTimeDiff(NULL),
fragmentationPlType(NULL) {}
RTPFragmentationHeader(RTPFragmentationHeader&& other)
: RTPFragmentationHeader() {
std::swap(*this, other);
}
~RTPFragmentationHeader() {
delete[] fragmentationOffset;
delete[] fragmentationLength;
delete[] fragmentationTimeDiff;
delete[] fragmentationPlType;
}
void operator=(RTPFragmentationHeader&& other) { std::swap(*this, other); }
friend void swap(RTPFragmentationHeader& a, RTPFragmentationHeader& b) {
using std::swap;
swap(a.fragmentationVectorSize, b.fragmentationVectorSize);
swap(a.fragmentationOffset, b.fragmentationOffset);
swap(a.fragmentationLength, b.fragmentationLength);
swap(a.fragmentationTimeDiff, b.fragmentationTimeDiff);
swap(a.fragmentationPlType, b.fragmentationPlType);
}
void CopyFrom(const RTPFragmentationHeader& src) {
if (this == &src) {
return;
}
if (src.fragmentationVectorSize != fragmentationVectorSize) {
// new size of vectors
// delete old
delete[] fragmentationOffset;
fragmentationOffset = NULL;
delete[] fragmentationLength;
fragmentationLength = NULL;
delete[] fragmentationTimeDiff;
fragmentationTimeDiff = NULL;
delete[] fragmentationPlType;
fragmentationPlType = NULL;
if (src.fragmentationVectorSize > 0) {
// allocate new
if (src.fragmentationOffset) {
fragmentationOffset = new size_t[src.fragmentationVectorSize];
}
if (src.fragmentationLength) {
fragmentationLength = new size_t[src.fragmentationVectorSize];
}
if (src.fragmentationTimeDiff) {
fragmentationTimeDiff = new uint16_t[src.fragmentationVectorSize];
}
if (src.fragmentationPlType) {
fragmentationPlType = new uint8_t[src.fragmentationVectorSize];
}
}
// set new size
fragmentationVectorSize = src.fragmentationVectorSize;
}
if (src.fragmentationVectorSize > 0) {
// copy values
if (src.fragmentationOffset) {
memcpy(fragmentationOffset, src.fragmentationOffset,
src.fragmentationVectorSize * sizeof(size_t));
}
if (src.fragmentationLength) {
memcpy(fragmentationLength, src.fragmentationLength,
src.fragmentationVectorSize * sizeof(size_t));
}
if (src.fragmentationTimeDiff) {
memcpy(fragmentationTimeDiff, src.fragmentationTimeDiff,
src.fragmentationVectorSize * sizeof(uint16_t));
}
if (src.fragmentationPlType) {
memcpy(fragmentationPlType, src.fragmentationPlType,
src.fragmentationVectorSize * sizeof(uint8_t));
}
}
}
void VerifyAndAllocateFragmentationHeader(const size_t size) {
assert(size <= std::numeric_limits<uint16_t>::max());
const uint16_t size16 = static_cast<uint16_t>(size);
if (fragmentationVectorSize < size16) {
uint16_t oldVectorSize = fragmentationVectorSize;
{
// offset
size_t* oldOffsets = fragmentationOffset;
fragmentationOffset = new size_t[size16];
memset(fragmentationOffset + oldVectorSize, 0,
sizeof(size_t) * (size16 - oldVectorSize));
// copy old values
memcpy(fragmentationOffset, oldOffsets, sizeof(size_t) * oldVectorSize);
delete[] oldOffsets;
}
// length
{
size_t* oldLengths = fragmentationLength;
fragmentationLength = new size_t[size16];
memset(fragmentationLength + oldVectorSize, 0,
sizeof(size_t) * (size16 - oldVectorSize));
memcpy(fragmentationLength, oldLengths, sizeof(size_t) * oldVectorSize);
delete[] oldLengths;
}
// time diff
{
uint16_t* oldTimeDiffs = fragmentationTimeDiff;
fragmentationTimeDiff = new uint16_t[size16];
memset(fragmentationTimeDiff + oldVectorSize, 0,
sizeof(uint16_t) * (size16 - oldVectorSize));
memcpy(fragmentationTimeDiff, oldTimeDiffs,
sizeof(uint16_t) * oldVectorSize);
delete[] oldTimeDiffs;
}
// payload type
{
uint8_t* oldTimePlTypes = fragmentationPlType;
fragmentationPlType = new uint8_t[size16];
memset(fragmentationPlType + oldVectorSize, 0,
sizeof(uint8_t) * (size16 - oldVectorSize));
memcpy(fragmentationPlType, oldTimePlTypes,
sizeof(uint8_t) * oldVectorSize);
delete[] oldTimePlTypes;
}
fragmentationVectorSize = size16;
}
}
uint16_t fragmentationVectorSize; // Number of fragmentations
size_t* fragmentationOffset; // Offset of pointer to data for each
// fragmentation
size_t* fragmentationLength; // Data size for each fragmentation
uint16_t* fragmentationTimeDiff; // Timestamp difference relative "now" for
// each fragmentation
uint8_t* fragmentationPlType; // Payload type of each fragmentation
private:
RTC_DISALLOW_COPY_AND_ASSIGN(RTPFragmentationHeader);
};
struct RTCPVoIPMetric {
// RFC 3611 4.7
uint8_t lossRate;
uint8_t discardRate;
uint8_t burstDensity;
uint8_t gapDensity;
uint16_t burstDuration;
uint16_t gapDuration;
uint16_t roundTripDelay;
uint16_t endSystemDelay;
uint8_t signalLevel;
uint8_t noiseLevel;
uint8_t RERL;
uint8_t Gmin;
uint8_t Rfactor;
uint8_t extRfactor;
uint8_t MOSLQ;
uint8_t MOSCQ;
uint8_t RXconfig;
uint16_t JBnominal;
uint16_t JBmax;
uint16_t JBabsMax;
};
// Interface used by the CallStats class to distribute call statistics.
// Callbacks will be triggered as soon as the class has been registered to a
// CallStats object using RegisterStatsObserver.
class CallStatsObserver {
public:
virtual void OnRttUpdate(int64_t avg_rtt_ms, int64_t max_rtt_ms) = 0;
virtual ~CallStatsObserver() {}
};
// Interface used by NackModule and JitterBuffer.
class NackSender {
public:
virtual void SendNack(const std::vector<uint16_t>& sequence_numbers) = 0;
protected:
virtual ~NackSender() {}
};
// Interface used by NackModule and JitterBuffer.
class KeyFrameRequestSender {
public:
virtual void RequestKeyFrame() = 0;
protected:
virtual ~KeyFrameRequestSender() {}
};
// Used to indicate if a received packet contain a complete NALU (or equivalent)
enum VCMNaluCompleteness {
kNaluUnset = 0, // Packet has not been filled.
kNaluComplete = 1, // Packet can be decoded as is.
kNaluStart, // Packet contain beginning of NALU
kNaluIncomplete, // Packet is not beginning or end of NALU
kNaluEnd, // Packet is the end of a NALU
};
} // namespace webrtc
#endif // MODULES_INCLUDE_MODULE_COMMON_TYPES_H_