| /* |
| * Copyright (c) 2012 The WebRTC project authors. All Rights Reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| #include "modules/rtp_rtcp/source/rtcp_sender.h" |
| |
| #include <string.h> // memcpy |
| #include <algorithm> // std::min |
| |
| #include <utility> |
| |
| #include "absl/memory/memory.h" |
| #include "common_types.h" // NOLINT(build/include) |
| #include "logging/rtc_event_log/events/rtc_event_rtcp_packet_outgoing.h" |
| #include "logging/rtc_event_log/rtc_event_log.h" |
| #include "modules/rtp_rtcp/source/rtcp_packet/app.h" |
| #include "modules/rtp_rtcp/source/rtcp_packet/bye.h" |
| #include "modules/rtp_rtcp/source/rtcp_packet/compound_packet.h" |
| #include "modules/rtp_rtcp/source/rtcp_packet/extended_reports.h" |
| #include "modules/rtp_rtcp/source/rtcp_packet/fir.h" |
| #include "modules/rtp_rtcp/source/rtcp_packet/loss_notification.h" |
| #include "modules/rtp_rtcp/source/rtcp_packet/nack.h" |
| #include "modules/rtp_rtcp/source/rtcp_packet/pli.h" |
| #include "modules/rtp_rtcp/source/rtcp_packet/receiver_report.h" |
| #include "modules/rtp_rtcp/source/rtcp_packet/remb.h" |
| #include "modules/rtp_rtcp/source/rtcp_packet/sdes.h" |
| #include "modules/rtp_rtcp/source/rtcp_packet/sender_report.h" |
| #include "modules/rtp_rtcp/source/rtcp_packet/tmmbn.h" |
| #include "modules/rtp_rtcp/source/rtcp_packet/tmmbr.h" |
| #include "modules/rtp_rtcp/source/rtcp_packet/transport_feedback.h" |
| #include "modules/rtp_rtcp/source/rtp_rtcp_impl.h" |
| #include "modules/rtp_rtcp/source/time_util.h" |
| #include "modules/rtp_rtcp/source/tmmbr_help.h" |
| #include "rtc_base/checks.h" |
| #include "rtc_base/constructor_magic.h" |
| #include "rtc_base/logging.h" |
| #include "rtc_base/numerics/safe_conversions.h" |
| #include "rtc_base/trace_event.h" |
| |
| namespace webrtc { |
| |
| namespace { |
| const uint32_t kRtcpAnyExtendedReports = kRtcpXrReceiverReferenceTime | |
| kRtcpXrDlrrReportBlock | |
| kRtcpXrTargetBitrate; |
| } // namespace |
| |
| RTCPSender::FeedbackState::FeedbackState() |
| : packets_sent(0), |
| media_bytes_sent(0), |
| send_bitrate(0), |
| last_rr_ntp_secs(0), |
| last_rr_ntp_frac(0), |
| remote_sr(0), |
| module(nullptr) {} |
| |
| RTCPSender::FeedbackState::FeedbackState(const FeedbackState&) = default; |
| |
| RTCPSender::FeedbackState::FeedbackState(FeedbackState&&) = default; |
| |
| RTCPSender::FeedbackState::~FeedbackState() = default; |
| |
| class PacketContainer : public rtcp::CompoundPacket { |
| public: |
| PacketContainer(Transport* transport, RtcEventLog* event_log) |
| : transport_(transport), event_log_(event_log) {} |
| ~PacketContainer() override { |
| for (RtcpPacket* packet : appended_packets_) |
| delete packet; |
| } |
| |
| size_t SendPackets(size_t max_payload_length) { |
| size_t bytes_sent = 0; |
| Build(max_payload_length, [&](rtc::ArrayView<const uint8_t> packet) { |
| if (transport_->SendRtcp(packet.data(), packet.size())) { |
| bytes_sent += packet.size(); |
| if (event_log_) { |
| event_log_->Log( |
| absl::make_unique<RtcEventRtcpPacketOutgoing>(packet)); |
| } |
| } |
| }); |
| return bytes_sent; |
| } |
| |
| private: |
| Transport* transport_; |
| RtcEventLog* const event_log_; |
| |
| RTC_DISALLOW_IMPLICIT_CONSTRUCTORS(PacketContainer); |
| }; |
| |
| class RTCPSender::RtcpContext { |
| public: |
| RtcpContext(const FeedbackState& feedback_state, |
| int32_t nack_size, |
| const uint16_t* nack_list, |
| int64_t now_us) |
| : feedback_state_(feedback_state), |
| nack_size_(nack_size), |
| nack_list_(nack_list), |
| now_us_(now_us) {} |
| |
| const FeedbackState& feedback_state_; |
| const int32_t nack_size_; |
| const uint16_t* nack_list_; |
| const int64_t now_us_; |
| }; |
| |
| RTCPSender::RTCPSender( |
| bool audio, |
| Clock* clock, |
| ReceiveStatisticsProvider* receive_statistics, |
| RtcpPacketTypeCounterObserver* packet_type_counter_observer, |
| RtcEventLog* event_log, |
| Transport* outgoing_transport, |
| int report_interval_ms) |
| : audio_(audio), |
| clock_(clock), |
| random_(clock_->TimeInMicroseconds()), |
| method_(RtcpMode::kOff), |
| event_log_(event_log), |
| transport_(outgoing_transport), |
| report_interval_ms_(report_interval_ms), |
| sending_(false), |
| next_time_to_send_rtcp_(0), |
| timestamp_offset_(0), |
| last_rtp_timestamp_(0), |
| last_frame_capture_time_ms_(-1), |
| ssrc_(0), |
| remote_ssrc_(0), |
| receive_statistics_(receive_statistics), |
| |
| sequence_number_fir_(0), |
| |
| remb_bitrate_(0), |
| |
| tmmbr_send_bps_(0), |
| packet_oh_send_(0), |
| max_packet_size_(IP_PACKET_SIZE - 28), // IPv4 + UDP by default. |
| |
| app_sub_type_(0), |
| app_name_(0), |
| app_data_(nullptr), |
| app_length_(0), |
| |
| xr_send_receiver_reference_time_enabled_(false), |
| packet_type_counter_observer_(packet_type_counter_observer), |
| send_video_bitrate_allocation_(false), |
| last_payload_type_(-1) { |
| RTC_DCHECK(transport_ != nullptr); |
| |
| builders_[kRtcpSr] = &RTCPSender::BuildSR; |
| builders_[kRtcpRr] = &RTCPSender::BuildRR; |
| builders_[kRtcpSdes] = &RTCPSender::BuildSDES; |
| builders_[kRtcpPli] = &RTCPSender::BuildPLI; |
| builders_[kRtcpFir] = &RTCPSender::BuildFIR; |
| builders_[kRtcpRemb] = &RTCPSender::BuildREMB; |
| builders_[kRtcpBye] = &RTCPSender::BuildBYE; |
| builders_[kRtcpApp] = &RTCPSender::BuildAPP; |
| builders_[kRtcpLossNotification] = &RTCPSender::BuildLossNotification; |
| builders_[kRtcpTmmbr] = &RTCPSender::BuildTMMBR; |
| builders_[kRtcpTmmbn] = &RTCPSender::BuildTMMBN; |
| builders_[kRtcpNack] = &RTCPSender::BuildNACK; |
| builders_[kRtcpAnyExtendedReports] = &RTCPSender::BuildExtendedReports; |
| } |
| |
| RTCPSender::~RTCPSender() {} |
| |
| RtcpMode RTCPSender::Status() const { |
| rtc::CritScope lock(&critical_section_rtcp_sender_); |
| return method_; |
| } |
| |
| void RTCPSender::SetRTCPStatus(RtcpMode new_method) { |
| rtc::CritScope lock(&critical_section_rtcp_sender_); |
| |
| if (method_ == RtcpMode::kOff && new_method != RtcpMode::kOff) { |
| // When switching on, reschedule the next packet |
| next_time_to_send_rtcp_ = |
| clock_->TimeInMilliseconds() + (report_interval_ms_ / 2); |
| } |
| method_ = new_method; |
| } |
| |
| bool RTCPSender::Sending() const { |
| rtc::CritScope lock(&critical_section_rtcp_sender_); |
| return sending_; |
| } |
| |
| int32_t RTCPSender::SetSendingStatus(const FeedbackState& feedback_state, |
| bool sending) { |
| bool sendRTCPBye = false; |
| { |
| rtc::CritScope lock(&critical_section_rtcp_sender_); |
| |
| if (method_ != RtcpMode::kOff) { |
| if (sending == false && sending_ == true) { |
| // Trigger RTCP bye |
| sendRTCPBye = true; |
| } |
| } |
| sending_ = sending; |
| } |
| if (sendRTCPBye) |
| return SendRTCP(feedback_state, kRtcpBye); |
| return 0; |
| } |
| |
| int32_t RTCPSender::SendLossNotification(const FeedbackState& feedback_state, |
| uint16_t last_decoded_seq_num, |
| uint16_t last_received_seq_num, |
| bool decodability_flag) { |
| rtc::CritScope lock(&critical_section_rtcp_sender_); |
| |
| loss_notification_state_.last_decoded_seq_num = last_decoded_seq_num; |
| loss_notification_state_.last_received_seq_num = last_received_seq_num; |
| loss_notification_state_.decodability_flag = decodability_flag; |
| |
| SetFlag(kRtcpLossNotification, /*is_volatile=*/true); |
| |
| // Send immediately. |
| return SendCompoundRTCP(feedback_state, |
| {RTCPPacketType::kRtcpLossNotification}); |
| } |
| |
| void RTCPSender::SetRemb(int64_t bitrate_bps, std::vector<uint32_t> ssrcs) { |
| RTC_CHECK_GE(bitrate_bps, 0); |
| rtc::CritScope lock(&critical_section_rtcp_sender_); |
| remb_bitrate_ = bitrate_bps; |
| remb_ssrcs_ = std::move(ssrcs); |
| |
| SetFlag(kRtcpRemb, /*is_volatile=*/false); |
| // Send a REMB immediately if we have a new REMB. The frequency of REMBs is |
| // throttled by the caller. |
| next_time_to_send_rtcp_ = clock_->TimeInMilliseconds(); |
| } |
| |
| void RTCPSender::UnsetRemb() { |
| rtc::CritScope lock(&critical_section_rtcp_sender_); |
| // Stop sending REMB each report until it is reenabled and REMB data set. |
| ConsumeFlag(kRtcpRemb, /*forced=*/true); |
| } |
| |
| bool RTCPSender::TMMBR() const { |
| rtc::CritScope lock(&critical_section_rtcp_sender_); |
| return IsFlagPresent(RTCPPacketType::kRtcpTmmbr); |
| } |
| |
| void RTCPSender::SetTMMBRStatus(bool enable) { |
| rtc::CritScope lock(&critical_section_rtcp_sender_); |
| if (enable) { |
| SetFlag(RTCPPacketType::kRtcpTmmbr, false); |
| } else { |
| ConsumeFlag(RTCPPacketType::kRtcpTmmbr, true); |
| } |
| } |
| |
| void RTCPSender::SetMaxRtpPacketSize(size_t max_packet_size) { |
| rtc::CritScope lock(&critical_section_rtcp_sender_); |
| max_packet_size_ = max_packet_size; |
| } |
| |
| void RTCPSender::SetTimestampOffset(uint32_t timestamp_offset) { |
| rtc::CritScope lock(&critical_section_rtcp_sender_); |
| timestamp_offset_ = timestamp_offset; |
| } |
| |
| void RTCPSender::SetLastRtpTime(uint32_t rtp_timestamp, |
| int64_t capture_time_ms, |
| int8_t payload_type) { |
| rtc::CritScope lock(&critical_section_rtcp_sender_); |
| // For compatibility with clients who don't set payload type correctly on all |
| // calls. |
| if (payload_type != -1) { |
| last_payload_type_ = payload_type; |
| } |
| last_rtp_timestamp_ = rtp_timestamp; |
| if (capture_time_ms < 0) { |
| // We don't currently get a capture time from VoiceEngine. |
| last_frame_capture_time_ms_ = clock_->TimeInMilliseconds(); |
| } else { |
| last_frame_capture_time_ms_ = capture_time_ms; |
| } |
| } |
| |
| void RTCPSender::SetRtpClockRate(int8_t payload_type, int rtp_clock_rate_hz) { |
| rtc::CritScope lock(&critical_section_rtcp_sender_); |
| rtp_clock_rates_khz_[payload_type] = rtp_clock_rate_hz / 1000; |
| } |
| |
| uint32_t RTCPSender::SSRC() const { |
| rtc::CritScope lock(&critical_section_rtcp_sender_); |
| return ssrc_; |
| } |
| |
| void RTCPSender::SetSSRC(uint32_t ssrc) { |
| rtc::CritScope lock(&critical_section_rtcp_sender_); |
| |
| if (ssrc_ != 0) { |
| // not first SetSSRC, probably due to a collision |
| // schedule a new RTCP report |
| // make sure that we send a RTP packet |
| next_time_to_send_rtcp_ = clock_->TimeInMilliseconds() + 100; |
| } |
| ssrc_ = ssrc; |
| } |
| |
| void RTCPSender::SetRemoteSSRC(uint32_t ssrc) { |
| rtc::CritScope lock(&critical_section_rtcp_sender_); |
| remote_ssrc_ = ssrc; |
| } |
| |
| int32_t RTCPSender::SetCNAME(const char* c_name) { |
| if (!c_name) |
| return -1; |
| |
| RTC_DCHECK_LT(strlen(c_name), RTCP_CNAME_SIZE); |
| rtc::CritScope lock(&critical_section_rtcp_sender_); |
| cname_ = c_name; |
| return 0; |
| } |
| |
| int32_t RTCPSender::AddMixedCNAME(uint32_t SSRC, const char* c_name) { |
| RTC_DCHECK(c_name); |
| RTC_DCHECK_LT(strlen(c_name), RTCP_CNAME_SIZE); |
| rtc::CritScope lock(&critical_section_rtcp_sender_); |
| // One spot is reserved for ssrc_/cname_. |
| // TODO(danilchap): Add support for more than 30 contributes by sending |
| // several sdes packets. |
| if (csrc_cnames_.size() >= rtcp::Sdes::kMaxNumberOfChunks - 1) |
| return -1; |
| |
| csrc_cnames_[SSRC] = c_name; |
| return 0; |
| } |
| |
| int32_t RTCPSender::RemoveMixedCNAME(uint32_t SSRC) { |
| rtc::CritScope lock(&critical_section_rtcp_sender_); |
| auto it = csrc_cnames_.find(SSRC); |
| |
| if (it == csrc_cnames_.end()) |
| return -1; |
| |
| csrc_cnames_.erase(it); |
| return 0; |
| } |
| |
| bool RTCPSender::TimeToSendRTCPReport(bool sendKeyframeBeforeRTP) const { |
| /* |
| For audio we use a configurable interval (default: 5 seconds) |
| |
| For video we use a configurable interval (default: 1 second) for a BW |
| smaller than 360 kbit/s, technicaly we break the max 5% RTCP BW for |
| video below 10 kbit/s but that should be extremely rare |
| |
| |
| From RFC 3550 |
| |
| MAX RTCP BW is 5% if the session BW |
| A send report is approximately 65 bytes inc CNAME |
| A receiver report is approximately 28 bytes |
| |
| The RECOMMENDED value for the reduced minimum in seconds is 360 |
| divided by the session bandwidth in kilobits/second. This minimum |
| is smaller than 5 seconds for bandwidths greater than 72 kb/s. |
| |
| If the participant has not yet sent an RTCP packet (the variable |
| initial is true), the constant Tmin is set to half of the configured |
| interval. |
| |
| The interval between RTCP packets is varied randomly over the |
| range [0.5,1.5] times the calculated interval to avoid unintended |
| synchronization of all participants |
| |
| if we send |
| If the participant is a sender (we_sent true), the constant C is |
| set to the average RTCP packet size (avg_rtcp_size) divided by 25% |
| of the RTCP bandwidth (rtcp_bw), and the constant n is set to the |
| number of senders. |
| |
| if we receive only |
| If we_sent is not true, the constant C is set |
| to the average RTCP packet size divided by 75% of the RTCP |
| bandwidth. The constant n is set to the number of receivers |
| (members - senders). If the number of senders is greater than |
| 25%, senders and receivers are treated together. |
| |
| reconsideration NOT required for peer-to-peer |
| "timer reconsideration" is |
| employed. This algorithm implements a simple back-off mechanism |
| which causes users to hold back RTCP packet transmission if the |
| group sizes are increasing. |
| |
| n = number of members |
| C = avg_size/(rtcpBW/4) |
| |
| 3. The deterministic calculated interval Td is set to max(Tmin, n*C). |
| |
| 4. The calculated interval T is set to a number uniformly distributed |
| between 0.5 and 1.5 times the deterministic calculated interval. |
| |
| 5. The resulting value of T is divided by e-3/2=1.21828 to compensate |
| for the fact that the timer reconsideration algorithm converges to |
| a value of the RTCP bandwidth below the intended average |
| */ |
| |
| int64_t now = clock_->TimeInMilliseconds(); |
| |
| rtc::CritScope lock(&critical_section_rtcp_sender_); |
| |
| if (method_ == RtcpMode::kOff) |
| return false; |
| |
| if (!audio_ && sendKeyframeBeforeRTP) { |
| // for video key-frames we want to send the RTCP before the large key-frame |
| // if we have a 100 ms margin |
| now += RTCP_SEND_BEFORE_KEY_FRAME_MS; |
| } |
| |
| if (now >= next_time_to_send_rtcp_) { |
| return true; |
| } else if (now < 0x0000ffff && |
| next_time_to_send_rtcp_ > 0xffff0000) { // 65 sec margin |
| // wrap |
| return true; |
| } |
| return false; |
| } |
| |
| std::unique_ptr<rtcp::RtcpPacket> RTCPSender::BuildSR(const RtcpContext& ctx) { |
| // Timestamp shouldn't be estimated before first media frame. |
| RTC_DCHECK_GE(last_frame_capture_time_ms_, 0); |
| // The timestamp of this RTCP packet should be estimated as the timestamp of |
| // the frame being captured at this moment. We are calculating that |
| // timestamp as the last frame's timestamp + the time since the last frame |
| // was captured. |
| int rtp_rate = rtp_clock_rates_khz_[last_payload_type_]; |
| if (rtp_rate <= 0) { |
| rtp_rate = |
| (audio_ ? kBogusRtpRateForAudioRtcp : kVideoPayloadTypeFrequency) / |
| 1000; |
| } |
| // Round now_us_ to the closest millisecond, because Ntp time is rounded |
| // when converted to milliseconds, |
| uint32_t rtp_timestamp = |
| timestamp_offset_ + last_rtp_timestamp_ + |
| ((ctx.now_us_ + 500) / 1000 - last_frame_capture_time_ms_) * rtp_rate; |
| |
| rtcp::SenderReport* report = new rtcp::SenderReport(); |
| report->SetSenderSsrc(ssrc_); |
| report->SetNtp(TimeMicrosToNtp(ctx.now_us_)); |
| report->SetRtpTimestamp(rtp_timestamp); |
| report->SetPacketCount(ctx.feedback_state_.packets_sent); |
| report->SetOctetCount(ctx.feedback_state_.media_bytes_sent); |
| report->SetReportBlocks(CreateReportBlocks(ctx.feedback_state_)); |
| |
| return std::unique_ptr<rtcp::RtcpPacket>(report); |
| } |
| |
| std::unique_ptr<rtcp::RtcpPacket> RTCPSender::BuildSDES( |
| const RtcpContext& ctx) { |
| size_t length_cname = cname_.length(); |
| RTC_CHECK_LT(length_cname, RTCP_CNAME_SIZE); |
| |
| rtcp::Sdes* sdes = new rtcp::Sdes(); |
| sdes->AddCName(ssrc_, cname_); |
| |
| for (const auto& it : csrc_cnames_) |
| RTC_CHECK(sdes->AddCName(it.first, it.second)); |
| |
| return std::unique_ptr<rtcp::RtcpPacket>(sdes); |
| } |
| |
| std::unique_ptr<rtcp::RtcpPacket> RTCPSender::BuildRR(const RtcpContext& ctx) { |
| rtcp::ReceiverReport* report = new rtcp::ReceiverReport(); |
| report->SetSenderSsrc(ssrc_); |
| report->SetReportBlocks(CreateReportBlocks(ctx.feedback_state_)); |
| |
| return std::unique_ptr<rtcp::RtcpPacket>(report); |
| } |
| |
| std::unique_ptr<rtcp::RtcpPacket> RTCPSender::BuildPLI(const RtcpContext& ctx) { |
| rtcp::Pli* pli = new rtcp::Pli(); |
| pli->SetSenderSsrc(ssrc_); |
| pli->SetMediaSsrc(remote_ssrc_); |
| |
| ++packet_type_counter_.pli_packets; |
| |
| return std::unique_ptr<rtcp::RtcpPacket>(pli); |
| } |
| |
| std::unique_ptr<rtcp::RtcpPacket> RTCPSender::BuildFIR(const RtcpContext& ctx) { |
| ++sequence_number_fir_; |
| |
| rtcp::Fir* fir = new rtcp::Fir(); |
| fir->SetSenderSsrc(ssrc_); |
| fir->AddRequestTo(remote_ssrc_, sequence_number_fir_); |
| |
| ++packet_type_counter_.fir_packets; |
| |
| return std::unique_ptr<rtcp::RtcpPacket>(fir); |
| } |
| |
| std::unique_ptr<rtcp::RtcpPacket> RTCPSender::BuildREMB( |
| const RtcpContext& ctx) { |
| rtcp::Remb* remb = new rtcp::Remb(); |
| remb->SetSenderSsrc(ssrc_); |
| remb->SetBitrateBps(remb_bitrate_); |
| remb->SetSsrcs(remb_ssrcs_); |
| |
| return std::unique_ptr<rtcp::RtcpPacket>(remb); |
| } |
| |
| void RTCPSender::SetTargetBitrate(unsigned int target_bitrate) { |
| rtc::CritScope lock(&critical_section_rtcp_sender_); |
| tmmbr_send_bps_ = target_bitrate; |
| } |
| |
| std::unique_ptr<rtcp::RtcpPacket> RTCPSender::BuildTMMBR( |
| const RtcpContext& ctx) { |
| if (ctx.feedback_state_.module == nullptr) |
| return nullptr; |
| // Before sending the TMMBR check the received TMMBN, only an owner is |
| // allowed to raise the bitrate: |
| // * If the sender is an owner of the TMMBN -> send TMMBR |
| // * If not an owner but the TMMBR would enter the TMMBN -> send TMMBR |
| |
| // get current bounding set from RTCP receiver |
| bool tmmbr_owner = false; |
| |
| // holding critical_section_rtcp_sender_ while calling RTCPreceiver which |
| // will accuire criticalSectionRTCPReceiver_ is a potental deadlock but |
| // since RTCPreceiver is not doing the reverse we should be fine |
| std::vector<rtcp::TmmbItem> candidates = |
| ctx.feedback_state_.module->BoundingSet(&tmmbr_owner); |
| |
| if (!candidates.empty()) { |
| for (const auto& candidate : candidates) { |
| if (candidate.bitrate_bps() == tmmbr_send_bps_ && |
| candidate.packet_overhead() == packet_oh_send_) { |
| // Do not send the same tuple. |
| return nullptr; |
| } |
| } |
| if (!tmmbr_owner) { |
| // Use received bounding set as candidate set. |
| // Add current tuple. |
| candidates.emplace_back(ssrc_, tmmbr_send_bps_, packet_oh_send_); |
| |
| // Find bounding set. |
| std::vector<rtcp::TmmbItem> bounding = |
| TMMBRHelp::FindBoundingSet(std::move(candidates)); |
| tmmbr_owner = TMMBRHelp::IsOwner(bounding, ssrc_); |
| if (!tmmbr_owner) { |
| // Did not enter bounding set, no meaning to send this request. |
| return nullptr; |
| } |
| } |
| } |
| |
| if (!tmmbr_send_bps_) |
| return nullptr; |
| |
| rtcp::Tmmbr* tmmbr = new rtcp::Tmmbr(); |
| tmmbr->SetSenderSsrc(ssrc_); |
| rtcp::TmmbItem request; |
| request.set_ssrc(remote_ssrc_); |
| request.set_bitrate_bps(tmmbr_send_bps_); |
| request.set_packet_overhead(packet_oh_send_); |
| tmmbr->AddTmmbr(request); |
| |
| return std::unique_ptr<rtcp::RtcpPacket>(tmmbr); |
| } |
| |
| std::unique_ptr<rtcp::RtcpPacket> RTCPSender::BuildTMMBN( |
| const RtcpContext& ctx) { |
| rtcp::Tmmbn* tmmbn = new rtcp::Tmmbn(); |
| tmmbn->SetSenderSsrc(ssrc_); |
| for (const rtcp::TmmbItem& tmmbr : tmmbn_to_send_) { |
| if (tmmbr.bitrate_bps() > 0) { |
| tmmbn->AddTmmbr(tmmbr); |
| } |
| } |
| |
| return std::unique_ptr<rtcp::RtcpPacket>(tmmbn); |
| } |
| |
| std::unique_ptr<rtcp::RtcpPacket> RTCPSender::BuildAPP(const RtcpContext& ctx) { |
| rtcp::App* app = new rtcp::App(); |
| app->SetSsrc(ssrc_); |
| app->SetSubType(app_sub_type_); |
| app->SetName(app_name_); |
| app->SetData(app_data_.get(), app_length_); |
| |
| return std::unique_ptr<rtcp::RtcpPacket>(app); |
| } |
| |
| std::unique_ptr<rtcp::RtcpPacket> RTCPSender::BuildLossNotification( |
| const RtcpContext& ctx) { |
| auto loss_notification = absl::make_unique<rtcp::LossNotification>( |
| loss_notification_state_.last_decoded_seq_num, |
| loss_notification_state_.last_received_seq_num, |
| loss_notification_state_.decodability_flag); |
| loss_notification->SetSenderSsrc(ssrc_); |
| loss_notification->SetMediaSsrc(remote_ssrc_); |
| return std::move(loss_notification); |
| } |
| |
| std::unique_ptr<rtcp::RtcpPacket> RTCPSender::BuildNACK( |
| const RtcpContext& ctx) { |
| rtcp::Nack* nack = new rtcp::Nack(); |
| nack->SetSenderSsrc(ssrc_); |
| nack->SetMediaSsrc(remote_ssrc_); |
| nack->SetPacketIds(ctx.nack_list_, ctx.nack_size_); |
| |
| // Report stats. |
| for (int idx = 0; idx < ctx.nack_size_; ++idx) { |
| nack_stats_.ReportRequest(ctx.nack_list_[idx]); |
| } |
| packet_type_counter_.nack_requests = nack_stats_.requests(); |
| packet_type_counter_.unique_nack_requests = nack_stats_.unique_requests(); |
| |
| ++packet_type_counter_.nack_packets; |
| |
| return std::unique_ptr<rtcp::RtcpPacket>(nack); |
| } |
| |
| std::unique_ptr<rtcp::RtcpPacket> RTCPSender::BuildBYE(const RtcpContext& ctx) { |
| rtcp::Bye* bye = new rtcp::Bye(); |
| bye->SetSenderSsrc(ssrc_); |
| bye->SetCsrcs(csrcs_); |
| |
| return std::unique_ptr<rtcp::RtcpPacket>(bye); |
| } |
| |
| std::unique_ptr<rtcp::RtcpPacket> RTCPSender::BuildExtendedReports( |
| const RtcpContext& ctx) { |
| std::unique_ptr<rtcp::ExtendedReports> xr(new rtcp::ExtendedReports()); |
| xr->SetSenderSsrc(ssrc_); |
| |
| if (!sending_ && xr_send_receiver_reference_time_enabled_) { |
| rtcp::Rrtr rrtr; |
| rrtr.SetNtp(TimeMicrosToNtp(ctx.now_us_)); |
| xr->SetRrtr(rrtr); |
| } |
| |
| for (const rtcp::ReceiveTimeInfo& rti : ctx.feedback_state_.last_xr_rtis) { |
| xr->AddDlrrItem(rti); |
| } |
| |
| if (send_video_bitrate_allocation_) { |
| rtcp::TargetBitrate target_bitrate; |
| |
| for (int sl = 0; sl < kMaxSpatialLayers; ++sl) { |
| for (int tl = 0; tl < kMaxTemporalStreams; ++tl) { |
| if (video_bitrate_allocation_.HasBitrate(sl, tl)) { |
| target_bitrate.AddTargetBitrate( |
| sl, tl, video_bitrate_allocation_.GetBitrate(sl, tl) / 1000); |
| } |
| } |
| } |
| |
| xr->SetTargetBitrate(target_bitrate); |
| send_video_bitrate_allocation_ = false; |
| } |
| |
| return std::move(xr); |
| } |
| |
| int32_t RTCPSender::SendRTCP(const FeedbackState& feedback_state, |
| RTCPPacketType packetType, |
| int32_t nack_size, |
| const uint16_t* nack_list) { |
| return SendCompoundRTCP( |
| feedback_state, std::set<RTCPPacketType>(&packetType, &packetType + 1), |
| nack_size, nack_list); |
| } |
| |
| int32_t RTCPSender::SendCompoundRTCP( |
| const FeedbackState& feedback_state, |
| const std::set<RTCPPacketType>& packet_types, |
| int32_t nack_size, |
| const uint16_t* nack_list) { |
| PacketContainer container(transport_, event_log_); |
| size_t max_packet_size; |
| |
| { |
| rtc::CritScope lock(&critical_section_rtcp_sender_); |
| if (method_ == RtcpMode::kOff) { |
| RTC_LOG(LS_WARNING) << "Can't send rtcp if it is disabled."; |
| return -1; |
| } |
| // Add all flags as volatile. Non volatile entries will not be overwritten. |
| // All new volatile flags added will be consumed by the end of this call. |
| SetFlags(packet_types, true); |
| |
| // Prevent sending streams to send SR before any media has been sent. |
| const bool can_calculate_rtp_timestamp = (last_frame_capture_time_ms_ >= 0); |
| if (!can_calculate_rtp_timestamp) { |
| bool consumed_sr_flag = ConsumeFlag(kRtcpSr); |
| bool consumed_report_flag = sending_ && ConsumeFlag(kRtcpReport); |
| bool sender_report = consumed_report_flag || consumed_sr_flag; |
| if (sender_report && AllVolatileFlagsConsumed()) { |
| // This call was for Sender Report and nothing else. |
| return 0; |
| } |
| if (sending_ && method_ == RtcpMode::kCompound) { |
| // Not allowed to send any RTCP packet without sender report. |
| return -1; |
| } |
| } |
| |
| if (packet_type_counter_.first_packet_time_ms == -1) |
| packet_type_counter_.first_packet_time_ms = clock_->TimeInMilliseconds(); |
| |
| // We need to send our NTP even if we haven't received any reports. |
| RtcpContext context(feedback_state, nack_size, nack_list, |
| clock_->TimeInMicroseconds()); |
| |
| PrepareReport(feedback_state); |
| |
| std::unique_ptr<rtcp::RtcpPacket> packet_bye; |
| |
| auto it = report_flags_.begin(); |
| while (it != report_flags_.end()) { |
| auto builder_it = builders_.find(it->type); |
| RTC_DCHECK(builder_it != builders_.end()) |
| << "Could not find builder for packet type " << it->type; |
| if (it->is_volatile) { |
| report_flags_.erase(it++); |
| } else { |
| ++it; |
| } |
| |
| BuilderFunc func = builder_it->second; |
| std::unique_ptr<rtcp::RtcpPacket> packet = (this->*func)(context); |
| if (packet.get() == nullptr) |
| return -1; |
| // If there is a BYE, don't append now - save it and append it |
| // at the end later. |
| if (builder_it->first == kRtcpBye) { |
| packet_bye = std::move(packet); |
| } else { |
| container.Append(packet.release()); |
| } |
| } |
| |
| // Append the BYE now at the end |
| if (packet_bye) { |
| container.Append(packet_bye.release()); |
| } |
| |
| if (packet_type_counter_observer_ != nullptr) { |
| packet_type_counter_observer_->RtcpPacketTypesCounterUpdated( |
| remote_ssrc_, packet_type_counter_); |
| } |
| |
| RTC_DCHECK(AllVolatileFlagsConsumed()); |
| max_packet_size = max_packet_size_; |
| } |
| |
| size_t bytes_sent = container.SendPackets(max_packet_size); |
| return bytes_sent == 0 ? -1 : 0; |
| } |
| |
| void RTCPSender::PrepareReport(const FeedbackState& feedback_state) { |
| bool generate_report; |
| if (IsFlagPresent(kRtcpSr) || IsFlagPresent(kRtcpRr)) { |
| // Report type already explicitly set, don't automatically populate. |
| generate_report = true; |
| RTC_DCHECK(ConsumeFlag(kRtcpReport) == false); |
| } else { |
| generate_report = |
| (ConsumeFlag(kRtcpReport) && method_ == RtcpMode::kReducedSize) || |
| method_ == RtcpMode::kCompound; |
| if (generate_report) |
| SetFlag(sending_ ? kRtcpSr : kRtcpRr, true); |
| } |
| |
| if (IsFlagPresent(kRtcpSr) || (IsFlagPresent(kRtcpRr) && !cname_.empty())) |
| SetFlag(kRtcpSdes, true); |
| |
| if (generate_report) { |
| if ((!sending_ && xr_send_receiver_reference_time_enabled_) || |
| !feedback_state.last_xr_rtis.empty() || |
| send_video_bitrate_allocation_) { |
| SetFlag(kRtcpAnyExtendedReports, true); |
| } |
| |
| // generate next time to send an RTCP report |
| int min_interval_ms = report_interval_ms_; |
| |
| if (!audio_ && sending_) { |
| // Calculate bandwidth for video; 360 / send bandwidth in kbit/s. |
| int send_bitrate_kbit = feedback_state.send_bitrate / 1000; |
| if (send_bitrate_kbit != 0) { |
| min_interval_ms = 360000 / send_bitrate_kbit; |
| min_interval_ms = std::min(min_interval_ms, report_interval_ms_); |
| } |
| } |
| |
| // The interval between RTCP packets is varied randomly over the |
| // range [1/2,3/2] times the calculated interval. |
| int time_to_next = |
| random_.Rand(min_interval_ms * 1 / 2, min_interval_ms * 3 / 2); |
| |
| RTC_DCHECK_GT(time_to_next, 0); |
| next_time_to_send_rtcp_ = clock_->TimeInMilliseconds() + time_to_next; |
| |
| // RtcpSender expected to be used for sending either just sender reports |
| // or just receiver reports. |
| RTC_DCHECK(!(IsFlagPresent(kRtcpSr) && IsFlagPresent(kRtcpRr))); |
| } |
| } |
| |
| std::vector<rtcp::ReportBlock> RTCPSender::CreateReportBlocks( |
| const FeedbackState& feedback_state) { |
| std::vector<rtcp::ReportBlock> result; |
| if (!receive_statistics_) |
| return result; |
| |
| // TODO(danilchap): Support sending more than |RTCP_MAX_REPORT_BLOCKS| per |
| // compound rtcp packet when single rtcp module is used for multiple media |
| // streams. |
| result = receive_statistics_->RtcpReportBlocks(RTCP_MAX_REPORT_BLOCKS); |
| |
| if (!result.empty() && ((feedback_state.last_rr_ntp_secs != 0) || |
| (feedback_state.last_rr_ntp_frac != 0))) { |
| // Get our NTP as late as possible to avoid a race. |
| uint32_t now = CompactNtp(TimeMicrosToNtp(clock_->TimeInMicroseconds())); |
| |
| uint32_t receive_time = feedback_state.last_rr_ntp_secs & 0x0000FFFF; |
| receive_time <<= 16; |
| receive_time += (feedback_state.last_rr_ntp_frac & 0xffff0000) >> 16; |
| |
| uint32_t delay_since_last_sr = now - receive_time; |
| // TODO(danilchap): Instead of setting same value on all report blocks, |
| // set only when media_ssrc match sender ssrc of the sender report |
| // remote times were taken from. |
| for (auto& report_block : result) { |
| report_block.SetLastSr(feedback_state.remote_sr); |
| report_block.SetDelayLastSr(delay_since_last_sr); |
| } |
| } |
| return result; |
| } |
| |
| void RTCPSender::SetCsrcs(const std::vector<uint32_t>& csrcs) { |
| RTC_DCHECK_LE(csrcs.size(), kRtpCsrcSize); |
| rtc::CritScope lock(&critical_section_rtcp_sender_); |
| csrcs_ = csrcs; |
| } |
| |
| int32_t RTCPSender::SetApplicationSpecificData(uint8_t subType, |
| uint32_t name, |
| const uint8_t* data, |
| uint16_t length) { |
| if (length % 4 != 0) { |
| RTC_LOG(LS_ERROR) << "Failed to SetApplicationSpecificData."; |
| return -1; |
| } |
| rtc::CritScope lock(&critical_section_rtcp_sender_); |
| |
| SetFlag(kRtcpApp, true); |
| app_sub_type_ = subType; |
| app_name_ = name; |
| app_data_.reset(new uint8_t[length]); |
| app_length_ = length; |
| memcpy(app_data_.get(), data, length); |
| return 0; |
| } |
| |
| void RTCPSender::SendRtcpXrReceiverReferenceTime(bool enable) { |
| rtc::CritScope lock(&critical_section_rtcp_sender_); |
| xr_send_receiver_reference_time_enabled_ = enable; |
| } |
| |
| bool RTCPSender::RtcpXrReceiverReferenceTime() const { |
| rtc::CritScope lock(&critical_section_rtcp_sender_); |
| return xr_send_receiver_reference_time_enabled_; |
| } |
| |
| void RTCPSender::SetTmmbn(std::vector<rtcp::TmmbItem> bounding_set) { |
| rtc::CritScope lock(&critical_section_rtcp_sender_); |
| tmmbn_to_send_ = std::move(bounding_set); |
| SetFlag(kRtcpTmmbn, true); |
| } |
| |
| void RTCPSender::SetFlag(uint32_t type, bool is_volatile) { |
| if (type & kRtcpAnyExtendedReports) { |
| report_flags_.insert(ReportFlag(kRtcpAnyExtendedReports, is_volatile)); |
| } else { |
| report_flags_.insert(ReportFlag(type, is_volatile)); |
| } |
| } |
| |
| void RTCPSender::SetFlags(const std::set<RTCPPacketType>& types, |
| bool is_volatile) { |
| for (RTCPPacketType type : types) |
| SetFlag(type, is_volatile); |
| } |
| |
| bool RTCPSender::IsFlagPresent(uint32_t type) const { |
| return report_flags_.find(ReportFlag(type, false)) != report_flags_.end(); |
| } |
| |
| bool RTCPSender::ConsumeFlag(uint32_t type, bool forced) { |
| auto it = report_flags_.find(ReportFlag(type, false)); |
| if (it == report_flags_.end()) |
| return false; |
| if (it->is_volatile || forced) |
| report_flags_.erase((it)); |
| return true; |
| } |
| |
| bool RTCPSender::AllVolatileFlagsConsumed() const { |
| for (const ReportFlag& flag : report_flags_) { |
| if (flag.is_volatile) |
| return false; |
| } |
| return true; |
| } |
| |
| void RTCPSender::SetVideoBitrateAllocation( |
| const VideoBitrateAllocation& bitrate) { |
| rtc::CritScope lock(&critical_section_rtcp_sender_); |
| // Check if this allocation is first ever, or has a different set of |
| // spatial/temporal layers signaled and enabled, if so trigger an rtcp report |
| // as soon as possible. |
| absl::optional<VideoBitrateAllocation> new_bitrate = |
| CheckAndUpdateLayerStructure(bitrate); |
| if (new_bitrate) { |
| video_bitrate_allocation_ = *new_bitrate; |
| next_time_to_send_rtcp_ = clock_->TimeInMilliseconds(); |
| } else { |
| video_bitrate_allocation_ = bitrate; |
| } |
| |
| send_video_bitrate_allocation_ = true; |
| SetFlag(kRtcpAnyExtendedReports, true); |
| } |
| |
| absl::optional<VideoBitrateAllocation> RTCPSender::CheckAndUpdateLayerStructure( |
| const VideoBitrateAllocation& bitrate) const { |
| absl::optional<VideoBitrateAllocation> updated_bitrate; |
| for (size_t si = 0; si < kMaxSpatialLayers; ++si) { |
| for (size_t ti = 0; ti < kMaxTemporalStreams; ++ti) { |
| if (!updated_bitrate && |
| (bitrate.HasBitrate(si, ti) != |
| video_bitrate_allocation_.HasBitrate(si, ti) || |
| (bitrate.GetBitrate(si, ti) == 0) != |
| (video_bitrate_allocation_.GetBitrate(si, ti) == 0))) { |
| updated_bitrate = bitrate; |
| } |
| if (video_bitrate_allocation_.GetBitrate(si, ti) > 0 && |
| bitrate.GetBitrate(si, ti) == 0) { |
| // Make sure this stream disabling is explicitly signaled. |
| updated_bitrate->SetBitrate(si, ti, 0); |
| } |
| } |
| } |
| |
| return updated_bitrate; |
| } |
| |
| bool RTCPSender::SendFeedbackPacket(const rtcp::TransportFeedback& packet) { |
| size_t max_packet_size; |
| { |
| rtc::CritScope lock(&critical_section_rtcp_sender_); |
| if (method_ == RtcpMode::kOff) |
| return false; |
| max_packet_size = max_packet_size_; |
| } |
| |
| RTC_DCHECK_LE(max_packet_size, IP_PACKET_SIZE); |
| bool send_failure = false; |
| auto callback = [&](rtc::ArrayView<const uint8_t> packet) { |
| if (transport_->SendRtcp(packet.data(), packet.size())) { |
| if (event_log_) |
| event_log_->Log(absl::make_unique<RtcEventRtcpPacketOutgoing>(packet)); |
| } else { |
| send_failure = true; |
| } |
| }; |
| return packet.Build(max_packet_size, callback) && !send_failure; |
| } |
| |
| } // namespace webrtc |