blob: 9b6ca902776fdf5646ef6edde9ac1c4092d4d21c [file] [log] [blame]
/*
* Copyright (c) 2017 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#ifndef MODULES_AUDIO_PROCESSING_AEC3_ADAPTIVE_FIR_FILTER_H_
#define MODULES_AUDIO_PROCESSING_AEC3_ADAPTIVE_FIR_FILTER_H_
#include <array>
#include <memory>
#include <vector>
#include "api/array_view.h"
#include "modules/audio_processing/aec3/aec3_common.h"
#include "modules/audio_processing/aec3/aec3_fft.h"
#include "modules/audio_processing/aec3/fft_data.h"
#include "modules/audio_processing/aec3/render_buffer.h"
#include "modules/audio_processing/logging/apm_data_dumper.h"
#include "rtc_base/constructormagic.h"
namespace webrtc {
namespace aec3 {
// Computes and stores the frequency response of the filter.
void UpdateFrequencyResponse(
rtc::ArrayView<const FftData> H,
std::vector<std::array<float, kFftLengthBy2Plus1>>* H2);
#if defined(WEBRTC_HAS_NEON)
void UpdateFrequencyResponse_NEON(
rtc::ArrayView<const FftData> H,
std::vector<std::array<float, kFftLengthBy2Plus1>>* H2);
#endif
#if defined(WEBRTC_ARCH_X86_FAMILY)
void UpdateFrequencyResponse_SSE2(
rtc::ArrayView<const FftData> H,
std::vector<std::array<float, kFftLengthBy2Plus1>>* H2);
#endif
// Computes and stores the echo return loss estimate of the filter, which is the
// sum of the partition frequency responses.
void UpdateErlEstimator(
const std::vector<std::array<float, kFftLengthBy2Plus1>>& H2,
std::array<float, kFftLengthBy2Plus1>* erl);
#if defined(WEBRTC_HAS_NEON)
void UpdateErlEstimator_NEON(
const std::vector<std::array<float, kFftLengthBy2Plus1>>& H2,
std::array<float, kFftLengthBy2Plus1>* erl);
#endif
#if defined(WEBRTC_ARCH_X86_FAMILY)
void UpdateErlEstimator_SSE2(
const std::vector<std::array<float, kFftLengthBy2Plus1>>& H2,
std::array<float, kFftLengthBy2Plus1>* erl);
#endif
// Adapts the filter partitions.
void AdaptPartitions(const RenderBuffer& render_buffer,
const FftData& G,
rtc::ArrayView<FftData> H);
#if defined(WEBRTC_HAS_NEON)
void AdaptPartitions_NEON(const RenderBuffer& render_buffer,
const FftData& G,
rtc::ArrayView<FftData> H);
#endif
#if defined(WEBRTC_ARCH_X86_FAMILY)
void AdaptPartitions_SSE2(const RenderBuffer& render_buffer,
const FftData& G,
rtc::ArrayView<FftData> H);
#endif
// Produces the filter output.
void ApplyFilter(const RenderBuffer& render_buffer,
rtc::ArrayView<const FftData> H,
FftData* S);
#if defined(WEBRTC_HAS_NEON)
void ApplyFilter_NEON(const RenderBuffer& render_buffer,
rtc::ArrayView<const FftData> H,
FftData* S);
#endif
#if defined(WEBRTC_ARCH_X86_FAMILY)
void ApplyFilter_SSE2(const RenderBuffer& render_buffer,
rtc::ArrayView<const FftData> H,
FftData* S);
#endif
} // namespace aec3
// Provides a frequency domain adaptive filter functionality.
class AdaptiveFirFilter {
public:
AdaptiveFirFilter(size_t max_size_partitions,
size_t initial_size_partitions,
size_t size_change_duration_blocks,
Aec3Optimization optimization,
ApmDataDumper* data_dumper);
~AdaptiveFirFilter();
// Produces the output of the filter.
void Filter(const RenderBuffer& render_buffer, FftData* S) const;
// Adapts the filter.
void Adapt(const RenderBuffer& render_buffer, const FftData& G);
// Receives reports that known echo path changes have occured and adjusts
// the filter adaptation accordingly.
void HandleEchoPathChange();
// Returns the filter size.
size_t SizePartitions() const { return H_.size(); }
// Sets the filter size.
void SetSizePartitions(size_t size, bool immediate_effect);
// Returns the filter based echo return loss.
const std::array<float, kFftLengthBy2Plus1>& Erl() const { return erl_; }
// Returns the frequency responses for the filter partitions.
const std::vector<std::array<float, kFftLengthBy2Plus1>>&
FilterFrequencyResponse() const {
return H2_;
}
// Returns the estimate of the impulse response.
const std::vector<float>& FilterImpulseResponse() const { return h_; }
void DumpFilter(const char* name_frequency_domain,
const char* name_time_domain) {
size_t current_size = H_.size();
H_.resize(max_size_partitions_);
for (auto& H : H_) {
data_dumper_->DumpRaw(name_frequency_domain, H.re);
data_dumper_->DumpRaw(name_frequency_domain, H.im);
}
H_.resize(current_size);
current_size = h_.size();
h_.resize(GetTimeDomainLength(max_size_partitions_));
data_dumper_->DumpRaw(name_time_domain, h_);
h_.resize(current_size);
}
// Scale the filter impulse response and spectrum by a factor.
void ScaleFilter(float factor);
// Set the filter coefficients.
void SetFilter(const std::vector<FftData>& H);
// Gets the filter coefficients.
const std::vector<FftData>& GetFilter() const { return H_; }
private:
// Constrain the filter partitions in a cyclic manner.
void Constrain();
// Resets the filter buffers to use the current size.
void ResetFilterBuffersToCurrentSize();
// Gradually Updates the current filter size towards the target size.
void UpdateSize();
ApmDataDumper* const data_dumper_;
const Aec3Fft fft_;
const Aec3Optimization optimization_;
const size_t max_size_partitions_;
const int size_change_duration_blocks_;
float one_by_size_change_duration_blocks_;
size_t current_size_partitions_;
size_t target_size_partitions_;
size_t old_target_size_partitions_;
int size_change_counter_ = 0;
std::vector<FftData> H_;
std::vector<std::array<float, kFftLengthBy2Plus1>> H2_;
std::vector<float> h_;
std::array<float, kFftLengthBy2Plus1> erl_;
size_t partition_to_constrain_ = 0;
RTC_DISALLOW_IMPLICIT_CONSTRUCTORS(AdaptiveFirFilter);
};
} // namespace webrtc
#endif // MODULES_AUDIO_PROCESSING_AEC3_ADAPTIVE_FIR_FILTER_H_