blob: 6ecac7bd8a68f4db92cf5ac976ceeced8f70eda5 [file] [log] [blame]
#!/usr/bin/env python
#-------------------------------------------------------------------------------
# scripts/readelf.py
#
# A clone of 'readelf' in Python, based on the pyelftools library
#
# Eli Bendersky (eliben@gmail.com)
# This code is in the public domain
#-------------------------------------------------------------------------------
import os, sys
from optparse import OptionParser
from itertools import ifilter
import string
# If elftools is not installed, maybe we're running from the root or scripts
# dir of the source distribution
try:
import elftools
except ImportError:
sys.path.extend(['.', '..'])
from elftools import __version__
from elftools.common.exceptions import ELFError
from elftools.elf.elffile import ELFFile
from elftools.elf.segments import InterpSegment
from elftools.elf.sections import SymbolTableSection
from elftools.elf.relocation import RelocationSection
from elftools.elf.descriptions import (
describe_ei_class, describe_ei_data, describe_ei_version,
describe_ei_osabi, describe_e_type, describe_e_machine,
describe_e_version_numeric, describe_p_type, describe_p_flags,
describe_sh_type, describe_sh_flags,
describe_symbol_type, describe_symbol_bind, describe_symbol_visibility,
describe_symbol_shndx, describe_reloc_type,
)
from elftools.dwarf.dwarfinfo import DWARFInfo
from elftools.dwarf.descriptions import (
describe_reg_name, describe_attr_value, set_global_machine_arch,
describe_CFI_instructions, describe_CFI_register_rule,
describe_CFI_CFA_rule,
)
from elftools.dwarf.constants import (
DW_LNS_copy, DW_LNS_set_file, DW_LNE_define_file)
from elftools.dwarf.callframe import CIE, FDE
class ReadElf(object):
""" display_* methods are used to emit output into the output stream
"""
def __init__(self, file, output):
""" file:
stream object with the ELF file to read
output:
output stream to write to
"""
self.elffile = ELFFile(file)
self.output = output
# Lazily initialized if a debug dump is requested
self._dwarfinfo = None
def display_file_header(self):
""" Display the ELF file header
"""
self._emitline('ELF Header:')
self._emit(' Magic: ')
self._emitline(' '.join('%2.2x' % ord(b)
for b in self.elffile.e_ident_raw))
header = self.elffile.header
e_ident = header['e_ident']
self._emitline(' Class: %s' %
describe_ei_class(e_ident['EI_CLASS']))
self._emitline(' Data: %s' %
describe_ei_data(e_ident['EI_DATA']))
self._emitline(' Version: %s' %
describe_ei_version(e_ident['EI_VERSION']))
self._emitline(' OS/ABI: %s' %
describe_ei_osabi(e_ident['EI_OSABI']))
self._emitline(' ABI Version: %d' %
e_ident['EI_ABIVERSION'])
self._emitline(' Type: %s' %
describe_e_type(header['e_type']))
self._emitline(' Machine: %s' %
describe_e_machine(header['e_machine']))
self._emitline(' Version: %s' %
describe_e_version_numeric(header['e_version']))
self._emitline(' Entry point address: %s' %
self._format_hex(header['e_entry']))
self._emit(' Start of program headers: %s' %
header['e_phoff'])
self._emitline(' (bytes into file)')
self._emit(' Start of section headers: %s' %
header['e_shoff'])
self._emitline(' (bytes into file)')
self._emitline(' Flags: %s' %
self._format_hex(header['e_flags']))
self._emitline(' Size of this header: %s (bytes)' %
header['e_ehsize'])
self._emitline(' Size of program headers: %s (bytes)' %
header['e_phentsize'])
self._emitline(' Number of program headers: %s' %
header['e_phnum'])
self._emitline(' Size of section headers: %s (bytes)' %
header['e_shentsize'])
self._emitline(' Number of section headers: %s' %
header['e_shnum'])
self._emitline(' Section header string table index: %s' %
header['e_shstrndx'])
def display_program_headers(self, show_heading=True):
""" Display the ELF program headers.
If show_heading is True, displays the heading for this information
(Elf file type is...)
"""
self._emitline()
if self.elffile.num_segments() == 0:
self._emitline('There are no program headers in this file.')
return
elfheader = self.elffile.header
if show_heading:
self._emitline('Elf file type is %s' %
describe_e_type(elfheader['e_type']))
self._emitline('Entry point is %s' %
self._format_hex(elfheader['e_entry']))
# readelf weirness - why isn't e_phoff printed as hex? (for section
# headers, it is...)
self._emitline('There are %s program headers, starting at offset %s' % (
elfheader['e_phnum'], elfheader['e_phoff']))
self._emitline()
self._emitline('Program Headers:')
# Now comes the table of program headers with their attributes. Note
# that due to different formatting constraints of 32-bit and 64-bit
# addresses, there are some conditions on elfclass here.
#
# First comes the table heading
#
if self.elffile.elfclass == 32:
self._emitline(' Type Offset VirtAddr PhysAddr FileSiz MemSiz Flg Align')
else:
self._emitline(' Type Offset VirtAddr PhysAddr')
self._emitline(' FileSiz MemSiz Flags Align')
# Now the entries
#
for segment in self.elffile.iter_segments():
self._emit(' %-14s ' % describe_p_type(segment['p_type']))
if self.elffile.elfclass == 32:
self._emitline('%s %s %s %s %s %-3s %s' % (
self._format_hex(segment['p_offset'], fieldsize=6),
self._format_hex(segment['p_vaddr'], fullhex=True),
self._format_hex(segment['p_paddr'], fullhex=True),
self._format_hex(segment['p_filesz'], fieldsize=5),
self._format_hex(segment['p_memsz'], fieldsize=5),
describe_p_flags(segment['p_flags']),
self._format_hex(segment['p_align'])))
else: # 64
self._emitline('%s %s %s' % (
self._format_hex(segment['p_offset'], fullhex=True),
self._format_hex(segment['p_vaddr'], fullhex=True),
self._format_hex(segment['p_paddr'], fullhex=True)))
self._emitline(' %s %s %-3s %s' % (
self._format_hex(segment['p_filesz'], fullhex=True),
self._format_hex(segment['p_memsz'], fullhex=True),
describe_p_flags(segment['p_flags']),
# lead0x set to False for p_align, to mimic readelf.
# No idea why the difference from 32-bit mode :-|
self._format_hex(segment['p_align'], lead0x=False)))
if isinstance(segment, InterpSegment):
self._emitline(' [Requesting program interpreter: %s]' %
segment.get_interp_name())
# Sections to segments mapping
#
if self.elffile.num_sections() == 0:
# No sections? We're done
return
self._emitline('\n Section to Segment mapping:')
self._emitline(' Segment Sections...')
for nseg, segment in enumerate(self.elffile.iter_segments()):
self._emit(' %2.2d ' % nseg)
for section in self.elffile.iter_sections():
if ( not section.is_null() and
segment.section_in_segment(section)):
self._emit('%s ' % section.name)
self._emitline('')
def display_section_headers(self, show_heading=True):
""" Display the ELF section headers
"""
elfheader = self.elffile.header
if show_heading:
self._emitline('There are %s section headers, starting at offset %s' % (
elfheader['e_shnum'], self._format_hex(elfheader['e_shoff'])))
self._emitline('\nSection Header%s:' % (
's' if elfheader['e_shnum'] > 1 else ''))
# Different formatting constraints of 32-bit and 64-bit addresses
#
if self.elffile.elfclass == 32:
self._emitline(' [Nr] Name Type Addr Off Size ES Flg Lk Inf Al')
else:
self._emitline(' [Nr] Name Type Address Offset')
self._emitline(' Size EntSize Flags Link Info Align')
# Now the entries
#
for nsec, section in enumerate(self.elffile.iter_sections()):
self._emit(' [%2u] %-17.17s %-15.15s ' % (
nsec, section.name, describe_sh_type(section['sh_type'])))
if self.elffile.elfclass == 32:
self._emitline('%s %s %s %s %3s %2s %3s %2s' % (
self._format_hex(section['sh_addr'], fieldsize=8, lead0x=False),
self._format_hex(section['sh_offset'], fieldsize=6, lead0x=False),
self._format_hex(section['sh_size'], fieldsize=6, lead0x=False),
self._format_hex(section['sh_entsize'], fieldsize=2, lead0x=False),
describe_sh_flags(section['sh_flags']),
section['sh_link'], section['sh_info'],
section['sh_addralign']))
else: # 64
self._emitline(' %s %s' % (
self._format_hex(section['sh_addr'], fullhex=True, lead0x=False),
self._format_hex(section['sh_offset'],
fieldsize=16 if section['sh_offset'] > 0xffffffff else 8,
lead0x=False)))
self._emitline(' %s %s %3s %2s %3s %s' % (
self._format_hex(section['sh_size'], fullhex=True, lead0x=False),
self._format_hex(section['sh_entsize'], fullhex=True, lead0x=False),
describe_sh_flags(section['sh_flags']),
section['sh_link'], section['sh_info'],
section['sh_addralign']))
self._emitline('Key to Flags:')
self._emit(' W (write), A (alloc), X (execute), M (merge), S (strings)')
if self.elffile['e_machine'] in ('EM_X86_64', 'EM_L10M'):
self._emitline(', l (large)')
else:
self._emitline()
self._emitline(' I (info), L (link order), G (group), T (TLS), E (exclude), x (unknown)')
self._emitline(' O (extra OS processing required) o (OS specific), p (processor specific)')
def display_symbol_tables(self):
""" Display the symbol tables contained in the file
"""
for section in self.elffile.iter_sections():
if not isinstance(section, SymbolTableSection):
continue
if section['sh_entsize'] == 0:
self._emitline("\nSymbol table '%s' has a sh_entsize of zero!" % (
section.name))
continue
self._emitline("\nSymbol table '%s' contains %s entries:" % (
section.name, section.num_symbols()))
if self.elffile.elfclass == 32:
self._emitline(' Num: Value Size Type Bind Vis Ndx Name')
else: # 64
self._emitline(' Num: Value Size Type Bind Vis Ndx Name')
for nsym, symbol in enumerate(section.iter_symbols()):
# symbol names are truncated to 25 chars, similarly to readelf
self._emitline('%6d: %s %5d %-7s %-6s %-7s %4s %.25s' % (
nsym,
self._format_hex(symbol['st_value'], fullhex=True, lead0x=False),
symbol['st_size'],
describe_symbol_type(symbol['st_info']['type']),
describe_symbol_bind(symbol['st_info']['bind']),
describe_symbol_visibility(symbol['st_other']['visibility']),
describe_symbol_shndx(symbol['st_shndx']),
symbol.name))
def display_relocations(self):
""" Display the relocations contained in the file
"""
has_relocation_sections = False
for section in self.elffile.iter_sections():
if not isinstance(section, RelocationSection):
continue
has_relocation_sections = True
self._emitline("\nRelocation section '%s' at offset %s contains %s entries:" % (
section.name,
self._format_hex(section['sh_offset']),
section.num_relocations()))
if section.is_RELA():
self._emitline(" Offset Info Type Sym. Value Sym. Name + Addend")
else:
self._emitline(" Offset Info Type Sym.Value Sym. Name")
# The symbol table section pointed to in sh_link
symtable = self.elffile.get_section(section['sh_link'])
for rel in section.iter_relocations():
hexwidth = 8 if self.elffile.elfclass == 32 else 12
self._emit('%s %s %-17.17s' % (
self._format_hex(rel['r_offset'],
fieldsize=hexwidth, lead0x=False),
self._format_hex(rel['r_info'],
fieldsize=hexwidth, lead0x=False),
describe_reloc_type(
rel['r_info_type'], self.elffile)))
if rel['r_info_sym'] == 0:
self._emitline()
continue
symbol = symtable.get_symbol(rel['r_info_sym'])
# Some symbols have zero 'st_name', so instead what's used is
# the name of the section they point at
if symbol['st_name'] == 0:
symsec = self.elffile.get_section(symbol['st_shndx'])
symbol_name = symsec.name
else:
symbol_name = symbol.name
self._emit(' %s %s%22.22s' % (
self._format_hex(
symbol['st_value'],
fullhex=True, lead0x=False),
' ' if self.elffile.elfclass == 32 else '',
symbol_name))
if section.is_RELA():
self._emit(' %s %x' % (
'+' if rel['r_addend'] >= 0 else '-',
abs(rel['r_addend'])))
self._emitline()
if not has_relocation_sections:
self._emitline('\nThere are no relocations in this file.')
def display_hex_dump(self, section_spec):
""" Display a hex dump of a section. section_spec is either a section
number or a name.
"""
section = self._section_from_spec(section_spec)
if section is None:
self._emitline("Section '%s' does not exist in the file!" % (
section_spec))
return
self._emitline("\nHex dump of section '%s':" % section.name)
self._note_relocs_for_section(section)
addr = section['sh_addr']
data = section.data()
dataptr = 0
while dataptr < len(data):
bytesleft = len(data) - dataptr
# chunks of 16 bytes per line
linebytes = 16 if bytesleft > 16 else bytesleft
self._emit(' %s ' % self._format_hex(addr, fieldsize=8))
for i in range(16):
if i < linebytes:
self._emit('%2.2x' % ord(data[dataptr + i]))
else:
self._emit(' ')
if i % 4 == 3:
self._emit(' ')
for i in range(linebytes):
c = data[dataptr + i]
if c >= ' ' and ord(c) < 0x7f:
self._emit(c)
else:
self._emit('.')
self._emitline()
addr += linebytes
dataptr += linebytes
self._emitline()
def display_string_dump(self, section_spec):
""" Display a strings dump of a section. section_spec is either a
section number or a name.
"""
section = self._section_from_spec(section_spec)
if section is None:
self._emitline("Section '%s' does not exist in the file!" % (
section_spec))
return
printables = set(string.printable)
self._emitline("\nString dump of section '%s':" % section.name)
found = False
data = section.data()
dataptr = 0
while dataptr < len(data):
while dataptr < len(data) and data[dataptr] not in printables:
dataptr += 1
if dataptr >= len(data):
break
endptr = dataptr
while endptr < len(data) and data[endptr] != '\x00':
endptr += 1
found = True
self._emitline(' [%6x] %s' % (
dataptr, data[dataptr:endptr]))
dataptr = endptr
if not found:
self._emitline(' No strings found in this section.')
else:
self._emitline()
def display_debug_dump(self, dump_what):
""" Dump a DWARF section
"""
self._init_dwarfinfo()
if self._dwarfinfo is None:
return
set_global_machine_arch(self.elffile.get_machine_arch())
if dump_what == 'info':
self._dump_debug_info()
elif dump_what == 'decodedline':
self._dump_debug_line_programs()
elif dump_what == 'frames':
self._dump_debug_frames()
elif dump_what == 'frames-interp':
self._dump_debug_frames_interp()
else:
self._emitline('debug dump not yet supported for "%s"' % dump_what)
def _format_hex(self, addr, fieldsize=None, fullhex=False, lead0x=True):
""" Format an address into a hexadecimal string.
fieldsize:
Size of the hexadecimal field (with leading zeros to fit the
address into. For example with fieldsize=8, the format will
be %08x
If None, the minimal required field size will be used.
fullhex:
If True, override fieldsize to set it to the maximal size
needed for the elfclass
lead0x:
If True, leading 0x is added
"""
s = '0x' if lead0x else ''
if fullhex:
fieldsize = 8 if self.elffile.elfclass == 32 else 16
if fieldsize is None:
field = '%x'
else:
field = '%' + '0%sx' % fieldsize
return s + field % addr
def _section_from_spec(self, spec):
""" Retrieve a section given a "spec" (either number or name).
Return None if no such section exists in the file.
"""
try:
num = int(spec)
if num < self.elffile.num_sections():
return self.elffile.get_section(num)
else:
return None
except ValueError:
# Not a number. Must be a name then
return self.elffile.get_section_by_name(spec)
def _note_relocs_for_section(self, section):
""" If there are relocation sections pointing to the givne section,
emit a note about it.
"""
for relsec in self.elffile.iter_sections():
if isinstance(relsec, RelocationSection):
info_idx = relsec['sh_info']
if self.elffile.get_section(info_idx) == section:
self._emitline(' Note: This section has relocations against it, but these have NOT been applied to this dump.')
return
def _init_dwarfinfo(self):
""" Initialize the DWARF info contained in the file and assign it to
self._dwarfinfo.
Leave self._dwarfinfo at None if no DWARF info was found in the file
"""
if self._dwarfinfo is not None:
return
if self.elffile.has_dwarf_info():
self._dwarfinfo = self.elffile.get_dwarf_info()
else:
self._dwarfinfo = None
def _dump_debug_info(self):
""" Dump the debugging info section.
"""
self._emitline('Contents of the .debug_info section:\n')
# Offset of the .debug_info section in the stream
section_offset = self._dwarfinfo.debug_info_sec.global_offset
for cu in self._dwarfinfo.iter_CUs():
self._emitline(' Compilation Unit @ offset %s:' %
self._format_hex(cu.cu_offset))
self._emitline(' Length: %s (%s)' % (
self._format_hex(cu['unit_length']),
'%s-bit' % cu.dwarf_format()))
self._emitline(' Version: %s' % cu['version']),
self._emitline(' Abbrev Offset: %s' % cu['debug_abbrev_offset']),
self._emitline(' Pointer Size: %s' % cu['address_size'])
# The nesting depth of each DIE within the tree of DIEs must be
# displayed. To implement this, a counter is incremented each time
# the current DIE has children, and decremented when a null die is
# encountered. Due to the way the DIE tree is serialized, this will
# correctly reflect the nesting depth
#
die_depth = 0
for die in cu.iter_DIEs():
if die.is_null():
die_depth -= 1
continue
self._emitline(' <%s><%x>: Abbrev Number: %s (%s)' % (
die_depth,
die.offset,
die.abbrev_code,
die.tag))
for attr in die.attributes.itervalues():
name = attr.name
# Unknown attribute values are passed-through as integers
if isinstance(name, int):
name = 'Unknown AT value: %x' % name
self._emitline(' <%2x> %-18s: %s' % (
attr.offset,
name,
describe_attr_value(
attr, die, section_offset)))
if die.has_children:
die_depth += 1
self._emitline()
def _dump_debug_line_programs(self):
""" Dump the (decoded) line programs from .debug_line
The programs are dumped in the order of the CUs they belong to.
"""
self._emitline('Decoded dump of debug contents of section .debug_line:\n')
for cu in self._dwarfinfo.iter_CUs():
lineprogram = self._dwarfinfo.line_program_for_CU(cu)
cu_filename = ''
if len(lineprogram['include_directory']) > 0:
cu_filename = '%s/%s' % (
lineprogram['include_directory'][0],
lineprogram['file_entry'][0].name)
else:
cu_filename = lineprogram['file_entry'][0].name
self._emitline('CU: %s:' % cu_filename)
self._emitline('File name Line number Starting address')
# Print each state's file, line and address information. For some
# instructions other output is needed to be compatible with
# readelf.
for entry in lineprogram.get_entries():
state = entry.state
if state is None:
# Special handling for commands that don't set a new state
if entry.command == DW_LNS_set_file:
file_entry = lineprogram['file_entry'][entry.args[0] - 1]
if file_entry.dir_index == 0:
# current directory
self._emitline('\n./%s:[++]' % (
file_entry.name))
else:
self._emitline('\n%s/%s:' % (
lineprogram['include_directory'][file_entry.dir_index - 1],
file_entry.name))
elif entry.command == DW_LNE_define_file:
self._emitline('%s:' % (
lineprogram['include_directory'][entry.args[0].dir_index]))
elif not state.end_sequence:
# readelf doesn't print the state after end_sequence
# instructions. I think it's a bug but to be compatible
# I don't print them too.
self._emitline('%-35s %11d %18s' % (
lineprogram['file_entry'][state.file - 1].name,
state.line,
'0' if state.address == 0 else
self._format_hex(state.address)))
if entry.command == DW_LNS_copy:
# Another readelf oddity...
self._emitline()
def _dump_debug_frames(self):
""" Dump the raw frame information from .debug_frame
"""
if not self._dwarfinfo.has_CFI():
return
self._emitline('Contents of the .debug_frame section:')
for entry in self._dwarfinfo.CFI_entries():
if isinstance(entry, CIE):
self._emitline('\n%08x %08x %08x CIE' % (
entry.offset, entry['length'], entry['CIE_id']))
self._emitline(' Version: %d' % entry['version'])
self._emitline(' Augmentation: "%s"' % entry['augmentation'])
self._emitline(' Code alignment factor: %u' % entry['code_alignment_factor'])
self._emitline(' Data alignment factor: %d' % entry['data_alignment_factor'])
self._emitline(' Return address column: %d' % entry['return_address_register'])
self._emitline()
else: # FDE
self._emitline('\n%08x %08x %08x FDE cie=%08x pc=%08x..%08x' % (
entry.offset,
entry['length'],
entry['CIE_pointer'],
entry.cie.offset,
entry['initial_location'],
entry['initial_location'] + entry['address_range']))
self._emit(describe_CFI_instructions(entry))
self._emitline()
def _dump_debug_frames_interp(self):
""" Dump the interpreted (decoded) frame information from .debug_frame
"""
if not self._dwarfinfo.has_CFI():
return
self._emitline('Contents of the .debug_frame section:')
for entry in self._dwarfinfo.CFI_entries():
if isinstance(entry, CIE):
self._emitline('\n%08x %08x %08x CIE "%s" cf=%d df=%d ra=%d' % (
entry.offset,
entry['length'],
entry['CIE_id'],
entry['augmentation'],
entry['code_alignment_factor'],
entry['data_alignment_factor'],
entry['return_address_register']))
ra_regnum = entry['return_address_register']
else: # FDE
self._emitline('\n%08x %08x %08x FDE cie=%08x pc=%08x..%08x' % (
entry.offset,
entry['length'],
entry['CIE_pointer'],
entry.cie.offset,
entry['initial_location'],
entry['initial_location'] + entry['address_range']))
ra_regnum = entry.cie['return_address_register']
# Print the heading row for the decoded table
self._emit(' LOC')
self._emit(' ' if entry.structs.address_size == 4 else ' ')
self._emit(' CFA ')
# Decode the table nad look at the registers it describes.
# We build reg_order here to match readelf's order. In particular,
# registers are sorted by their number, and the register matching
# ra_regnum is always listed last with a special heading.
decoded_table = entry.get_decoded()
reg_order = sorted(ifilter(
lambda r: r != ra_regnum,
decoded_table.reg_order))
# Headings for the registers
for regnum in reg_order:
self._emit('%-6s' % describe_reg_name(regnum))
self._emitline('ra ')
# Now include ra_regnum in reg_order to print its values similarly
# to the other registers.
reg_order.append(ra_regnum)
for line in decoded_table.table:
self._emit(self._format_hex(
line['pc'], fullhex=True, lead0x=False))
self._emit(' %-9s' % describe_CFI_CFA_rule(line['cfa']))
for regnum in reg_order:
if regnum in line:
s = describe_CFI_register_rule(line[regnum])
else:
s = 'u'
self._emit('%-6s' % s)
self._emitline()
self._emitline()
def _emit(self, s=''):
""" Emit an object to output
"""
self.output.write(str(s))
def _emitline(self, s=''):
""" Emit an object to output, followed by a newline
"""
self.output.write(str(s) + '\n')
SCRIPT_DESCRIPTION = 'Display information about the contents of ELF format files'
VERSION_STRING = '%%prog: based on pyelftools %s' % __version__
def main(stream=None):
# parse the command-line arguments and invoke ReadElf
optparser = OptionParser(
usage='usage: %prog [options] <elf-file>',
description=SCRIPT_DESCRIPTION,
add_help_option=False, # -h is a real option of readelf
prog='readelf.py',
version=VERSION_STRING)
optparser.add_option('-H', '--help',
action='store_true', dest='help',
help='Display this information')
optparser.add_option('-h', '--file-header',
action='store_true', dest='show_file_header',
help='Display the ELF file header')
optparser.add_option('-l', '--program-headers', '--segments',
action='store_true', dest='show_program_header',
help='Display the program headers')
optparser.add_option('-S', '--section-headers', '--sections',
action='store_true', dest='show_section_header',
help="Display the sections' headers")
optparser.add_option('-e', '--headers',
action='store_true', dest='show_all_headers',
help='Equivalent to: -h -l -S')
optparser.add_option('-s', '--symbols', '--syms',
action='store_true', dest='show_symbols',
help='Display the symbol table')
optparser.add_option('-r', '--relocs',
action='store_true', dest='show_relocs',
help='Display the relocations (if present)')
optparser.add_option('-x', '--hex-dump',
action='store', dest='show_hex_dump', metavar='<number|name>',
help='Dump the contents of section <number|name> as bytes')
optparser.add_option('-p', '--string-dump',
action='store', dest='show_string_dump', metavar='<number|name>',
help='Dump the contents of section <number|name> as strings')
optparser.add_option('--debug-dump',
action='store', dest='debug_dump_what', metavar='<what>',
help=(
'Display the contents of DWARF debug sections. <what> can ' +
'one of {info,decodedline,frames,frames-interp}'))
options, args = optparser.parse_args()
if options.help or len(args) == 0:
optparser.print_help()
sys.exit(0)
if options.show_all_headers:
do_file_header = do_section_header = do_program_header = True
else:
do_file_header = options.show_file_header
do_section_header = options.show_section_header
do_program_header = options.show_program_header
with open(args[0], 'rb') as file:
try:
readelf = ReadElf(file, stream or sys.stdout)
if do_file_header:
readelf.display_file_header()
if do_section_header:
readelf.display_section_headers(
show_heading=not do_file_header)
if do_program_header:
readelf.display_program_headers(
show_heading=not do_file_header)
if options.show_symbols:
readelf.display_symbol_tables()
if options.show_relocs:
readelf.display_relocations()
if options.show_hex_dump:
readelf.display_hex_dump(options.show_hex_dump)
if options.show_string_dump:
readelf.display_string_dump(options.show_string_dump)
if options.debug_dump_what:
readelf.display_debug_dump(options.debug_dump_what)
except ELFError as ex:
sys.stderr.write('ELF error: %s\n' % ex)
sys.exit(1)
def profile_main():
# Run 'main' redirecting its output to readelfout.txt
# Saves profiling information in readelf.profile
PROFFILE = 'readelf.profile'
import cProfile
cProfile.run('main(open("readelfout.txt", "w"))', PROFFILE)
# Dig in some profiling stats
import pstats
p = pstats.Stats(PROFFILE)
p.sort_stats('cumulative').print_stats(25)
#-------------------------------------------------------------------------------
if __name__ == '__main__':
main()
#profile_main()