blob: 204952a7e2abfb42338834e0ec934c4ebcfe5d0b [file] [log] [blame]
/*
* Copyright 2004 The WebRTC Project Authors. All rights reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <algorithm>
#include <string>
#include <utility>
#include "rtc_base/atomicops.h"
#include "rtc_base/checks.h"
#include "rtc_base/logging.h"
#include "rtc_base/messagequeue.h"
#include "rtc_base/thread.h"
#include "rtc_base/timeutils.h"
#include "rtc_base/trace_event.h"
namespace rtc {
namespace {
const int kMaxMsgLatency = 150; // 150 ms
const int kSlowDispatchLoggingThreshold = 50; // 50 ms
class RTC_SCOPED_LOCKABLE MarkProcessingCritScope {
public:
MarkProcessingCritScope(const CriticalSection* cs, size_t* processing)
RTC_EXCLUSIVE_LOCK_FUNCTION(cs)
: cs_(cs), processing_(processing) {
cs_->Enter();
*processing_ += 1;
}
~MarkProcessingCritScope() RTC_UNLOCK_FUNCTION() {
*processing_ -= 1;
cs_->Leave();
}
private:
const CriticalSection* const cs_;
size_t* processing_;
RTC_DISALLOW_COPY_AND_ASSIGN(MarkProcessingCritScope);
};
} // namespace
//------------------------------------------------------------------
// MessageQueueManager
MessageQueueManager* MessageQueueManager::Instance() {
static MessageQueueManager* const instance = new MessageQueueManager;
return instance;
}
MessageQueueManager::MessageQueueManager() : processing_(0) {}
MessageQueueManager::~MessageQueueManager() {}
void MessageQueueManager::Add(MessageQueue* message_queue) {
return Instance()->AddInternal(message_queue);
}
void MessageQueueManager::AddInternal(MessageQueue* message_queue) {
CritScope cs(&crit_);
// Prevent changes while the list of message queues is processed.
RTC_DCHECK_EQ(processing_, 0);
message_queues_.push_back(message_queue);
}
void MessageQueueManager::Remove(MessageQueue* message_queue) {
return Instance()->RemoveInternal(message_queue);
}
void MessageQueueManager::RemoveInternal(MessageQueue* message_queue) {
{
CritScope cs(&crit_);
// Prevent changes while the list of message queues is processed.
RTC_DCHECK_EQ(processing_, 0);
std::vector<MessageQueue*>::iterator iter;
iter = std::find(message_queues_.begin(), message_queues_.end(),
message_queue);
if (iter != message_queues_.end()) {
message_queues_.erase(iter);
}
}
}
void MessageQueueManager::Clear(MessageHandler* handler) {
return Instance()->ClearInternal(handler);
}
void MessageQueueManager::ClearInternal(MessageHandler* handler) {
// Deleted objects may cause re-entrant calls to ClearInternal. This is
// allowed as the list of message queues does not change while queues are
// cleared.
MarkProcessingCritScope cs(&crit_, &processing_);
for (MessageQueue* queue : message_queues_) {
queue->Clear(handler);
}
}
void MessageQueueManager::ProcessAllMessageQueuesForTesting() {
return Instance()->ProcessAllMessageQueuesInternal();
}
void MessageQueueManager::ProcessAllMessageQueuesInternal() {
// This works by posting a delayed message at the current time and waiting
// for it to be dispatched on all queues, which will ensure that all messages
// that came before it were also dispatched.
volatile int queues_not_done = 0;
// This class is used so that whether the posted message is processed, or the
// message queue is simply cleared, queues_not_done gets decremented.
class ScopedIncrement : public MessageData {
public:
ScopedIncrement(volatile int* value) : value_(value) {
AtomicOps::Increment(value_);
}
~ScopedIncrement() override { AtomicOps::Decrement(value_); }
private:
volatile int* value_;
};
{
MarkProcessingCritScope cs(&crit_, &processing_);
for (MessageQueue* queue : message_queues_) {
if (!queue->IsProcessingMessagesForTesting()) {
// If the queue is not processing messages, it can
// be ignored. If we tried to post a message to it, it would be dropped
// or ignored.
continue;
}
queue->PostDelayed(RTC_FROM_HERE, 0, nullptr, MQID_DISPOSE,
new ScopedIncrement(&queues_not_done));
}
}
rtc::Thread* current = rtc::Thread::Current();
// Note: One of the message queues may have been on this thread, which is
// why we can't synchronously wait for queues_not_done to go to 0; we need
// to process messages as well.
while (AtomicOps::AcquireLoad(&queues_not_done) > 0) {
if (current) {
current->ProcessMessages(0);
}
}
}
//------------------------------------------------------------------
// MessageQueue
MessageQueue::MessageQueue(SocketServer* ss, bool init_queue)
: fPeekKeep_(false),
dmsgq_next_num_(0),
fInitialized_(false),
fDestroyed_(false),
stop_(0),
ss_(ss) {
RTC_DCHECK(ss);
// Currently, MessageQueue holds a socket server, and is the base class for
// Thread. It seems like it makes more sense for Thread to hold the socket
// server, and provide it to the MessageQueue, since the Thread controls
// the I/O model, and MQ is agnostic to those details. Anyway, this causes
// messagequeue_unittest to depend on network libraries... yuck.
ss_->SetMessageQueue(this);
if (init_queue) {
DoInit();
}
}
MessageQueue::MessageQueue(std::unique_ptr<SocketServer> ss, bool init_queue)
: MessageQueue(ss.get(), init_queue) {
own_ss_ = std::move(ss);
}
MessageQueue::~MessageQueue() {
DoDestroy();
}
void MessageQueue::DoInit() {
if (fInitialized_) {
return;
}
fInitialized_ = true;
MessageQueueManager::Add(this);
}
void MessageQueue::DoDestroy() {
if (fDestroyed_) {
return;
}
fDestroyed_ = true;
// The signal is done from here to ensure
// that it always gets called when the queue
// is going away.
SignalQueueDestroyed();
MessageQueueManager::Remove(this);
ClearInternal(nullptr, MQID_ANY, nullptr);
if (ss_) {
ss_->SetMessageQueue(nullptr);
}
}
SocketServer* MessageQueue::socketserver() {
return ss_;
}
void MessageQueue::WakeUpSocketServer() {
ss_->WakeUp();
}
void MessageQueue::Quit() {
AtomicOps::ReleaseStore(&stop_, 1);
WakeUpSocketServer();
}
bool MessageQueue::IsQuitting() {
return AtomicOps::AcquireLoad(&stop_) != 0;
}
bool MessageQueue::IsProcessingMessagesForTesting() {
return !IsQuitting();
}
void MessageQueue::Restart() {
AtomicOps::ReleaseStore(&stop_, 0);
}
bool MessageQueue::Peek(Message* pmsg, int cmsWait) {
if (fPeekKeep_) {
*pmsg = msgPeek_;
return true;
}
if (!Get(pmsg, cmsWait))
return false;
msgPeek_ = *pmsg;
fPeekKeep_ = true;
return true;
}
bool MessageQueue::Get(Message* pmsg, int cmsWait, bool process_io) {
// Return and clear peek if present
// Always return the peek if it exists so there is Peek/Get symmetry
if (fPeekKeep_) {
*pmsg = msgPeek_;
fPeekKeep_ = false;
return true;
}
// Get w/wait + timer scan / dispatch + socket / event multiplexer dispatch
int64_t cmsTotal = cmsWait;
int64_t cmsElapsed = 0;
int64_t msStart = TimeMillis();
int64_t msCurrent = msStart;
while (true) {
// Check for sent messages
ReceiveSends();
// Check for posted events
int64_t cmsDelayNext = kForever;
bool first_pass = true;
while (true) {
// All queue operations need to be locked, but nothing else in this loop
// (specifically handling disposed message) can happen inside the crit.
// Otherwise, disposed MessageHandlers will cause deadlocks.
{
CritScope cs(&crit_);
// On the first pass, check for delayed messages that have been
// triggered and calculate the next trigger time.
if (first_pass) {
first_pass = false;
while (!dmsgq_.empty()) {
if (msCurrent < dmsgq_.top().msTrigger_) {
cmsDelayNext = TimeDiff(dmsgq_.top().msTrigger_, msCurrent);
break;
}
msgq_.push_back(dmsgq_.top().msg_);
dmsgq_.pop();
}
}
// Pull a message off the message queue, if available.
if (msgq_.empty()) {
break;
} else {
*pmsg = msgq_.front();
msgq_.pop_front();
}
} // crit_ is released here.
// Log a warning for time-sensitive messages that we're late to deliver.
if (pmsg->ts_sensitive) {
int64_t delay = TimeDiff(msCurrent, pmsg->ts_sensitive);
if (delay > 0) {
RTC_LOG_F(LS_WARNING)
<< "id: " << pmsg->message_id
<< " delay: " << (delay + kMaxMsgLatency) << "ms";
}
}
// If this was a dispose message, delete it and skip it.
if (MQID_DISPOSE == pmsg->message_id) {
RTC_DCHECK(nullptr == pmsg->phandler);
delete pmsg->pdata;
*pmsg = Message();
continue;
}
return true;
}
if (IsQuitting())
break;
// Which is shorter, the delay wait or the asked wait?
int64_t cmsNext;
if (cmsWait == kForever) {
cmsNext = cmsDelayNext;
} else {
cmsNext = std::max<int64_t>(0, cmsTotal - cmsElapsed);
if ((cmsDelayNext != kForever) && (cmsDelayNext < cmsNext))
cmsNext = cmsDelayNext;
}
{
// Wait and multiplex in the meantime
if (!ss_->Wait(static_cast<int>(cmsNext), process_io))
return false;
}
// If the specified timeout expired, return
msCurrent = TimeMillis();
cmsElapsed = TimeDiff(msCurrent, msStart);
if (cmsWait != kForever) {
if (cmsElapsed >= cmsWait)
return false;
}
}
return false;
}
void MessageQueue::ReceiveSends() {}
void MessageQueue::Post(const Location& posted_from,
MessageHandler* phandler,
uint32_t id,
MessageData* pdata,
bool time_sensitive) {
if (IsQuitting()) {
delete pdata;
return;
}
// Keep thread safe
// Add the message to the end of the queue
// Signal for the multiplexer to return
{
CritScope cs(&crit_);
Message msg;
msg.posted_from = posted_from;
msg.phandler = phandler;
msg.message_id = id;
msg.pdata = pdata;
if (time_sensitive) {
msg.ts_sensitive = TimeMillis() + kMaxMsgLatency;
}
msgq_.push_back(msg);
}
WakeUpSocketServer();
}
void MessageQueue::PostDelayed(const Location& posted_from,
int cmsDelay,
MessageHandler* phandler,
uint32_t id,
MessageData* pdata) {
return DoDelayPost(posted_from, cmsDelay, TimeAfter(cmsDelay), phandler, id,
pdata);
}
void MessageQueue::PostAt(const Location& posted_from,
uint32_t tstamp,
MessageHandler* phandler,
uint32_t id,
MessageData* pdata) {
// This should work even if it is used (unexpectedly).
int64_t delay = static_cast<uint32_t>(TimeMillis()) - tstamp;
return DoDelayPost(posted_from, delay, tstamp, phandler, id, pdata);
}
void MessageQueue::PostAt(const Location& posted_from,
int64_t tstamp,
MessageHandler* phandler,
uint32_t id,
MessageData* pdata) {
return DoDelayPost(posted_from, TimeUntil(tstamp), tstamp, phandler, id,
pdata);
}
void MessageQueue::DoDelayPost(const Location& posted_from,
int64_t cmsDelay,
int64_t tstamp,
MessageHandler* phandler,
uint32_t id,
MessageData* pdata) {
if (IsQuitting()) {
delete pdata;
return;
}
// Keep thread safe
// Add to the priority queue. Gets sorted soonest first.
// Signal for the multiplexer to return.
{
CritScope cs(&crit_);
Message msg;
msg.posted_from = posted_from;
msg.phandler = phandler;
msg.message_id = id;
msg.pdata = pdata;
DelayedMessage dmsg(cmsDelay, tstamp, dmsgq_next_num_, msg);
dmsgq_.push(dmsg);
// If this message queue processes 1 message every millisecond for 50 days,
// we will wrap this number. Even then, only messages with identical times
// will be misordered, and then only briefly. This is probably ok.
++dmsgq_next_num_;
RTC_DCHECK_NE(0, dmsgq_next_num_);
}
WakeUpSocketServer();
}
int MessageQueue::GetDelay() {
CritScope cs(&crit_);
if (!msgq_.empty())
return 0;
if (!dmsgq_.empty()) {
int delay = TimeUntil(dmsgq_.top().msTrigger_);
if (delay < 0)
delay = 0;
return delay;
}
return kForever;
}
void MessageQueue::Clear(MessageHandler* phandler,
uint32_t id,
MessageList* removed) {
CritScope cs(&crit_);
ClearInternal(phandler, id, removed);
}
void MessageQueue::ClearInternal(MessageHandler* phandler,
uint32_t id,
MessageList* removed) {
// Remove messages with phandler
if (fPeekKeep_ && msgPeek_.Match(phandler, id)) {
if (removed) {
removed->push_back(msgPeek_);
} else {
delete msgPeek_.pdata;
}
fPeekKeep_ = false;
}
// Remove from ordered message queue
for (MessageList::iterator it = msgq_.begin(); it != msgq_.end();) {
if (it->Match(phandler, id)) {
if (removed) {
removed->push_back(*it);
} else {
delete it->pdata;
}
it = msgq_.erase(it);
} else {
++it;
}
}
// Remove from priority queue. Not directly iterable, so use this approach
PriorityQueue::container_type::iterator new_end = dmsgq_.container().begin();
for (PriorityQueue::container_type::iterator it = new_end;
it != dmsgq_.container().end(); ++it) {
if (it->msg_.Match(phandler, id)) {
if (removed) {
removed->push_back(it->msg_);
} else {
delete it->msg_.pdata;
}
} else {
*new_end++ = *it;
}
}
dmsgq_.container().erase(new_end, dmsgq_.container().end());
dmsgq_.reheap();
}
void MessageQueue::Dispatch(Message* pmsg) {
TRACE_EVENT2("webrtc", "MessageQueue::Dispatch", "src_file_and_line",
pmsg->posted_from.file_and_line(), "src_func",
pmsg->posted_from.function_name());
int64_t start_time = TimeMillis();
pmsg->phandler->OnMessage(pmsg);
int64_t end_time = TimeMillis();
int64_t diff = TimeDiff(end_time, start_time);
if (diff >= kSlowDispatchLoggingThreshold) {
RTC_LOG(LS_INFO) << "Message took " << diff
<< "ms to dispatch. Posted from: "
<< pmsg->posted_from.ToString();
}
}
} // namespace rtc