blob: 62232ac1046e432bf2bce8ce5c411e0041203df7 [file] [log] [blame]
/*
* Copyright (c) 2017 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "modules/audio_processing/aec3/aec_state.h"
#include <math.h>
#include <numeric>
#include <vector>
#include "absl/types/optional.h"
#include "api/array_view.h"
#include "modules/audio_processing/aec3/aec3_common.h"
#include "modules/audio_processing/logging/apm_data_dumper.h"
#include "rtc_base/atomicops.h"
#include "rtc_base/checks.h"
#include "system_wrappers/include/field_trial.h"
namespace webrtc {
namespace {
bool EnableTransparentMode() {
return !field_trial::IsEnabled("WebRTC-Aec3TransparentModeKillSwitch");
}
bool EnableStationaryRenderImprovements() {
return !field_trial::IsEnabled(
"WebRTC-Aec3StationaryRenderImprovementsKillSwitch");
}
bool EnableEnforcingDelayAfterRealignment() {
return !field_trial::IsEnabled(
"WebRTC-Aec3EnforceDelayAfterRealignmentKillSwitch");
}
bool EnableEarlyFilterUsage() {
return !field_trial::IsEnabled("WebRTC-Aec3EarlyLinearFilterUsageKillSwitch");
}
bool EnableShortInitialState() {
return !field_trial::IsEnabled("WebRTC-Aec3ShortInitialStateKillSwitch");
}
bool EnableUncertaintyUntilSufficientAdapted() {
return !field_trial::IsEnabled(
"WebRTC-Aec3ErleUncertaintyUntilSufficientlyAdaptedKillSwitch");
}
bool LowUncertaintyBeforeConvergence() {
return !field_trial::IsEnabled(
"WebRTC-Aec3LowUncertaintyBeforeConvergenceKillSwitch");
}
bool MediumUncertaintyBeforeConvergence() {
return !field_trial::IsEnabled(
"WebRTC-Aec3MediumUncertaintyBeforeConvergenceKillSwitch");
}
bool EarlyEntryToConvergedMode() {
return !field_trial::IsEnabled(
"WebRTC-Aec3EarlyEntryToConvergedModeKillSwitch");
}
bool UseEarlyLimiterDeactivation() {
return !field_trial::IsEnabled(
"WebRTC-Aec3EarlyLimiterDeactivationKillSwitch");
}
bool ResetErleAfterEchoPathChanges() {
return !field_trial::IsEnabled(
"WebRTC-Aec3ResetErleAfterEchoPathChangesKillSwitch");
}
float UncertaintyBeforeConvergence() {
if (LowUncertaintyBeforeConvergence()) {
return 1.f;
} else if (MediumUncertaintyBeforeConvergence()) {
return 4.f;
} else {
return 10.f;
}
}
float ComputeGainRampupIncrease(const EchoCanceller3Config& config) {
const auto& c = config.echo_removal_control.gain_rampup;
return powf(1.f / c.first_non_zero_gain, 1.f / c.non_zero_gain_blocks);
}
constexpr size_t kBlocksSinceConvergencedFilterInit = 10000;
constexpr size_t kBlocksSinceConsistentEstimateInit = 10000;
} // namespace
int AecState::instance_count_ = 0;
AecState::AecState(const EchoCanceller3Config& config)
: data_dumper_(
new ApmDataDumper(rtc::AtomicOps::Increment(&instance_count_))),
config_(config),
allow_transparent_mode_(EnableTransparentMode()),
use_stationary_properties_(
EnableStationaryRenderImprovements() &&
config_.echo_audibility.use_stationary_properties),
enforce_delay_after_realignment_(EnableEnforcingDelayAfterRealignment()),
early_filter_usage_activated_(EnableEarlyFilterUsage() &&
!config.filter.conservative_initial_phase),
use_short_initial_state_(EnableShortInitialState() &&
!config.filter.conservative_initial_phase),
convergence_trigger_linear_mode_(
!config.filter.conservative_initial_phase),
no_alignment_required_for_linear_mode_(
!config.filter.conservative_initial_phase),
use_uncertainty_until_sufficiently_adapted_(
EnableUncertaintyUntilSufficientAdapted()),
uncertainty_before_convergence_(UncertaintyBeforeConvergence()),
early_entry_to_converged_mode_(EarlyEntryToConvergedMode()),
early_limiter_deactivation_(UseEarlyLimiterDeactivation()),
reset_erle_after_echo_path_changes_(ResetErleAfterEchoPathChanges()),
erle_estimator_(config.erle.min, config.erle.max_l, config.erle.max_h),
max_render_(config_.filter.main.length_blocks, 0.f),
gain_rampup_increase_(ComputeGainRampupIncrease(config_)),
suppression_gain_limiter_(config_),
filter_analyzer_(config_),
blocks_since_converged_filter_(kBlocksSinceConvergencedFilterInit),
active_blocks_since_consistent_filter_estimate_(
kBlocksSinceConsistentEstimateInit),
reverb_model_estimator_(config) {}
AecState::~AecState() = default;
void AecState::HandleEchoPathChange(
const EchoPathVariability& echo_path_variability) {
const auto full_reset = [&]() {
filter_analyzer_.Reset();
blocks_since_last_saturation_ = 0;
usable_linear_estimate_ = false;
capture_signal_saturation_ = false;
echo_saturation_ = false;
std::fill(max_render_.begin(), max_render_.end(), 0.f);
blocks_with_proper_filter_adaptation_ = 0;
blocks_since_reset_ = 0;
filter_has_had_time_to_converge_ = false;
render_received_ = false;
blocks_with_active_render_ = 0;
initial_state_ = true;
suppression_gain_limiter_.Reset();
blocks_since_converged_filter_ = kBlocksSinceConvergencedFilterInit;
diverged_blocks_ = 0;
if (reset_erle_after_echo_path_changes_) {
erle_estimator_.Reset();
}
};
// TODO(peah): Refine the reset scheme according to the type of gain and
// delay adjustment.
if (echo_path_variability.delay_change !=
EchoPathVariability::DelayAdjustment::kNone) {
full_reset();
}
subtractor_output_analyzer_.HandleEchoPathChange();
}
void AecState::Update(
const absl::optional<DelayEstimate>& external_delay,
const std::vector<std::array<float, kFftLengthBy2Plus1>>&
adaptive_filter_frequency_response,
const std::vector<float>& adaptive_filter_impulse_response,
const RenderBuffer& render_buffer,
const std::array<float, kFftLengthBy2Plus1>& E2_main,
const std::array<float, kFftLengthBy2Plus1>& Y2,
const SubtractorOutput& subtractor_output,
rtc::ArrayView<const float> y) {
// Analyze the filter output.
subtractor_output_analyzer_.Update(subtractor_output);
const bool converged_filter = subtractor_output_analyzer_.ConvergedFilter();
const bool diverged_filter = subtractor_output_analyzer_.DivergedFilter();
// Analyze the filter and compute the delays.
filter_analyzer_.Update(adaptive_filter_impulse_response,
adaptive_filter_frequency_response, render_buffer);
filter_delay_blocks_ = filter_analyzer_.DelayBlocks();
if (enforce_delay_after_realignment_) {
if (external_delay &&
(!external_delay_ || external_delay_->delay != external_delay->delay)) {
frames_since_external_delay_change_ = 0;
external_delay_ = external_delay;
}
if (blocks_with_proper_filter_adaptation_ < 2 * kNumBlocksPerSecond &&
external_delay_) {
filter_delay_blocks_ = config_.delay.delay_headroom_blocks;
}
}
if (filter_analyzer_.Consistent()) {
internal_delay_ = filter_analyzer_.DelayBlocks();
} else {
internal_delay_ = absl::nullopt;
}
external_delay_seen_ = external_delay_seen_ || external_delay;
const std::vector<float>& x = render_buffer.Block(-filter_delay_blocks_)[0];
// Update counters.
++capture_block_counter_;
++blocks_since_reset_;
const bool active_render_block = DetectActiveRender(x);
blocks_with_active_render_ += active_render_block ? 1 : 0;
blocks_with_proper_filter_adaptation_ +=
active_render_block && !SaturatedCapture() ? 1 : 0;
// Update the limit on the echo suppression after an echo path change to avoid
// an initial echo burst.
suppression_gain_limiter_.Update(render_buffer.GetRenderActivity(),
transparent_mode_);
if (converged_filter && early_limiter_deactivation_) {
suppression_gain_limiter_.Deactivate();
}
if (UseStationaryProperties()) {
// Update the echo audibility evaluator.
echo_audibility_.Update(
render_buffer, FilterDelayBlocks(), external_delay_seen_,
config_.ep_strength.reverb_based_on_render ? ReverbDecay() : 0.f);
}
// Update the ERL and ERLE measures.
if (reset_erle_after_echo_path_changes_ && transition_triggered_) {
erle_estimator_.Reset();
}
if (blocks_since_reset_ >= 2 * kNumBlocksPerSecond) {
const auto& X2 = render_buffer.Spectrum(filter_delay_blocks_);
erle_estimator_.Update(X2, Y2, E2_main, converged_filter,
config_.erle.onset_detection);
if (converged_filter) {
erl_estimator_.Update(X2, Y2);
}
}
// Detect and flag echo saturation.
if (config_.ep_strength.echo_can_saturate) {
echo_saturation_ = DetectEchoSaturation(x, EchoPathGain());
}
if (early_filter_usage_activated_) {
filter_has_had_time_to_converge_ =
blocks_with_proper_filter_adaptation_ >= 0.8f * kNumBlocksPerSecond;
} else {
filter_has_had_time_to_converge_ =
blocks_with_proper_filter_adaptation_ >= 1.5f * kNumBlocksPerSecond;
}
if (converged_filter && early_entry_to_converged_mode_) {
filter_has_had_time_to_converge_ = true;
}
if (!filter_should_have_converged_) {
filter_should_have_converged_ =
blocks_with_proper_filter_adaptation_ > 6 * kNumBlocksPerSecond;
}
// Flag whether the initial state is still active.
bool prev_initial_state = initial_state_;
if (use_short_initial_state_) {
initial_state_ = blocks_with_proper_filter_adaptation_ <
config_.filter.initial_state_seconds * kNumBlocksPerSecond;
} else {
initial_state_ =
blocks_with_proper_filter_adaptation_ < 5 * kNumBlocksPerSecond;
}
transition_triggered_ = !initial_state_ && prev_initial_state;
// Update counters for the filter divergence and convergence.
diverged_blocks_ = diverged_filter ? diverged_blocks_ + 1 : 0;
if (diverged_blocks_ >= 60) {
blocks_since_converged_filter_ = kBlocksSinceConvergencedFilterInit;
} else {
blocks_since_converged_filter_ =
converged_filter ? 0 : blocks_since_converged_filter_ + 1;
}
if (converged_filter) {
active_blocks_since_converged_filter_ = 0;
} else if (active_render_block) {
++active_blocks_since_converged_filter_;
}
bool recently_converged_filter =
blocks_since_converged_filter_ < 60 * kNumBlocksPerSecond;
if (blocks_since_converged_filter_ > 20 * kNumBlocksPerSecond) {
converged_filter_count_ = 0;
} else if (converged_filter) {
++converged_filter_count_;
}
if (converged_filter_count_ > 50) {
finite_erl_ = true;
}
if (filter_analyzer_.Consistent() && filter_delay_blocks_ < 5) {
consistent_filter_seen_ = true;
active_blocks_since_consistent_filter_estimate_ = 0;
} else if (active_render_block) {
++active_blocks_since_consistent_filter_estimate_;
}
bool consistent_filter_estimate_not_seen;
if (!consistent_filter_seen_) {
consistent_filter_estimate_not_seen =
capture_block_counter_ > 5 * kNumBlocksPerSecond;
} else {
consistent_filter_estimate_not_seen =
active_blocks_since_consistent_filter_estimate_ >
30 * kNumBlocksPerSecond;
}
converged_filter_seen_ = converged_filter_seen_ || converged_filter;
// If no filter convergence is seen for a long time, reset the estimated
// properties of the echo path.
if (active_blocks_since_converged_filter_ > 60 * kNumBlocksPerSecond) {
converged_filter_seen_ = false;
finite_erl_ = false;
}
// After an amount of active render samples for which an echo should have been
// detected in the capture signal if the ERL was not infinite, flag that a
// transparent mode should be entered.
transparent_mode_ = !config_.ep_strength.bounded_erl && !finite_erl_;
transparent_mode_ =
transparent_mode_ &&
(consistent_filter_estimate_not_seen || !converged_filter_seen_);
transparent_mode_ = transparent_mode_ && filter_should_have_converged_;
transparent_mode_ = transparent_mode_ && allow_transparent_mode_;
usable_linear_estimate_ = !echo_saturation_;
if (convergence_trigger_linear_mode_) {
usable_linear_estimate_ =
usable_linear_estimate_ &&
((filter_has_had_time_to_converge_ && external_delay) ||
converged_filter_seen_);
} else {
usable_linear_estimate_ =
usable_linear_estimate_ && filter_has_had_time_to_converge_;
}
if (!no_alignment_required_for_linear_mode_) {
usable_linear_estimate_ = usable_linear_estimate_ && external_delay;
}
if (!config_.echo_removal_control.linear_and_stable_echo_path) {
usable_linear_estimate_ =
usable_linear_estimate_ && recently_converged_filter;
}
usable_linear_estimate_ = usable_linear_estimate_ && !TransparentMode();
use_linear_filter_output_ = usable_linear_estimate_ && !TransparentMode();
const bool stationary_block =
use_stationary_properties_ && echo_audibility_.IsBlockStationary();
reverb_model_estimator_.Update(
filter_analyzer_.GetAdjustedFilter(), adaptive_filter_frequency_response,
erle_estimator_.GetInstLinearQualityEstimate(), filter_delay_blocks_,
usable_linear_estimate_, stationary_block);
erle_estimator_.Dump(data_dumper_);
reverb_model_estimator_.Dump(data_dumper_.get());
data_dumper_->DumpRaw("aec3_erl", Erl());
data_dumper_->DumpRaw("aec3_erl_time_domain", ErlTimeDomain());
data_dumper_->DumpRaw("aec3_usable_linear_estimate", UsableLinearEstimate());
data_dumper_->DumpRaw("aec3_transparent_mode", transparent_mode_);
data_dumper_->DumpRaw("aec3_state_internal_delay",
internal_delay_ ? *internal_delay_ : -1);
data_dumper_->DumpRaw("aec3_filter_delay", filter_analyzer_.DelayBlocks());
data_dumper_->DumpRaw("aec3_consistent_filter",
filter_analyzer_.Consistent());
data_dumper_->DumpRaw("aec3_suppression_gain_limit", SuppressionGainLimit());
data_dumper_->DumpRaw("aec3_initial_state", initial_state_);
data_dumper_->DumpRaw("aec3_capture_saturation", SaturatedCapture());
data_dumper_->DumpRaw("aec3_echo_saturation", echo_saturation_);
data_dumper_->DumpRaw("aec3_converged_filter", converged_filter);
data_dumper_->DumpRaw("aec3_diverged_filter", diverged_filter);
data_dumper_->DumpRaw("aec3_external_delay_avaliable",
external_delay ? 1 : 0);
data_dumper_->DumpRaw("aec3_consistent_filter_estimate_not_seen",
consistent_filter_estimate_not_seen);
data_dumper_->DumpRaw("aec3_filter_should_have_converged",
filter_should_have_converged_);
data_dumper_->DumpRaw("aec3_filter_has_had_time_to_converge",
filter_has_had_time_to_converge_);
data_dumper_->DumpRaw("aec3_recently_converged_filter",
recently_converged_filter);
data_dumper_->DumpRaw("aec3_suppresion_gain_limiter_running",
IsSuppressionGainLimitActive());
data_dumper_->DumpRaw("aec3_filter_tail_freq_resp_est",
GetReverbFrequencyResponse());
}
bool AecState::DetectActiveRender(rtc::ArrayView<const float> x) const {
const float x_energy = std::inner_product(x.begin(), x.end(), x.begin(), 0.f);
return x_energy > (config_.render_levels.active_render_limit *
config_.render_levels.active_render_limit) *
kFftLengthBy2;
}
bool AecState::DetectEchoSaturation(rtc::ArrayView<const float> x,
float echo_path_gain) {
RTC_DCHECK_LT(0, x.size());
const float max_sample = fabs(*std::max_element(
x.begin(), x.end(), [](float a, float b) { return a * a < b * b; }));
// Set flag for potential presence of saturated echo
const float kMargin = 10.f;
float peak_echo_amplitude = max_sample * echo_path_gain * kMargin;
if (SaturatedCapture() && peak_echo_amplitude > 32000) {
blocks_since_last_saturation_ = 0;
} else {
++blocks_since_last_saturation_;
}
return blocks_since_last_saturation_ < 5;
}
} // namespace webrtc