blob: 093b194736f86dcaf35c9a3875067c58a2b24f53 [file] [log] [blame]
/*
* Copyright (c) 2017 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "modules/audio_processing/aec3/main_filter_update_gain.h"
#include <algorithm>
#include <numeric>
#include <string>
#include "modules/audio_processing/aec3/adaptive_fir_filter.h"
#include "modules/audio_processing/aec3/aec_state.h"
#include "modules/audio_processing/aec3/render_delay_buffer.h"
#include "modules/audio_processing/aec3/render_signal_analyzer.h"
#include "modules/audio_processing/aec3/shadow_filter_update_gain.h"
#include "modules/audio_processing/aec3/subtractor_output.h"
#include "modules/audio_processing/logging/apm_data_dumper.h"
#include "modules/audio_processing/test/echo_canceller_test_tools.h"
#include "rtc_base/numerics/safe_minmax.h"
#include "rtc_base/random.h"
#include "rtc_base/strings/string_builder.h"
#include "test/gtest.h"
namespace webrtc {
namespace {
// Method for performing the simulations needed to test the main filter update
// gain functionality.
void RunFilterUpdateTest(int num_blocks_to_process,
size_t delay_samples,
int filter_length_blocks,
const std::vector<int>& blocks_with_echo_path_changes,
const std::vector<int>& blocks_with_saturation,
bool use_silent_render_in_second_half,
std::array<float, kBlockSize>* e_last_block,
std::array<float, kBlockSize>* y_last_block,
FftData* G_last_block) {
ApmDataDumper data_dumper(42);
EchoCanceller3Config config;
config.filter.main.length_blocks = filter_length_blocks;
config.filter.shadow.length_blocks = filter_length_blocks;
AdaptiveFirFilter main_filter(config.filter.main.length_blocks,
config.filter.main.length_blocks,
config.filter.config_change_duration_blocks,
DetectOptimization(), &data_dumper);
AdaptiveFirFilter shadow_filter(config.filter.shadow.length_blocks,
config.filter.shadow.length_blocks,
config.filter.config_change_duration_blocks,
DetectOptimization(), &data_dumper);
Aec3Fft fft;
std::array<float, kBlockSize> x_old;
x_old.fill(0.f);
ShadowFilterUpdateGain shadow_gain(
config.filter.shadow, config.filter.config_change_duration_blocks);
MainFilterUpdateGain main_gain(config.filter.main,
config.filter.config_change_duration_blocks);
Random random_generator(42U);
std::vector<std::vector<float>> x(3, std::vector<float>(kBlockSize, 0.f));
std::vector<float> y(kBlockSize, 0.f);
config.delay.min_echo_path_delay_blocks = 0;
config.delay.default_delay = 1;
std::unique_ptr<RenderDelayBuffer> render_delay_buffer(
RenderDelayBuffer::Create2(config, 3));
AecState aec_state(config);
RenderSignalAnalyzer render_signal_analyzer(config);
absl::optional<DelayEstimate> delay_estimate;
std::array<float, kFftLength> s_scratch;
std::array<float, kBlockSize> s;
FftData S;
FftData G;
SubtractorOutput output;
output.Reset();
FftData& E_main = output.E_main;
FftData E_shadow;
std::array<float, kFftLengthBy2Plus1> Y2;
std::array<float, kFftLengthBy2Plus1>& E2_main = output.E2_main;
std::array<float, kBlockSize>& e_main = output.e_main;
std::array<float, kBlockSize>& e_shadow = output.e_shadow;
Y2.fill(0.f);
constexpr float kScale = 1.0f / kFftLengthBy2;
DelayBuffer<float> delay_buffer(delay_samples);
for (int k = 0; k < num_blocks_to_process; ++k) {
// Handle echo path changes.
if (std::find(blocks_with_echo_path_changes.begin(),
blocks_with_echo_path_changes.end(),
k) != blocks_with_echo_path_changes.end()) {
main_filter.HandleEchoPathChange();
}
// Handle saturation.
const bool saturation =
std::find(blocks_with_saturation.begin(), blocks_with_saturation.end(),
k) != blocks_with_saturation.end();
// Create the render signal.
if (use_silent_render_in_second_half && k > num_blocks_to_process / 2) {
std::fill(x[0].begin(), x[0].end(), 0.f);
} else {
RandomizeSampleVector(&random_generator, x[0]);
}
delay_buffer.Delay(x[0], y);
render_delay_buffer->Insert(x);
if (k == 0) {
render_delay_buffer->Reset();
}
render_delay_buffer->PrepareCaptureProcessing();
render_signal_analyzer.Update(*render_delay_buffer->GetRenderBuffer(),
aec_state.FilterDelayBlocks());
// Apply the main filter.
main_filter.Filter(*render_delay_buffer->GetRenderBuffer(), &S);
fft.Ifft(S, &s_scratch);
std::transform(y.begin(), y.end(), s_scratch.begin() + kFftLengthBy2,
e_main.begin(),
[&](float a, float b) { return a - b * kScale; });
std::for_each(e_main.begin(), e_main.end(),
[](float& a) { a = rtc::SafeClamp(a, -32768.f, 32767.f); });
fft.ZeroPaddedFft(e_main, Aec3Fft::Window::kRectangular, &E_main);
for (size_t k = 0; k < kBlockSize; ++k) {
s[k] = kScale * s_scratch[k + kFftLengthBy2];
}
// Apply the shadow filter.
shadow_filter.Filter(*render_delay_buffer->GetRenderBuffer(), &S);
fft.Ifft(S, &s_scratch);
std::transform(y.begin(), y.end(), s_scratch.begin() + kFftLengthBy2,
e_shadow.begin(),
[&](float a, float b) { return a - b * kScale; });
std::for_each(e_shadow.begin(), e_shadow.end(),
[](float& a) { a = rtc::SafeClamp(a, -32768.f, 32767.f); });
fft.ZeroPaddedFft(e_shadow, Aec3Fft::Window::kRectangular, &E_shadow);
// Compute spectra for future use.
E_main.Spectrum(Aec3Optimization::kNone, output.E2_main);
E_shadow.Spectrum(Aec3Optimization::kNone, output.E2_shadow);
// Adapt the shadow filter.
std::array<float, kFftLengthBy2Plus1> render_power;
render_delay_buffer->GetRenderBuffer()->SpectralSum(
shadow_filter.SizePartitions(), &render_power);
shadow_gain.Compute(render_power, render_signal_analyzer, E_shadow,
shadow_filter.SizePartitions(), saturation, &G);
shadow_filter.Adapt(*render_delay_buffer->GetRenderBuffer(), G);
// Adapt the main filter
render_delay_buffer->GetRenderBuffer()->SpectralSum(
main_filter.SizePartitions(), &render_power);
main_gain.Compute(render_power, render_signal_analyzer, output, main_filter,
saturation, &G);
main_filter.Adapt(*render_delay_buffer->GetRenderBuffer(), G);
// Update the delay.
aec_state.HandleEchoPathChange(EchoPathVariability(
false, EchoPathVariability::DelayAdjustment::kNone, false));
aec_state.Update(delay_estimate, main_filter.FilterFrequencyResponse(),
main_filter.FilterImpulseResponse(),
*render_delay_buffer->GetRenderBuffer(), E2_main, Y2,
output, y);
}
std::copy(e_main.begin(), e_main.end(), e_last_block->begin());
std::copy(y.begin(), y.end(), y_last_block->begin());
std::copy(G.re.begin(), G.re.end(), G_last_block->re.begin());
std::copy(G.im.begin(), G.im.end(), G_last_block->im.begin());
}
std::string ProduceDebugText(int filter_length_blocks) {
rtc::StringBuilder ss;
ss << "Length: " << filter_length_blocks;
return ss.Release();
}
std::string ProduceDebugText(size_t delay, int filter_length_blocks) {
rtc::StringBuilder ss;
ss << "Delay: " << delay << ", ";
ss << ProduceDebugText(filter_length_blocks);
return ss.Release();
}
} // namespace
#if RTC_DCHECK_IS_ON && GTEST_HAS_DEATH_TEST && !defined(WEBRTC_ANDROID)
// Verifies that the check for non-null output gain parameter works.
TEST(MainFilterUpdateGain, NullDataOutputGain) {
ApmDataDumper data_dumper(42);
EchoCanceller3Config config;
AdaptiveFirFilter filter(config.filter.main.length_blocks,
config.filter.main.length_blocks,
config.filter.config_change_duration_blocks,
DetectOptimization(), &data_dumper);
RenderSignalAnalyzer analyzer(EchoCanceller3Config{});
SubtractorOutput output;
MainFilterUpdateGain gain(config.filter.main,
config.filter.config_change_duration_blocks);
std::array<float, kFftLengthBy2Plus1> render_power;
render_power.fill(0.f);
EXPECT_DEATH(
gain.Compute(render_power, analyzer, output, filter, false, nullptr), "");
}
#endif
// Verifies that the gain formed causes the filter using it to converge.
TEST(MainFilterUpdateGain, GainCausesFilterToConverge) {
std::vector<int> blocks_with_echo_path_changes;
std::vector<int> blocks_with_saturation;
for (size_t filter_length_blocks : {12, 20, 30}) {
for (size_t delay_samples : {0, 64, 150, 200, 301}) {
SCOPED_TRACE(ProduceDebugText(delay_samples, filter_length_blocks));
std::array<float, kBlockSize> e;
std::array<float, kBlockSize> y;
FftData G;
RunFilterUpdateTest(600, delay_samples, filter_length_blocks,
blocks_with_echo_path_changes, blocks_with_saturation,
false, &e, &y, &G);
// Verify that the main filter is able to perform well.
// Use different criteria to take overmodelling into account.
if (filter_length_blocks == 12) {
EXPECT_LT(1000 * std::inner_product(e.begin(), e.end(), e.begin(), 0.f),
std::inner_product(y.begin(), y.end(), y.begin(), 0.f));
} else {
EXPECT_LT(std::inner_product(e.begin(), e.end(), e.begin(), 0.f),
std::inner_product(y.begin(), y.end(), y.begin(), 0.f));
}
}
}
}
// Verifies that the magnitude of the gain on average decreases for a
// persistently exciting signal.
TEST(MainFilterUpdateGain, DecreasingGain) {
std::vector<int> blocks_with_echo_path_changes;
std::vector<int> blocks_with_saturation;
std::array<float, kBlockSize> e;
std::array<float, kBlockSize> y;
FftData G_a;
FftData G_b;
FftData G_c;
std::array<float, kFftLengthBy2Plus1> G_a_power;
std::array<float, kFftLengthBy2Plus1> G_b_power;
std::array<float, kFftLengthBy2Plus1> G_c_power;
RunFilterUpdateTest(250, 65, 12, blocks_with_echo_path_changes,
blocks_with_saturation, false, &e, &y, &G_a);
RunFilterUpdateTest(500, 65, 12, blocks_with_echo_path_changes,
blocks_with_saturation, false, &e, &y, &G_b);
RunFilterUpdateTest(750, 65, 12, blocks_with_echo_path_changes,
blocks_with_saturation, false, &e, &y, &G_c);
G_a.Spectrum(Aec3Optimization::kNone, G_a_power);
G_b.Spectrum(Aec3Optimization::kNone, G_b_power);
G_c.Spectrum(Aec3Optimization::kNone, G_c_power);
EXPECT_GT(std::accumulate(G_a_power.begin(), G_a_power.end(), 0.),
std::accumulate(G_b_power.begin(), G_b_power.end(), 0.));
EXPECT_GT(std::accumulate(G_b_power.begin(), G_b_power.end(), 0.),
std::accumulate(G_c_power.begin(), G_c_power.end(), 0.));
}
// Verifies that the gain is zero when there is saturation and that the internal
// error estimates cause the gain to increase after a period of saturation.
TEST(MainFilterUpdateGain, SaturationBehavior) {
std::vector<int> blocks_with_echo_path_changes;
std::vector<int> blocks_with_saturation;
for (int k = 99; k < 200; ++k) {
blocks_with_saturation.push_back(k);
}
for (size_t filter_length_blocks : {12, 20, 30}) {
SCOPED_TRACE(ProduceDebugText(filter_length_blocks));
std::array<float, kBlockSize> e;
std::array<float, kBlockSize> y;
FftData G_a;
FftData G_b;
FftData G_a_ref;
G_a_ref.re.fill(0.f);
G_a_ref.im.fill(0.f);
std::array<float, kFftLengthBy2Plus1> G_a_power;
std::array<float, kFftLengthBy2Plus1> G_b_power;
RunFilterUpdateTest(100, 65, filter_length_blocks,
blocks_with_echo_path_changes, blocks_with_saturation,
false, &e, &y, &G_a);
EXPECT_EQ(G_a_ref.re, G_a.re);
EXPECT_EQ(G_a_ref.im, G_a.im);
RunFilterUpdateTest(99, 65, filter_length_blocks,
blocks_with_echo_path_changes, blocks_with_saturation,
false, &e, &y, &G_a);
RunFilterUpdateTest(201, 65, filter_length_blocks,
blocks_with_echo_path_changes, blocks_with_saturation,
false, &e, &y, &G_b);
G_a.Spectrum(Aec3Optimization::kNone, G_a_power);
G_b.Spectrum(Aec3Optimization::kNone, G_b_power);
EXPECT_LT(std::accumulate(G_a_power.begin(), G_a_power.end(), 0.),
std::accumulate(G_b_power.begin(), G_b_power.end(), 0.));
}
}
// Verifies that the gain increases after an echo path change.
// TODO(peah): Correct and reactivate this test.
TEST(MainFilterUpdateGain, DISABLED_EchoPathChangeBehavior) {
for (size_t filter_length_blocks : {12, 20, 30}) {
SCOPED_TRACE(ProduceDebugText(filter_length_blocks));
std::vector<int> blocks_with_echo_path_changes;
std::vector<int> blocks_with_saturation;
blocks_with_echo_path_changes.push_back(99);
std::array<float, kBlockSize> e;
std::array<float, kBlockSize> y;
FftData G_a;
FftData G_b;
std::array<float, kFftLengthBy2Plus1> G_a_power;
std::array<float, kFftLengthBy2Plus1> G_b_power;
RunFilterUpdateTest(100, 65, filter_length_blocks,
blocks_with_echo_path_changes, blocks_with_saturation,
false, &e, &y, &G_a);
RunFilterUpdateTest(101, 65, filter_length_blocks,
blocks_with_echo_path_changes, blocks_with_saturation,
false, &e, &y, &G_b);
G_a.Spectrum(Aec3Optimization::kNone, G_a_power);
G_b.Spectrum(Aec3Optimization::kNone, G_b_power);
EXPECT_LT(std::accumulate(G_a_power.begin(), G_a_power.end(), 0.),
std::accumulate(G_b_power.begin(), G_b_power.end(), 0.));
}
}
} // namespace webrtc