blob: c9d9cf3f3a0bd28c4ab6f6622772c7858b2157ea [file] [log] [blame]
/*
* Copyright (c) 2017 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#ifndef MODULES_AUDIO_PROCESSING_AEC3_AEC_STATE_H_
#define MODULES_AUDIO_PROCESSING_AEC3_AEC_STATE_H_
#include <stddef.h>
#include <array>
#include <memory>
#include <vector>
#include "absl/types/optional.h"
#include "api/array_view.h"
#include "api/audio/echo_canceller3_config.h"
#include "modules/audio_processing/aec3/aec3_common.h"
#include "modules/audio_processing/aec3/delay_estimate.h"
#include "modules/audio_processing/aec3/echo_audibility.h"
#include "modules/audio_processing/aec3/echo_path_variability.h"
#include "modules/audio_processing/aec3/erl_estimator.h"
#include "modules/audio_processing/aec3/erle_estimator.h"
#include "modules/audio_processing/aec3/filter_analyzer.h"
#include "modules/audio_processing/aec3/render_buffer.h"
#include "modules/audio_processing/aec3/render_reverb_model.h"
#include "modules/audio_processing/aec3/reverb_model_estimator.h"
#include "modules/audio_processing/aec3/subtractor_output.h"
#include "modules/audio_processing/aec3/subtractor_output_analyzer.h"
#include "modules/audio_processing/aec3/suppression_gain_limiter.h"
namespace webrtc {
class ApmDataDumper;
// Handles the state and the conditions for the echo removal functionality.
class AecState {
public:
explicit AecState(const EchoCanceller3Config& config);
~AecState();
// Returns whether the echo subtractor can be used to determine the residual
// echo.
bool UsableLinearEstimate() const {
if (use_legacy_filter_quality_) {
return legacy_filter_quality_state_.LinearFilterUsable();
}
return filter_quality_state_.LinearFilterUsable();
}
// Returns whether the echo subtractor output should be used as output.
bool UseLinearFilterOutput() const {
if (use_legacy_filter_quality_) {
return legacy_filter_quality_state_.LinearFilterUsable();
}
return filter_quality_state_.LinearFilterUsable();
}
// Returns the estimated echo path gain.
float EchoPathGain() const { return filter_analyzer_.Gain(); }
// Returns whether the render signal is currently active.
bool ActiveRender() const { return blocks_with_active_render_ > 200; }
// Returns the appropriate scaling of the residual echo to match the
// audibility.
void GetResidualEchoScaling(rtc::ArrayView<float> residual_scaling) const;
// Returns whether the stationary properties of the signals are used in the
// aec.
bool UseStationaryProperties() const {
return config_.echo_audibility.use_stationary_properties;
}
// Returns the ERLE.
const std::array<float, kFftLengthBy2Plus1>& Erle() const {
return erle_estimator_.Erle();
}
// Returns an offset to apply to the estimation of the residual echo
// computation. Returning nullopt means that no offset should be used, while
// any other value will be applied as a multiplier to the estimated residual
// echo.
absl::optional<float> ErleUncertainty() const;
// Returns the fullband ERLE estimate in log2 units.
float FullBandErleLog2() const { return erle_estimator_.FullbandErleLog2(); }
// Returns the ERL.
const std::array<float, kFftLengthBy2Plus1>& Erl() const {
return erl_estimator_.Erl();
}
// Returns the time-domain ERL.
float ErlTimeDomain() const { return erl_estimator_.ErlTimeDomain(); }
// Returns the delay estimate based on the linear filter.
int FilterDelayBlocks() const { return delay_state_.DirectPathFilterDelay(); }
// Returns whether the capture signal is saturated.
bool SaturatedCapture() const { return capture_signal_saturation_; }
// Returns whether the echo signal is saturated.
bool SaturatedEcho() const {
return use_legacy_saturation_behavior_
? legacy_saturation_detector_.SaturatedEcho()
: saturation_detector_.SaturatedEcho();
}
// Updates the capture signal saturation.
void UpdateCaptureSaturation(bool capture_signal_saturation) {
capture_signal_saturation_ = capture_signal_saturation;
}
// Returns whether the transparent mode is active
bool TransparentMode() const { return transparent_state_.Active(); }
// Takes appropriate action at an echo path change.
void HandleEchoPathChange(const EchoPathVariability& echo_path_variability);
// Returns the decay factor for the echo reverberation.
float ReverbDecay() const { return reverb_model_estimator_.ReverbDecay(); }
// Return the frequency response of the reverberant echo.
rtc::ArrayView<const float> GetReverbFrequencyResponse() const {
return reverb_model_estimator_.GetReverbFrequencyResponse();
}
// Returns the upper limit for the echo suppression gain.
float SuppressionGainLimit() const {
if (use_suppressor_gain_limiter_) {
return suppression_gain_limiter_.Limit();
} else {
return 1.f;
}
}
// Returns whether the suppression gain limiter is active.
bool IsSuppressionGainLimitActive() const {
return suppression_gain_limiter_.IsActive();
}
// Returns whether the transition for going out of the initial stated has
// been triggered.
bool TransitionTriggered() const {
return initial_state_.TransitionTriggered();
}
// Updates the aec state.
void Update(const absl::optional<DelayEstimate>& external_delay,
const std::vector<std::array<float, kFftLengthBy2Plus1>>&
adaptive_filter_frequency_response,
const std::vector<float>& adaptive_filter_impulse_response,
const RenderBuffer& render_buffer,
const std::array<float, kFftLengthBy2Plus1>& E2_main,
const std::array<float, kFftLengthBy2Plus1>& Y2,
const SubtractorOutput& subtractor_output,
rtc::ArrayView<const float> y);
// Returns filter length in blocks.
int FilterLengthBlocks() const {
return filter_analyzer_.FilterLengthBlocks();
}
private:
static int instance_count_;
std::unique_ptr<ApmDataDumper> data_dumper_;
const EchoCanceller3Config config_;
const bool use_legacy_saturation_behavior_;
const bool enable_erle_resets_at_gain_changes_;
const bool enable_erle_updates_during_reverb_;
const bool use_legacy_filter_quality_;
const bool use_suppressor_gain_limiter_;
// Class for controlling the transition from the intial state, which in turn
// controls when the filter parameters for the initial state should be used.
class InitialState {
public:
explicit InitialState(const EchoCanceller3Config& config);
// Resets the state to again begin in the initial state.
void Reset();
// Updates the state based on new data.
void Update(bool active_render, bool saturated_capture);
// Returns whether the initial state is active or not.
bool InitialStateActive() const { return initial_state_; }
// Returns that the transition from the initial state has was started.
bool TransitionTriggered() const { return transition_triggered_; }
private:
const bool conservative_initial_phase_;
const float initial_state_seconds_;
bool transition_triggered_ = false;
bool initial_state_ = true;
size_t strong_not_saturated_render_blocks_ = 0;
} initial_state_;
// Class for choosing the direct-path delay relative to the beginning of the
// filter, as well as any other data related to the delay used within
// AecState.
class FilterDelay {
public:
explicit FilterDelay(const EchoCanceller3Config& config);
// Returns whether an external delay has been reported to the AecState (from
// the delay estimator).
bool ExternalDelayReported() const { return external_delay_reported_; }
// Returns the delay in blocks relative to the beginning of the filter that
// corresponds to the direct path of the echo.
int DirectPathFilterDelay() const { return filter_delay_blocks_; }
// Updates the delay estimates based on new data.
void Update(const FilterAnalyzer& filter_analyzer,
const absl::optional<DelayEstimate>& external_delay,
size_t blocks_with_proper_filter_adaptation);
private:
const int delay_headroom_blocks_;
bool external_delay_reported_ = false;
int filter_delay_blocks_ = 0;
absl::optional<DelayEstimate> external_delay_;
} delay_state_;
// Class for detecting and toggling the transparent mode which causes the
// suppressor to apply no suppression.
class TransparentMode {
public:
explicit TransparentMode(const EchoCanceller3Config& config);
// Returns whether the transparent mode should be active.
bool Active() const { return transparency_activated_; }
// Resets the state of the detector.
void Reset();
// Updates the detection deciscion based on new data.
void Update(int filter_delay_blocks,
bool consistent_filter,
bool converged_filter,
bool diverged_filter,
bool active_render,
bool saturated_capture);
private:
const bool bounded_erl_;
const bool linear_and_stable_echo_path_;
size_t capture_block_counter_ = 0;
bool transparency_activated_ = false;
size_t active_blocks_since_sane_filter_;
bool sane_filter_observed_ = false;
bool finite_erl_recently_detected_ = false;
size_t non_converged_sequence_size_;
size_t diverged_sequence_size_ = 0;
size_t active_non_converged_sequence_size_ = 0;
size_t num_converged_blocks_ = 0;
bool recent_convergence_during_activity_ = false;
size_t strong_not_saturated_render_blocks_ = 0;
} transparent_state_;
// Class for analyzing how well the linear filter is, and can be expected to,
// perform on the current signals. The purpose of this is for using to
// select the echo suppression functionality as well as the input to the echo
// suppressor.
class FilteringQualityAnalyzer {
public:
FilteringQualityAnalyzer(const EchoCanceller3Config& config);
// Returns whether the the linear filter can be used for the echo
// canceller output.
bool LinearFilterUsable() const { return usable_linear_estimate_; }
// Resets the state of the analyzer.
void Reset();
// Updates the analysis based on new data.
void Update(bool active_render,
bool transparent_mode,
bool saturated_capture,
bool consistent_estimate_,
const absl::optional<DelayEstimate>& external_delay,
bool converged_filter);
private:
bool usable_linear_estimate_ = false;
size_t filter_update_blocks_since_reset_ = 0;
size_t filter_update_blocks_since_start_ = 0;
bool convergence_seen_ = false;
} filter_quality_state_;
// Class containing the legacy functionality for analyzing how well the linear
// filter is, and can be expected to perform on the current signals. The
// purpose of this is for using to select the echo suppression functionality
// as well as the input to the echo suppressor.
class LegacyFilteringQualityAnalyzer {
public:
explicit LegacyFilteringQualityAnalyzer(const EchoCanceller3Config& config);
// Returns whether the the linear filter is can be used for the echo
// canceller output.
bool LinearFilterUsable() const { return usable_linear_estimate_; }
// Resets the state of the analyzer.
void Reset();
// Updates the analysis based on new data.
void Update(bool saturated_echo,
bool active_render,
bool saturated_capture,
bool transparent_mode,
const absl::optional<DelayEstimate>& external_delay,
bool converged_filter,
bool diverged_filter);
private:
const bool conservative_initial_phase_;
const float required_blocks_for_convergence_;
const bool linear_and_stable_echo_path_;
bool usable_linear_estimate_ = false;
size_t strong_not_saturated_render_blocks_ = 0;
size_t non_converged_sequence_size_;
size_t diverged_sequence_size_ = 0;
size_t active_non_converged_sequence_size_ = 0;
bool recent_convergence_during_activity_ = false;
bool recent_convergence_ = false;
} legacy_filter_quality_state_;
// Class for detecting whether the echo is to be considered to be
// saturated.
class SaturationDetector {
public:
// Returns whether the echo is to be considered saturated.
bool SaturatedEcho() const { return saturated_echo_; };
// Updates the detection decision based on new data.
void Update(rtc::ArrayView<const float> x,
bool saturated_capture,
bool usable_linear_estimate,
const SubtractorOutput& subtractor_output,
float echo_path_gain);
private:
bool saturated_echo_ = false;
} saturation_detector_;
// Legacy class for detecting whether the echo is to be considered to be
// saturated. This is kept as a fallback solution to use instead of the class
// SaturationDetector,
class LegacySaturationDetector {
public:
explicit LegacySaturationDetector(const EchoCanceller3Config& config);
// Returns whether the echo is to be considered saturated.
bool SaturatedEcho() const { return saturated_echo_; };
// Resets the state of the detector.
void Reset();
// Updates the detection decision based on new data.
void Update(rtc::ArrayView<const float> x,
bool saturated_capture,
float echo_path_gain);
private:
const bool echo_can_saturate_;
size_t not_saturated_sequence_size_;
bool saturated_echo_ = false;
} legacy_saturation_detector_;
ErlEstimator erl_estimator_;
ErleEstimator erle_estimator_;
size_t strong_not_saturated_render_blocks_ = 0;
size_t blocks_with_active_render_ = 0;
bool capture_signal_saturation_ = false;
SuppressionGainUpperLimiter suppression_gain_limiter_;
FilterAnalyzer filter_analyzer_;
absl::optional<DelayEstimate> external_delay_;
EchoAudibility echo_audibility_;
ReverbModelEstimator reverb_model_estimator_;
RenderReverbModel render_reverb_;
SubtractorOutputAnalyzer subtractor_output_analyzer_;
};
} // namespace webrtc
#endif // MODULES_AUDIO_PROCESSING_AEC3_AEC_STATE_H_