| // Copyright 2019 The Abseil Authors. |
| // |
| // Licensed under the Apache License, Version 2.0 (the "License"); |
| // you may not use this file except in compliance with the License. |
| // You may obtain a copy of the License at |
| // |
| // https://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, software |
| // distributed under the License is distributed on an "AS IS" BASIS, |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| // See the License for the specific language governing permissions and |
| // limitations under the License. |
| // |
| // ----------------------------------------------------------------------------- |
| // File: inlined_vector.h |
| // ----------------------------------------------------------------------------- |
| // |
| // This header file contains the declaration and definition of an "inlined |
| // vector" which behaves in an equivalent fashion to a `std::vector`, except |
| // that storage for small sequences of the vector are provided inline without |
| // requiring any heap allocation. |
| // |
| // An `absl::InlinedVector<T, N>` specifies the default capacity `N` as one of |
| // its template parameters. Instances where `size() <= N` hold contained |
| // elements in inline space. Typically `N` is very small so that sequences that |
| // are expected to be short do not require allocations. |
| // |
| // An `absl::InlinedVector` does not usually require a specific allocator. If |
| // the inlined vector grows beyond its initial constraints, it will need to |
| // allocate (as any normal `std::vector` would). This is usually performed with |
| // the default allocator (defined as `std::allocator<T>`). Optionally, a custom |
| // allocator type may be specified as `A` in `absl::InlinedVector<T, N, A>`. |
| |
| #ifndef ABSL_CONTAINER_INLINED_VECTOR_H_ |
| #define ABSL_CONTAINER_INLINED_VECTOR_H_ |
| |
| #include <algorithm> |
| #include <cassert> |
| #include <cstddef> |
| #include <cstdlib> |
| #include <cstring> |
| #include <initializer_list> |
| #include <iterator> |
| #include <memory> |
| #include <type_traits> |
| #include <utility> |
| |
| #include "absl/algorithm/algorithm.h" |
| #include "absl/base/internal/throw_delegate.h" |
| #include "absl/base/optimization.h" |
| #include "absl/base/port.h" |
| #include "absl/container/internal/inlined_vector.h" |
| #include "absl/memory/memory.h" |
| |
| namespace absl { |
| // ----------------------------------------------------------------------------- |
| // InlinedVector |
| // ----------------------------------------------------------------------------- |
| // |
| // An `absl::InlinedVector` is designed to be a drop-in replacement for |
| // `std::vector` for use cases where the vector's size is sufficiently small |
| // that it can be inlined. If the inlined vector does grow beyond its estimated |
| // capacity, it will trigger an initial allocation on the heap, and will behave |
| // as a `std:vector`. The API of the `absl::InlinedVector` within this file is |
| // designed to cover the same API footprint as covered by `std::vector`. |
| template <typename T, size_t N, typename A = std::allocator<T>> |
| class InlinedVector { |
| static_assert( |
| N > 0, "InlinedVector cannot be instantiated with `0` inlined elements."); |
| |
| using Storage = inlined_vector_internal::Storage<InlinedVector>; |
| using Tag = typename Storage::Tag; |
| using AllocatorAndTag = typename Storage::AllocatorAndTag; |
| using Allocation = typename Storage::Allocation; |
| |
| template <typename Iterator> |
| using IsAtLeastForwardIterator = std::is_convertible< |
| typename std::iterator_traits<Iterator>::iterator_category, |
| std::forward_iterator_tag>; |
| |
| template <typename Iterator> |
| using EnableIfAtLeastForwardIterator = |
| absl::enable_if_t<IsAtLeastForwardIterator<Iterator>::value>; |
| |
| template <typename Iterator> |
| using DisableIfAtLeastForwardIterator = |
| absl::enable_if_t<!IsAtLeastForwardIterator<Iterator>::value>; |
| |
| using rvalue_reference = typename Storage::rvalue_reference; |
| |
| public: |
| using allocator_type = typename Storage::allocator_type; |
| using value_type = typename Storage::value_type; |
| using pointer = typename Storage::pointer; |
| using const_pointer = typename Storage::const_pointer; |
| using reference = typename Storage::reference; |
| using const_reference = typename Storage::const_reference; |
| using size_type = typename Storage::size_type; |
| using difference_type = typename Storage::difference_type; |
| using iterator = typename Storage::iterator; |
| using const_iterator = typename Storage::const_iterator; |
| using reverse_iterator = typename Storage::reverse_iterator; |
| using const_reverse_iterator = typename Storage::const_reverse_iterator; |
| |
| // --------------------------------------------------------------------------- |
| // InlinedVector Constructors and Destructor |
| // --------------------------------------------------------------------------- |
| |
| // Creates an empty inlined vector with a default initialized allocator. |
| InlinedVector() noexcept(noexcept(allocator_type())) |
| : storage_(allocator_type()) {} |
| |
| // Creates an empty inlined vector with a specified allocator. |
| explicit InlinedVector(const allocator_type& alloc) noexcept |
| : storage_(alloc) {} |
| |
| // Creates an inlined vector with `n` copies of `value_type()`. |
| explicit InlinedVector(size_type n, |
| const allocator_type& alloc = allocator_type()) |
| : storage_(alloc) { |
| InitAssign(n); |
| } |
| |
| // Creates an inlined vector with `n` copies of `v`. |
| InlinedVector(size_type n, const_reference v, |
| const allocator_type& alloc = allocator_type()) |
| : storage_(alloc) { |
| InitAssign(n, v); |
| } |
| |
| // Creates an inlined vector of copies of the values in `list`. |
| InlinedVector(std::initializer_list<value_type> list, |
| const allocator_type& alloc = allocator_type()) |
| : storage_(alloc) { |
| AppendForwardRange(list.begin(), list.end()); |
| } |
| |
| // Creates an inlined vector with elements constructed from the provided |
| // forward iterator range [`first`, `last`). |
| // |
| // NOTE: The `enable_if` prevents ambiguous interpretation between a call to |
| // this constructor with two integral arguments and a call to the above |
| // `InlinedVector(size_type, const_reference)` constructor. |
| template <typename ForwardIterator, |
| EnableIfAtLeastForwardIterator<ForwardIterator>* = nullptr> |
| InlinedVector(ForwardIterator first, ForwardIterator last, |
| const allocator_type& alloc = allocator_type()) |
| : storage_(alloc) { |
| AppendForwardRange(first, last); |
| } |
| |
| // Creates an inlined vector with elements constructed from the provided input |
| // iterator range [`first`, `last`). |
| template <typename InputIterator, |
| DisableIfAtLeastForwardIterator<InputIterator>* = nullptr> |
| InlinedVector(InputIterator first, InputIterator last, |
| const allocator_type& alloc = allocator_type()) |
| : storage_(alloc) { |
| std::copy(first, last, std::back_inserter(*this)); |
| } |
| |
| // Creates a copy of an `other` inlined vector using `other`'s allocator. |
| InlinedVector(const InlinedVector& other) |
| : InlinedVector(other, other.allocator()) {} |
| |
| // Creates a copy of an `other` inlined vector using a specified allocator. |
| InlinedVector(const InlinedVector& other, const allocator_type& alloc) |
| : storage_(alloc) { |
| reserve(other.size()); |
| if (allocated()) { |
| UninitializedCopy(other.begin(), other.end(), allocated_space()); |
| tag().set_allocated_size(other.size()); |
| } else { |
| UninitializedCopy(other.begin(), other.end(), inlined_space()); |
| tag().set_inline_size(other.size()); |
| } |
| } |
| |
| // Creates an inlined vector by moving in the contents of an `other` inlined |
| // vector without performing any allocations. If `other` contains allocated |
| // memory, the newly-created instance will take ownership of that memory |
| // (leaving `other` itself empty). However, if `other` does not contain any |
| // allocated memory, the new inlined vector will will perform element-wise |
| // move construction of `other`s elements. |
| // |
| // NOTE: since no allocation is performed for the inlined vector in either |
| // case, the `noexcept(...)` specification depends on whether moving the |
| // underlying objects can throw. We assume: |
| // a) Move constructors should only throw due to allocation failure. |
| // b) If `value_type`'s move constructor allocates, it uses the same |
| // allocation function as the `InlinedVector`'s allocator. Thus, the move |
| // constructor is non-throwing if the allocator is non-throwing or |
| // `value_type`'s move constructor is specified as `noexcept`. |
| InlinedVector(InlinedVector&& other) noexcept( |
| absl::allocator_is_nothrow<allocator_type>::value || |
| std::is_nothrow_move_constructible<value_type>::value) |
| : storage_(other.allocator()) { |
| if (other.allocated()) { |
| // We can just steal the underlying buffer from the source. |
| // That leaves the source empty, so we clear its size. |
| init_allocation(other.allocation()); |
| tag().set_allocated_size(other.size()); |
| other.tag() = Tag(); |
| } else { |
| UninitializedCopy( |
| std::make_move_iterator(other.inlined_space()), |
| std::make_move_iterator(other.inlined_space() + other.size()), |
| inlined_space()); |
| tag().set_inline_size(other.size()); |
| } |
| } |
| |
| // Creates an inlined vector by moving in the contents of an `other` inlined |
| // vector, performing allocations with the specified `alloc` allocator. If |
| // `other`'s allocator is not equal to `alloc` and `other` contains allocated |
| // memory, this move constructor will create a new allocation. |
| // |
| // NOTE: since allocation is performed in this case, this constructor can |
| // only be `noexcept` if the specified allocator is also `noexcept`. If this |
| // is the case, or if `other` contains allocated memory, this constructor |
| // performs element-wise move construction of its contents. |
| // |
| // Only in the case where `other`'s allocator is equal to `alloc` and `other` |
| // contains allocated memory will the newly created inlined vector take |
| // ownership of `other`'s allocated memory. |
| InlinedVector(InlinedVector&& other, const allocator_type& alloc) noexcept( |
| absl::allocator_is_nothrow<allocator_type>::value) |
| : storage_(alloc) { |
| if (other.allocated()) { |
| if (alloc == other.allocator()) { |
| // We can just steal the allocation from the source. |
| tag() = other.tag(); |
| init_allocation(other.allocation()); |
| other.tag() = Tag(); |
| } else { |
| // We need to use our own allocator |
| reserve(other.size()); |
| UninitializedCopy(std::make_move_iterator(other.begin()), |
| std::make_move_iterator(other.end()), |
| allocated_space()); |
| tag().set_allocated_size(other.size()); |
| } |
| } else { |
| UninitializedCopy( |
| std::make_move_iterator(other.inlined_space()), |
| std::make_move_iterator(other.inlined_space() + other.size()), |
| inlined_space()); |
| tag().set_inline_size(other.size()); |
| } |
| } |
| |
| ~InlinedVector() { clear(); } |
| |
| // --------------------------------------------------------------------------- |
| // InlinedVector Member Accessors |
| // --------------------------------------------------------------------------- |
| |
| // `InlinedVector::empty()` |
| // |
| // Checks if the inlined vector has no elements. |
| bool empty() const noexcept { return !size(); } |
| |
| // `InlinedVector::size()` |
| // |
| // Returns the number of elements in the inlined vector. |
| size_type size() const noexcept { return tag().size(); } |
| |
| // `InlinedVector::max_size()` |
| // |
| // Returns the maximum number of elements the vector can hold. |
| size_type max_size() const noexcept { |
| // One bit of the size storage is used to indicate whether the inlined |
| // vector is allocated. As a result, the maximum size of the container that |
| // we can express is half of the max for `size_type`. |
| return (std::numeric_limits<size_type>::max)() / 2; |
| } |
| |
| // `InlinedVector::capacity()` |
| // |
| // Returns the number of elements that can be stored in the inlined vector |
| // without requiring a reallocation of underlying memory. |
| // |
| // NOTE: For most inlined vectors, `capacity()` should equal the template |
| // parameter `N`. For inlined vectors which exceed this capacity, they |
| // will no longer be inlined and `capacity()` will equal its capacity on the |
| // allocated heap. |
| size_type capacity() const noexcept { |
| return allocated() ? allocation().capacity() : static_cast<size_type>(N); |
| } |
| |
| // `InlinedVector::data()` |
| // |
| // Returns a `pointer` to elements of the inlined vector. This pointer can be |
| // used to access and modify the contained elements. |
| // Only results within the range [`0`, `size()`) are defined. |
| pointer data() noexcept { |
| return allocated() ? allocated_space() : inlined_space(); |
| } |
| |
| // Overload of `InlinedVector::data()` to return a `const_pointer` to elements |
| // of the inlined vector. This pointer can be used to access (but not modify) |
| // the contained elements. |
| const_pointer data() const noexcept { |
| return allocated() ? allocated_space() : inlined_space(); |
| } |
| |
| // `InlinedVector::operator[]()` |
| // |
| // Returns a `reference` to the `i`th element of the inlined vector using the |
| // array operator. |
| reference operator[](size_type i) { |
| assert(i < size()); |
| return data()[i]; |
| } |
| |
| // Overload of `InlinedVector::operator[]()` to return a `const_reference` to |
| // the `i`th element of the inlined vector. |
| const_reference operator[](size_type i) const { |
| assert(i < size()); |
| return data()[i]; |
| } |
| |
| // `InlinedVector::at()` |
| // |
| // Returns a `reference` to the `i`th element of the inlined vector. |
| reference at(size_type i) { |
| if (ABSL_PREDICT_FALSE(i >= size())) { |
| base_internal::ThrowStdOutOfRange( |
| "`InlinedVector::at(size_type)` failed bounds check"); |
| } |
| return data()[i]; |
| } |
| |
| // Overload of `InlinedVector::at()` to return a `const_reference` to the |
| // `i`th element of the inlined vector. |
| const_reference at(size_type i) const { |
| if (ABSL_PREDICT_FALSE(i >= size())) { |
| base_internal::ThrowStdOutOfRange( |
| "`InlinedVector::at(size_type) const` failed bounds check"); |
| } |
| return data()[i]; |
| } |
| |
| // `InlinedVector::front()` |
| // |
| // Returns a `reference` to the first element of the inlined vector. |
| reference front() { |
| assert(!empty()); |
| return at(0); |
| } |
| |
| // Overload of `InlinedVector::front()` returns a `const_reference` to the |
| // first element of the inlined vector. |
| const_reference front() const { |
| assert(!empty()); |
| return at(0); |
| } |
| |
| // `InlinedVector::back()` |
| // |
| // Returns a `reference` to the last element of the inlined vector. |
| reference back() { |
| assert(!empty()); |
| return at(size() - 1); |
| } |
| |
| // Overload of `InlinedVector::back()` to return a `const_reference` to the |
| // last element of the inlined vector. |
| const_reference back() const { |
| assert(!empty()); |
| return at(size() - 1); |
| } |
| |
| // `InlinedVector::begin()` |
| // |
| // Returns an `iterator` to the beginning of the inlined vector. |
| iterator begin() noexcept { return data(); } |
| |
| // Overload of `InlinedVector::begin()` to return a `const_iterator` to |
| // the beginning of the inlined vector. |
| const_iterator begin() const noexcept { return data(); } |
| |
| // `InlinedVector::end()` |
| // |
| // Returns an `iterator` to the end of the inlined vector. |
| iterator end() noexcept { return data() + size(); } |
| |
| // Overload of `InlinedVector::end()` to return a `const_iterator` to the |
| // end of the inlined vector. |
| const_iterator end() const noexcept { return data() + size(); } |
| |
| // `InlinedVector::cbegin()` |
| // |
| // Returns a `const_iterator` to the beginning of the inlined vector. |
| const_iterator cbegin() const noexcept { return begin(); } |
| |
| // `InlinedVector::cend()` |
| // |
| // Returns a `const_iterator` to the end of the inlined vector. |
| const_iterator cend() const noexcept { return end(); } |
| |
| // `InlinedVector::rbegin()` |
| // |
| // Returns a `reverse_iterator` from the end of the inlined vector. |
| reverse_iterator rbegin() noexcept { return reverse_iterator(end()); } |
| |
| // Overload of `InlinedVector::rbegin()` to return a |
| // `const_reverse_iterator` from the end of the inlined vector. |
| const_reverse_iterator rbegin() const noexcept { |
| return const_reverse_iterator(end()); |
| } |
| |
| // `InlinedVector::rend()` |
| // |
| // Returns a `reverse_iterator` from the beginning of the inlined vector. |
| reverse_iterator rend() noexcept { return reverse_iterator(begin()); } |
| |
| // Overload of `InlinedVector::rend()` to return a `const_reverse_iterator` |
| // from the beginning of the inlined vector. |
| const_reverse_iterator rend() const noexcept { |
| return const_reverse_iterator(begin()); |
| } |
| |
| // `InlinedVector::crbegin()` |
| // |
| // Returns a `const_reverse_iterator` from the end of the inlined vector. |
| const_reverse_iterator crbegin() const noexcept { return rbegin(); } |
| |
| // `InlinedVector::crend()` |
| // |
| // Returns a `const_reverse_iterator` from the beginning of the inlined |
| // vector. |
| const_reverse_iterator crend() const noexcept { return rend(); } |
| |
| // `InlinedVector::get_allocator()` |
| // |
| // Returns a copy of the allocator of the inlined vector. |
| allocator_type get_allocator() const { return allocator(); } |
| |
| // --------------------------------------------------------------------------- |
| // InlinedVector Member Mutators |
| // --------------------------------------------------------------------------- |
| |
| // `InlinedVector::operator=()` |
| // |
| // Replaces the contents of the inlined vector with copies of the elements in |
| // the provided `std::initializer_list`. |
| InlinedVector& operator=(std::initializer_list<value_type> list) { |
| AssignForwardRange(list.begin(), list.end()); |
| return *this; |
| } |
| |
| // Overload of `InlinedVector::operator=()` to replace the contents of the |
| // inlined vector with the contents of `other`. |
| InlinedVector& operator=(const InlinedVector& other) { |
| if (ABSL_PREDICT_FALSE(this == &other)) return *this; |
| |
| // Optimized to avoid reallocation. |
| // Prefer reassignment to copy construction for elements. |
| if (size() < other.size()) { // grow |
| reserve(other.size()); |
| std::copy(other.begin(), other.begin() + size(), begin()); |
| std::copy(other.begin() + size(), other.end(), std::back_inserter(*this)); |
| } else { // maybe shrink |
| erase(begin() + other.size(), end()); |
| std::copy(other.begin(), other.end(), begin()); |
| } |
| return *this; |
| } |
| |
| // Overload of `InlinedVector::operator=()` to replace the contents of the |
| // inlined vector with the contents of `other`. |
| // |
| // NOTE: As a result of calling this overload, `other` may be empty or it's |
| // contents may be left in a moved-from state. |
| InlinedVector& operator=(InlinedVector&& other) { |
| if (ABSL_PREDICT_FALSE(this == &other)) return *this; |
| |
| if (other.allocated()) { |
| clear(); |
| tag().set_allocated_size(other.size()); |
| init_allocation(other.allocation()); |
| other.tag() = Tag(); |
| } else { |
| if (allocated()) clear(); |
| // Both are inlined now. |
| if (size() < other.size()) { |
| auto mid = std::make_move_iterator(other.begin() + size()); |
| std::copy(std::make_move_iterator(other.begin()), mid, begin()); |
| UninitializedCopy(mid, std::make_move_iterator(other.end()), end()); |
| } else { |
| auto new_end = std::copy(std::make_move_iterator(other.begin()), |
| std::make_move_iterator(other.end()), begin()); |
| Destroy(new_end, end()); |
| } |
| tag().set_inline_size(other.size()); |
| } |
| return *this; |
| } |
| |
| // `InlinedVector::assign()` |
| // |
| // Replaces the contents of the inlined vector with `n` copies of `v`. |
| void assign(size_type n, const_reference v) { |
| if (n <= size()) { // Possibly shrink |
| std::fill_n(begin(), n, v); |
| erase(begin() + n, end()); |
| return; |
| } |
| // Grow |
| reserve(n); |
| std::fill_n(begin(), size(), v); |
| if (allocated()) { |
| UninitializedFill(allocated_space() + size(), allocated_space() + n, v); |
| tag().set_allocated_size(n); |
| } else { |
| UninitializedFill(inlined_space() + size(), inlined_space() + n, v); |
| tag().set_inline_size(n); |
| } |
| } |
| |
| // Overload of `InlinedVector::assign()` to replace the contents of the |
| // inlined vector with copies of the values in the provided |
| // `std::initializer_list`. |
| void assign(std::initializer_list<value_type> list) { |
| AssignForwardRange(list.begin(), list.end()); |
| } |
| |
| // Overload of `InlinedVector::assign()` to replace the contents of the |
| // inlined vector with the forward iterator range [`first`, `last`). |
| template <typename ForwardIterator, |
| EnableIfAtLeastForwardIterator<ForwardIterator>* = nullptr> |
| void assign(ForwardIterator first, ForwardIterator last) { |
| AssignForwardRange(first, last); |
| } |
| |
| // Overload of `InlinedVector::assign()` to replace the contents of the |
| // inlined vector with the input iterator range [`first`, `last`). |
| template <typename InputIterator, |
| DisableIfAtLeastForwardIterator<InputIterator>* = nullptr> |
| void assign(InputIterator first, InputIterator last) { |
| size_type assign_index = 0; |
| for (; (assign_index < size()) && (first != last); |
| static_cast<void>(++assign_index), static_cast<void>(++first)) { |
| *(data() + assign_index) = *first; |
| } |
| erase(data() + assign_index, data() + size()); |
| std::copy(first, last, std::back_inserter(*this)); |
| } |
| |
| // `InlinedVector::resize()` |
| // |
| // Resizes the inlined vector to contain `n` elements. If `n` is smaller than |
| // the inlined vector's current size, extra elements are destroyed. If `n` is |
| // larger than the initial size, new elements are value-initialized. |
| void resize(size_type n) { |
| size_type s = size(); |
| if (n < s) { |
| erase(begin() + n, end()); |
| return; |
| } |
| reserve(n); |
| assert(capacity() >= n); |
| |
| // Fill new space with elements constructed in-place. |
| if (allocated()) { |
| UninitializedFill(allocated_space() + s, allocated_space() + n); |
| tag().set_allocated_size(n); |
| } else { |
| UninitializedFill(inlined_space() + s, inlined_space() + n); |
| tag().set_inline_size(n); |
| } |
| } |
| |
| // Overload of `InlinedVector::resize()` to resize the inlined vector to |
| // contain `n` elements where, if `n` is larger than `size()`, the new values |
| // will be copy-constructed from `v`. |
| void resize(size_type n, const_reference v) { |
| size_type s = size(); |
| if (n < s) { |
| erase(begin() + n, end()); |
| return; |
| } |
| reserve(n); |
| assert(capacity() >= n); |
| |
| // Fill new space with copies of `v`. |
| if (allocated()) { |
| UninitializedFill(allocated_space() + s, allocated_space() + n, v); |
| tag().set_allocated_size(n); |
| } else { |
| UninitializedFill(inlined_space() + s, inlined_space() + n, v); |
| tag().set_inline_size(n); |
| } |
| } |
| |
| // `InlinedVector::insert()` |
| // |
| // Copies `v` into `pos`, returning an `iterator` pointing to the newly |
| // inserted element. |
| iterator insert(const_iterator pos, const_reference v) { |
| return emplace(pos, v); |
| } |
| |
| // Overload of `InlinedVector::insert()` for moving `v` into `pos`, returning |
| // an iterator pointing to the newly inserted element. |
| iterator insert(const_iterator pos, rvalue_reference v) { |
| return emplace(pos, std::move(v)); |
| } |
| |
| // Overload of `InlinedVector::insert()` for inserting `n` contiguous copies |
| // of `v` starting at `pos`. Returns an `iterator` pointing to the first of |
| // the newly inserted elements. |
| iterator insert(const_iterator pos, size_type n, const_reference v) { |
| return InsertWithCount(pos, n, v); |
| } |
| |
| // Overload of `InlinedVector::insert()` for copying the contents of the |
| // `std::initializer_list` into the vector starting at `pos`. Returns an |
| // `iterator` pointing to the first of the newly inserted elements. |
| iterator insert(const_iterator pos, std::initializer_list<value_type> list) { |
| return insert(pos, list.begin(), list.end()); |
| } |
| |
| // Overload of `InlinedVector::insert()` for inserting elements constructed |
| // from the forward iterator range [`first`, `last`). Returns an `iterator` |
| // pointing to the first of the newly inserted elements. |
| // |
| // NOTE: The `enable_if` is intended to disambiguate the two three-argument |
| // overloads of `insert()`. |
| template <typename ForwardIterator, |
| EnableIfAtLeastForwardIterator<ForwardIterator>* = nullptr> |
| iterator insert(const_iterator pos, ForwardIterator first, |
| ForwardIterator last) { |
| return InsertWithForwardRange(pos, first, last); |
| } |
| |
| // Overload of `InlinedVector::insert()` for inserting elements constructed |
| // from the input iterator range [`first`, `last`). Returns an `iterator` |
| // pointing to the first of the newly inserted elements. |
| template <typename InputIterator, |
| DisableIfAtLeastForwardIterator<InputIterator>* = nullptr> |
| iterator insert(const_iterator pos, InputIterator first, InputIterator last) { |
| size_type initial_insert_index = std::distance(cbegin(), pos); |
| for (size_type insert_index = initial_insert_index; first != last; |
| static_cast<void>(++insert_index), static_cast<void>(++first)) { |
| insert(data() + insert_index, *first); |
| } |
| return iterator(data() + initial_insert_index); |
| } |
| |
| // `InlinedVector::emplace()` |
| // |
| // Constructs and inserts an object in the inlined vector at the given `pos`, |
| // returning an `iterator` pointing to the newly emplaced element. |
| template <typename... Args> |
| iterator emplace(const_iterator pos, Args&&... args) { |
| assert(pos >= begin()); |
| assert(pos <= end()); |
| if (ABSL_PREDICT_FALSE(pos == end())) { |
| emplace_back(std::forward<Args>(args)...); |
| return end() - 1; |
| } |
| |
| T new_t = T(std::forward<Args>(args)...); |
| |
| auto range = ShiftRight(pos, 1); |
| if (range.first == range.second) { |
| // constructing into uninitialized memory |
| Construct(range.first, std::move(new_t)); |
| } else { |
| // assigning into moved-from object |
| *range.first = T(std::move(new_t)); |
| } |
| |
| return range.first; |
| } |
| |
| // `InlinedVector::emplace_back()` |
| // |
| // Constructs and appends a new element to the end of the inlined vector, |
| // returning a `reference` to the emplaced element. |
| template <typename... Args> |
| reference emplace_back(Args&&... args) { |
| size_type s = size(); |
| if (ABSL_PREDICT_FALSE(s == capacity())) { |
| return GrowAndEmplaceBack(std::forward<Args>(args)...); |
| } |
| pointer space; |
| if (allocated()) { |
| tag().set_allocated_size(s + 1); |
| space = allocated_space(); |
| } else { |
| tag().set_inline_size(s + 1); |
| space = inlined_space(); |
| } |
| return Construct(space + s, std::forward<Args>(args)...); |
| } |
| |
| // `InlinedVector::push_back()` |
| // |
| // Appends a copy of `v` to the end of the inlined vector. |
| void push_back(const_reference v) { static_cast<void>(emplace_back(v)); } |
| |
| // Overload of `InlinedVector::push_back()` for moving `v` into a newly |
| // appended element. |
| void push_back(rvalue_reference v) { |
| static_cast<void>(emplace_back(std::move(v))); |
| } |
| |
| // `InlinedVector::pop_back()` |
| // |
| // Destroys the element at the end of the inlined vector and shrinks the size |
| // by `1` (unless the inlined vector is empty, in which case this is a no-op). |
| void pop_back() noexcept { |
| assert(!empty()); |
| size_type s = size(); |
| if (allocated()) { |
| Destroy(allocated_space() + s - 1, allocated_space() + s); |
| tag().set_allocated_size(s - 1); |
| } else { |
| Destroy(inlined_space() + s - 1, inlined_space() + s); |
| tag().set_inline_size(s - 1); |
| } |
| } |
| |
| // `InlinedVector::erase()` |
| // |
| // Erases the element at `pos` of the inlined vector, returning an `iterator` |
| // pointing to the first element following the erased element. |
| // |
| // NOTE: May return the end iterator, which is not dereferencable. |
| iterator erase(const_iterator pos) { |
| assert(pos >= begin()); |
| assert(pos < end()); |
| |
| iterator position = const_cast<iterator>(pos); |
| std::move(position + 1, end(), position); |
| pop_back(); |
| return position; |
| } |
| |
| // Overload of `InlinedVector::erase()` for erasing all elements in the |
| // range [`from`, `to`) in the inlined vector. Returns an `iterator` pointing |
| // to the first element following the range erased or the end iterator if `to` |
| // was the end iterator. |
| iterator erase(const_iterator from, const_iterator to) { |
| assert(begin() <= from); |
| assert(from <= to); |
| assert(to <= end()); |
| |
| iterator range_start = const_cast<iterator>(from); |
| iterator range_end = const_cast<iterator>(to); |
| |
| size_type s = size(); |
| ptrdiff_t erase_gap = std::distance(range_start, range_end); |
| if (erase_gap > 0) { |
| pointer space; |
| if (allocated()) { |
| space = allocated_space(); |
| tag().set_allocated_size(s - erase_gap); |
| } else { |
| space = inlined_space(); |
| tag().set_inline_size(s - erase_gap); |
| } |
| std::move(range_end, space + s, range_start); |
| Destroy(space + s - erase_gap, space + s); |
| } |
| return range_start; |
| } |
| |
| // `InlinedVector::clear()` |
| // |
| // Destroys all elements in the inlined vector, sets the size of `0` and |
| // deallocates the heap allocation if the inlined vector was allocated. |
| void clear() noexcept { |
| size_type s = size(); |
| if (allocated()) { |
| Destroy(allocated_space(), allocated_space() + s); |
| allocation().Dealloc(allocator()); |
| } else if (s != 0) { // do nothing for empty vectors |
| Destroy(inlined_space(), inlined_space() + s); |
| } |
| tag() = Tag(); |
| } |
| |
| // `InlinedVector::reserve()` |
| // |
| // Enlarges the underlying representation of the inlined vector so it can hold |
| // at least `n` elements. This method does not change `size()` or the actual |
| // contents of the vector. |
| // |
| // NOTE: If `n` does not exceed `capacity()`, `reserve()` will have no |
| // effects. Otherwise, `reserve()` will reallocate, performing an n-time |
| // element-wise move of everything contained. |
| void reserve(size_type n) { |
| if (n > capacity()) { |
| // Make room for new elements |
| EnlargeBy(n - size()); |
| } |
| } |
| |
| // `InlinedVector::shrink_to_fit()` |
| // |
| // Reduces memory usage by freeing unused memory. After this call, calls to |
| // `capacity()` will be equal to `max(N, size())`. |
| // |
| // If `size() <= N` and the elements are currently stored on the heap, they |
| // will be moved to the inlined storage and the heap memory will be |
| // deallocated. |
| // |
| // If `size() > N` and `size() < capacity()` the elements will be moved to a |
| // smaller heap allocation. |
| void shrink_to_fit() { |
| const auto s = size(); |
| if (ABSL_PREDICT_FALSE(!allocated() || s == capacity())) return; |
| |
| if (s <= N) { |
| // Move the elements to the inlined storage. |
| // We have to do this using a temporary, because `inlined_storage` and |
| // `allocation_storage` are in a union field. |
| auto temp = std::move(*this); |
| assign(std::make_move_iterator(temp.begin()), |
| std::make_move_iterator(temp.end())); |
| return; |
| } |
| |
| // Reallocate storage and move elements. |
| // We can't simply use the same approach as above, because `assign()` would |
| // call into `reserve()` internally and reserve larger capacity than we need |
| Allocation new_allocation(allocator(), s); |
| UninitializedCopy(std::make_move_iterator(allocated_space()), |
| std::make_move_iterator(allocated_space() + s), |
| new_allocation.buffer()); |
| ResetAllocation(new_allocation, s); |
| } |
| |
| // `InlinedVector::swap()` |
| // |
| // Swaps the contents of this inlined vector with the contents of `other`. |
| void swap(InlinedVector& other) { |
| if (ABSL_PREDICT_FALSE(this == &other)) return; |
| |
| SwapImpl(other); |
| } |
| |
| private: |
| template <typename H, typename TheT, size_t TheN, typename TheA> |
| friend auto AbslHashValue(H h, const InlinedVector<TheT, TheN, TheA>& v) -> H; |
| |
| const Tag& tag() const { return storage_.allocator_and_tag_.tag(); } |
| |
| Tag& tag() { return storage_.allocator_and_tag_.tag(); } |
| |
| Allocation& allocation() { |
| return reinterpret_cast<Allocation&>( |
| storage_.rep_.allocation_storage.allocation); |
| } |
| |
| const Allocation& allocation() const { |
| return reinterpret_cast<const Allocation&>( |
| storage_.rep_.allocation_storage.allocation); |
| } |
| |
| void init_allocation(const Allocation& allocation) { |
| new (&storage_.rep_.allocation_storage.allocation) Allocation(allocation); |
| } |
| |
| // TODO(absl-team): investigate whether the reinterpret_cast is appropriate. |
| pointer inlined_space() { |
| return reinterpret_cast<pointer>( |
| std::addressof(storage_.rep_.inlined_storage.inlined[0])); |
| } |
| |
| const_pointer inlined_space() const { |
| return reinterpret_cast<const_pointer>( |
| std::addressof(storage_.rep_.inlined_storage.inlined[0])); |
| } |
| |
| pointer allocated_space() { return allocation().buffer(); } |
| |
| const_pointer allocated_space() const { return allocation().buffer(); } |
| |
| const allocator_type& allocator() const { |
| return storage_.allocator_and_tag_.allocator(); |
| } |
| |
| allocator_type& allocator() { |
| return storage_.allocator_and_tag_.allocator(); |
| } |
| |
| bool allocated() const { return tag().allocated(); } |
| |
| void ResetAllocation(Allocation new_allocation, size_type new_size) { |
| if (allocated()) { |
| Destroy(allocated_space(), allocated_space() + size()); |
| assert(begin() == allocated_space()); |
| allocation().Dealloc(allocator()); |
| allocation() = new_allocation; |
| } else { |
| Destroy(inlined_space(), inlined_space() + size()); |
| init_allocation(new_allocation); // bug: only init once |
| } |
| tag().set_allocated_size(new_size); |
| } |
| |
| template <typename... Args> |
| reference Construct(pointer p, Args&&... args) { |
| std::allocator_traits<allocator_type>::construct( |
| allocator(), p, std::forward<Args>(args)...); |
| return *p; |
| } |
| |
| template <typename Iterator> |
| void UninitializedCopy(Iterator src, Iterator src_last, pointer dst) { |
| for (; src != src_last; ++dst, ++src) Construct(dst, *src); |
| } |
| |
| template <typename... Args> |
| void UninitializedFill(pointer dst, pointer dst_last, const Args&... args) { |
| for (; dst != dst_last; ++dst) Construct(dst, args...); |
| } |
| |
| // Destroy [`from`, `to`) in place. |
| void Destroy(pointer from, pointer to) { |
| for (pointer cur = from; cur != to; ++cur) { |
| std::allocator_traits<allocator_type>::destroy(allocator(), cur); |
| } |
| #if !defined(NDEBUG) |
| // Overwrite unused memory with `0xab` so we can catch uninitialized usage. |
| // Cast to `void*` to tell the compiler that we don't care that we might be |
| // scribbling on a vtable pointer. |
| if (from != to) { |
| auto len = sizeof(value_type) * std::distance(from, to); |
| std::memset(reinterpret_cast<void*>(from), 0xab, len); |
| } |
| #endif // !defined(NDEBUG) |
| } |
| |
| // Enlarge the underlying representation so we can store `size_ + delta` elems |
| // in allocated space. The size is not changed, and any newly added memory is |
| // not initialized. |
| void EnlargeBy(size_type delta) { |
| const size_type s = size(); |
| assert(s <= capacity()); |
| |
| size_type target = (std::max)(N, s + delta); |
| |
| // Compute new capacity by repeatedly doubling current capacity |
| // TODO(psrc): Check and avoid overflow? |
| size_type new_capacity = capacity(); |
| while (new_capacity < target) { |
| new_capacity <<= 1; |
| } |
| |
| Allocation new_allocation(allocator(), new_capacity); |
| |
| UninitializedCopy(std::make_move_iterator(data()), |
| std::make_move_iterator(data() + s), |
| new_allocation.buffer()); |
| |
| ResetAllocation(new_allocation, s); |
| } |
| |
| // Shift all elements from `position` to `end()` by `n` places to the right. |
| // If the vector needs to be enlarged, memory will be allocated. |
| // Returns `iterator`s pointing to the start of the previously-initialized |
| // portion and the start of the uninitialized portion of the created gap. |
| // The number of initialized spots is `pair.second - pair.first`. The number |
| // of raw spots is `n - (pair.second - pair.first)`. |
| // |
| // Updates the size of the InlinedVector internally. |
| std::pair<iterator, iterator> ShiftRight(const_iterator position, |
| size_type n) { |
| iterator start_used = const_cast<iterator>(position); |
| iterator start_raw = const_cast<iterator>(position); |
| size_type s = size(); |
| size_type required_size = s + n; |
| |
| if (required_size > capacity()) { |
| // Compute new capacity by repeatedly doubling current capacity |
| size_type new_capacity = capacity(); |
| while (new_capacity < required_size) { |
| new_capacity <<= 1; |
| } |
| // Move everyone into the new allocation, leaving a gap of `n` for the |
| // requested shift. |
| Allocation new_allocation(allocator(), new_capacity); |
| size_type index = position - begin(); |
| UninitializedCopy(std::make_move_iterator(data()), |
| std::make_move_iterator(data() + index), |
| new_allocation.buffer()); |
| UninitializedCopy(std::make_move_iterator(data() + index), |
| std::make_move_iterator(data() + s), |
| new_allocation.buffer() + index + n); |
| ResetAllocation(new_allocation, s); |
| |
| // New allocation means our iterator is invalid, so we'll recalculate. |
| // Since the entire gap is in new space, there's no used space to reuse. |
| start_raw = begin() + index; |
| start_used = start_raw; |
| } else { |
| // If we had enough space, it's a two-part move. Elements going into |
| // previously-unoccupied space need an `UninitializedCopy()`. Elements |
| // going into a previously-occupied space are just a `std::move()`. |
| iterator pos = const_cast<iterator>(position); |
| iterator raw_space = end(); |
| size_type slots_in_used_space = raw_space - pos; |
| size_type new_elements_in_used_space = (std::min)(n, slots_in_used_space); |
| size_type new_elements_in_raw_space = n - new_elements_in_used_space; |
| size_type old_elements_in_used_space = |
| slots_in_used_space - new_elements_in_used_space; |
| |
| UninitializedCopy( |
| std::make_move_iterator(pos + old_elements_in_used_space), |
| std::make_move_iterator(raw_space), |
| raw_space + new_elements_in_raw_space); |
| std::move_backward(pos, pos + old_elements_in_used_space, raw_space); |
| |
| // If the gap is entirely in raw space, the used space starts where the |
| // raw space starts, leaving no elements in used space. If the gap is |
| // entirely in used space, the raw space starts at the end of the gap, |
| // leaving all elements accounted for within the used space. |
| start_used = pos; |
| start_raw = pos + new_elements_in_used_space; |
| } |
| tag().add_size(n); |
| return std::make_pair(start_used, start_raw); |
| } |
| |
| template <typename... Args> |
| reference GrowAndEmplaceBack(Args&&... args) { |
| assert(size() == capacity()); |
| const size_type s = size(); |
| |
| Allocation new_allocation(allocator(), 2 * capacity()); |
| |
| reference new_element = |
| Construct(new_allocation.buffer() + s, std::forward<Args>(args)...); |
| UninitializedCopy(std::make_move_iterator(data()), |
| std::make_move_iterator(data() + s), |
| new_allocation.buffer()); |
| |
| ResetAllocation(new_allocation, s + 1); |
| |
| return new_element; |
| } |
| |
| void InitAssign(size_type n) { |
| if (n > N) { |
| Allocation new_allocation(allocator(), n); |
| init_allocation(new_allocation); |
| UninitializedFill(allocated_space(), allocated_space() + n); |
| tag().set_allocated_size(n); |
| } else { |
| UninitializedFill(inlined_space(), inlined_space() + n); |
| tag().set_inline_size(n); |
| } |
| } |
| |
| void InitAssign(size_type n, const_reference v) { |
| if (n > N) { |
| Allocation new_allocation(allocator(), n); |
| init_allocation(new_allocation); |
| UninitializedFill(allocated_space(), allocated_space() + n, v); |
| tag().set_allocated_size(n); |
| } else { |
| UninitializedFill(inlined_space(), inlined_space() + n, v); |
| tag().set_inline_size(n); |
| } |
| } |
| |
| template <typename ForwardIt> |
| void AssignForwardRange(ForwardIt first, ForwardIt last) { |
| static_assert(IsAtLeastForwardIterator<ForwardIt>::value, ""); |
| |
| auto length = std::distance(first, last); |
| |
| // Prefer reassignment to copy construction for elements. |
| if (static_cast<size_type>(length) <= size()) { |
| erase(std::copy(first, last, begin()), end()); |
| return; |
| } |
| |
| reserve(length); |
| iterator out = begin(); |
| for (; out != end(); ++first, ++out) *out = *first; |
| if (allocated()) { |
| UninitializedCopy(first, last, out); |
| tag().set_allocated_size(length); |
| } else { |
| UninitializedCopy(first, last, out); |
| tag().set_inline_size(length); |
| } |
| } |
| |
| template <typename ForwardIt> |
| void AppendForwardRange(ForwardIt first, ForwardIt last) { |
| static_assert(IsAtLeastForwardIterator<ForwardIt>::value, ""); |
| |
| auto length = std::distance(first, last); |
| reserve(size() + length); |
| if (allocated()) { |
| UninitializedCopy(first, last, allocated_space() + size()); |
| tag().set_allocated_size(size() + length); |
| } else { |
| UninitializedCopy(first, last, inlined_space() + size()); |
| tag().set_inline_size(size() + length); |
| } |
| } |
| |
| iterator InsertWithCount(const_iterator position, size_type n, |
| const_reference v) { |
| assert(position >= begin() && position <= end()); |
| if (ABSL_PREDICT_FALSE(n == 0)) return const_cast<iterator>(position); |
| |
| value_type copy = v; |
| std::pair<iterator, iterator> it_pair = ShiftRight(position, n); |
| std::fill(it_pair.first, it_pair.second, copy); |
| UninitializedFill(it_pair.second, it_pair.first + n, copy); |
| |
| return it_pair.first; |
| } |
| |
| template <typename ForwardIt> |
| iterator InsertWithForwardRange(const_iterator position, ForwardIt first, |
| ForwardIt last) { |
| static_assert(IsAtLeastForwardIterator<ForwardIt>::value, ""); |
| assert(position >= begin() && position <= end()); |
| |
| if (ABSL_PREDICT_FALSE(first == last)) |
| return const_cast<iterator>(position); |
| |
| auto n = std::distance(first, last); |
| std::pair<iterator, iterator> it_pair = ShiftRight(position, n); |
| size_type used_spots = it_pair.second - it_pair.first; |
| auto open_spot = std::next(first, used_spots); |
| std::copy(first, open_spot, it_pair.first); |
| UninitializedCopy(open_spot, last, it_pair.second); |
| return it_pair.first; |
| } |
| |
| void SwapImpl(InlinedVector& other) { |
| using std::swap; // Augment ADL with `std::swap`. |
| |
| if (allocated() && other.allocated()) { |
| // Both out of line, so just swap the tag, allocation, and allocator. |
| swap(tag(), other.tag()); |
| swap(allocation(), other.allocation()); |
| swap(allocator(), other.allocator()); |
| return; |
| } |
| if (!allocated() && !other.allocated()) { |
| // Both inlined: swap up to smaller size, then move remaining elements. |
| InlinedVector* a = this; |
| InlinedVector* b = &other; |
| if (size() < other.size()) { |
| swap(a, b); |
| } |
| |
| const size_type a_size = a->size(); |
| const size_type b_size = b->size(); |
| assert(a_size >= b_size); |
| // `a` is larger. Swap the elements up to the smaller array size. |
| std::swap_ranges(a->inlined_space(), a->inlined_space() + b_size, |
| b->inlined_space()); |
| |
| // Move the remaining elements: |
| // [`b_size`, `a_size`) from `a` -> [`b_size`, `a_size`) from `b` |
| b->UninitializedCopy(a->inlined_space() + b_size, |
| a->inlined_space() + a_size, |
| b->inlined_space() + b_size); |
| a->Destroy(a->inlined_space() + b_size, a->inlined_space() + a_size); |
| |
| swap(a->tag(), b->tag()); |
| swap(a->allocator(), b->allocator()); |
| assert(b->size() == a_size); |
| assert(a->size() == b_size); |
| return; |
| } |
| |
| // One is out of line, one is inline. |
| // We first move the elements from the inlined vector into the |
| // inlined space in the other vector. We then put the other vector's |
| // pointer/capacity into the originally inlined vector and swap |
| // the tags. |
| InlinedVector* a = this; |
| InlinedVector* b = &other; |
| if (a->allocated()) { |
| swap(a, b); |
| } |
| assert(!a->allocated()); |
| assert(b->allocated()); |
| const size_type a_size = a->size(); |
| const size_type b_size = b->size(); |
| // In an optimized build, `b_size` would be unused. |
| static_cast<void>(b_size); |
| |
| // Made Local copies of `size()`, don't need `tag()` accurate anymore |
| swap(a->tag(), b->tag()); |
| |
| // Copy `b_allocation` out before `b`'s union gets clobbered by |
| // `inline_space` |
| Allocation b_allocation = b->allocation(); |
| |
| b->UninitializedCopy(a->inlined_space(), a->inlined_space() + a_size, |
| b->inlined_space()); |
| a->Destroy(a->inlined_space(), a->inlined_space() + a_size); |
| |
| a->allocation() = b_allocation; |
| |
| if (a->allocator() != b->allocator()) { |
| swap(a->allocator(), b->allocator()); |
| } |
| |
| assert(b->size() == a_size); |
| assert(a->size() == b_size); |
| } |
| |
| Storage storage_; |
| }; |
| |
| // ----------------------------------------------------------------------------- |
| // InlinedVector Non-Member Functions |
| // ----------------------------------------------------------------------------- |
| |
| // `swap()` |
| // |
| // Swaps the contents of two inlined vectors. This convenience function |
| // simply calls `InlinedVector::swap()`. |
| template <typename T, size_t N, typename A> |
| auto swap(InlinedVector<T, N, A>& a, |
| InlinedVector<T, N, A>& b) noexcept(noexcept(a.swap(b))) -> void { |
| a.swap(b); |
| } |
| |
| // `operator==()` |
| // |
| // Tests the equivalency of the contents of two inlined vectors. |
| template <typename T, size_t N, typename A> |
| auto operator==(const InlinedVector<T, N, A>& a, |
| const InlinedVector<T, N, A>& b) -> bool { |
| return absl::equal(a.begin(), a.end(), b.begin(), b.end()); |
| } |
| |
| // `operator!=()` |
| // |
| // Tests the inequality of the contents of two inlined vectors. |
| template <typename T, size_t N, typename A> |
| auto operator!=(const InlinedVector<T, N, A>& a, |
| const InlinedVector<T, N, A>& b) -> bool { |
| return !(a == b); |
| } |
| |
| // `operator<()` |
| // |
| // Tests whether the contents of one inlined vector are less than the contents |
| // of another through a lexicographical comparison operation. |
| template <typename T, size_t N, typename A> |
| auto operator<(const InlinedVector<T, N, A>& a, const InlinedVector<T, N, A>& b) |
| -> bool { |
| return std::lexicographical_compare(a.begin(), a.end(), b.begin(), b.end()); |
| } |
| |
| // `operator>()` |
| // |
| // Tests whether the contents of one inlined vector are greater than the |
| // contents of another through a lexicographical comparison operation. |
| template <typename T, size_t N, typename A> |
| auto operator>(const InlinedVector<T, N, A>& a, const InlinedVector<T, N, A>& b) |
| -> bool { |
| return b < a; |
| } |
| |
| // `operator<=()` |
| // |
| // Tests whether the contents of one inlined vector are less than or equal to |
| // the contents of another through a lexicographical comparison operation. |
| template <typename T, size_t N, typename A> |
| auto operator<=(const InlinedVector<T, N, A>& a, |
| const InlinedVector<T, N, A>& b) -> bool { |
| return !(b < a); |
| } |
| |
| // `operator>=()` |
| // |
| // Tests whether the contents of one inlined vector are greater than or equal to |
| // the contents of another through a lexicographical comparison operation. |
| template <typename T, size_t N, typename A> |
| auto operator>=(const InlinedVector<T, N, A>& a, |
| const InlinedVector<T, N, A>& b) -> bool { |
| return !(a < b); |
| } |
| |
| // AbslHashValue() |
| // |
| // Provides `absl::Hash` support for inlined vectors. You do not normally call |
| // this function directly. |
| template <typename H, typename TheT, size_t TheN, typename TheA> |
| auto AbslHashValue(H h, const InlinedVector<TheT, TheN, TheA>& v) -> H { |
| auto p = v.data(); |
| auto n = v.size(); |
| return H::combine(H::combine_contiguous(std::move(h), p, n), n); |
| } |
| } // namespace absl |
| |
| // ----------------------------------------------------------------------------- |
| // Implementation of InlinedVector |
| // |
| // Do not depend on any below implementation details! |
| // ----------------------------------------------------------------------------- |
| |
| #endif // ABSL_CONTAINER_INLINED_VECTOR_H_ |