| /* CBFS Image Manipulation */ |
| /* SPDX-License-Identifier: GPL-2.0-only */ |
| |
| #include <inttypes.h> |
| #include <libgen.h> |
| #include <stddef.h> |
| #include <stdio.h> |
| #include <stdlib.h> |
| #include <string.h> |
| #include <strings.h> |
| #include <commonlib/endian.h> |
| #include <vb2_sha.h> |
| |
| #include "common.h" |
| #include "cbfs_image.h" |
| #include "elfparsing.h" |
| #include "rmodule.h" |
| |
| /* Even though the file-adding functions---cbfs_add_entry() and |
| * cbfs_add_entry_at()---perform their sizing checks against the beginning of |
| * the subsequent section rather than a stable recorded value such as an empty |
| * file header's len field, it's possible to prove two interesting properties |
| * about their behavior: |
| * - Placing a new file within an empty entry located below an existing file |
| * entry will never leave an aligned flash address containing neither the |
| * beginning of a file header nor part of a file. |
| * - Placing a new file in an empty entry at the very end of the image such |
| * that it fits, but leaves no room for a final header, is guaranteed not to |
| * change the total amount of space for entries, even if that new file is |
| * later removed from the CBFS. |
| * These properties are somewhat nonobvious from the implementation, so the |
| * reader is encouraged to blame this comment and examine the full proofs |
| * in the commit message before making significant changes that would risk |
| * removing said guarantees. |
| */ |
| |
| static const char *lookup_name_by_type(const struct typedesc_t *desc, uint32_t type, |
| const char *default_value) |
| { |
| int i; |
| for (i = 0; desc[i].name; i++) |
| if (desc[i].type == type) |
| return desc[i].name; |
| return default_value; |
| } |
| |
| static int lookup_type_by_name(const struct typedesc_t *desc, const char *name) |
| { |
| int i; |
| for (i = 0; desc[i].name && strcasecmp(name, desc[i].name); ++i); |
| return desc[i].name ? (int)desc[i].type : -1; |
| } |
| |
| static const char *get_cbfs_entry_type_name(uint32_t type) |
| { |
| return lookup_name_by_type(filetypes, type, "(unknown)"); |
| } |
| |
| int cbfs_parse_comp_algo(const char *name) |
| { |
| return lookup_type_by_name(types_cbfs_compression, name); |
| } |
| |
| /* CBFS image */ |
| |
| size_t cbfs_calculate_file_header_size(const char *name) |
| { |
| return (sizeof(struct cbfs_file) + |
| align_up(strlen(name) + 1, CBFS_ATTRIBUTE_ALIGN)); |
| } |
| |
| /* Only call on legacy CBFSes possessing a master header. */ |
| static int cbfs_fix_legacy_size(struct cbfs_image *image, char *hdr_loc) |
| { |
| assert(image); |
| assert(cbfs_is_legacy_cbfs(image)); |
| // A bug in old cbfstool may produce extra few bytes (by alignment) and |
| // cause cbfstool to overwrite things after free space -- which is |
| // usually CBFS header on x86. We need to workaround that. |
| // Except when we run across a file that contains the actual header, |
| // in which case this image is a safe, new-style |
| // `cbfstool add-master-header` based image. |
| |
| struct cbfs_file *entry, *first = NULL, *last = NULL; |
| for (first = entry = cbfs_find_first_entry(image); |
| entry && cbfs_is_valid_entry(image, entry); |
| entry = cbfs_find_next_entry(image, entry)) { |
| /* Is the header guarded by a CBFS file entry? Then exit */ |
| if (((char *)entry) + be32toh(entry->offset) == hdr_loc) |
| return 0; |
| last = entry; |
| } |
| if ((char *)first < (char *)hdr_loc && |
| (char *)entry > (char *)hdr_loc) { |
| WARN("CBFS image was created with old cbfstool with size bug. " |
| "Fixing size in last entry...\n"); |
| last->len = htobe32(be32toh(last->len) - image->header.align); |
| DEBUG("Last entry has been changed from 0x%x to 0x%x.\n", |
| cbfs_get_entry_addr(image, entry), |
| cbfs_get_entry_addr(image, |
| cbfs_find_next_entry(image, last))); |
| } |
| return 0; |
| } |
| |
| void cbfs_put_header(void *dest, const struct cbfs_header *header) |
| { |
| struct buffer outheader; |
| |
| outheader.data = dest; |
| outheader.size = 0; |
| |
| xdr_be.put32(&outheader, header->magic); |
| xdr_be.put32(&outheader, header->version); |
| xdr_be.put32(&outheader, header->romsize); |
| xdr_be.put32(&outheader, header->bootblocksize); |
| xdr_be.put32(&outheader, header->align); |
| xdr_be.put32(&outheader, header->offset); |
| xdr_be.put32(&outheader, header->architecture); |
| } |
| |
| static void cbfs_decode_payload_segment(struct cbfs_payload_segment *output, |
| struct cbfs_payload_segment *input) |
| { |
| struct buffer seg = { |
| .data = (void *)input, |
| .size = sizeof(*input), |
| }; |
| output->type = xdr_be.get32(&seg); |
| output->compression = xdr_be.get32(&seg); |
| output->offset = xdr_be.get32(&seg); |
| output->load_addr = xdr_be.get64(&seg); |
| output->len = xdr_be.get32(&seg); |
| output->mem_len = xdr_be.get32(&seg); |
| assert(seg.size == 0); |
| } |
| |
| static int cbfs_file_get_compression_info(struct cbfs_file *entry, |
| uint32_t *decompressed_size) |
| { |
| unsigned int compression = CBFS_COMPRESS_NONE; |
| if (decompressed_size) |
| *decompressed_size = be32toh(entry->len); |
| for (struct cbfs_file_attribute *attr = cbfs_file_first_attr(entry); |
| attr != NULL; |
| attr = cbfs_file_next_attr(entry, attr)) { |
| if (be32toh(attr->tag) == CBFS_FILE_ATTR_TAG_COMPRESSION) { |
| struct cbfs_file_attr_compression *ac = |
| (struct cbfs_file_attr_compression *)attr; |
| compression = be32toh(ac->compression); |
| if (decompressed_size) |
| *decompressed_size = |
| be32toh(ac->decompressed_size); |
| } |
| } |
| return compression; |
| } |
| |
| static struct cbfs_file_attr_hash *cbfs_file_get_next_hash( |
| struct cbfs_file *entry, struct cbfs_file_attr_hash *cur) |
| { |
| struct cbfs_file_attribute *attr = (struct cbfs_file_attribute *)cur; |
| if (attr == NULL) { |
| attr = cbfs_file_first_attr(entry); |
| if (attr == NULL) |
| return NULL; |
| if (be32toh(attr->tag) == CBFS_FILE_ATTR_TAG_HASH) |
| return (struct cbfs_file_attr_hash *)attr; |
| } |
| while ((attr = cbfs_file_next_attr(entry, attr)) != NULL) { |
| if (be32toh(attr->tag) == CBFS_FILE_ATTR_TAG_HASH) |
| return (struct cbfs_file_attr_hash *)attr; |
| }; |
| return NULL; |
| } |
| |
| void cbfs_get_header(struct cbfs_header *header, void *src) |
| { |
| struct buffer outheader; |
| |
| outheader.data = src; /* We're not modifying the data */ |
| outheader.size = 0; |
| |
| header->magic = xdr_be.get32(&outheader); |
| header->version = xdr_be.get32(&outheader); |
| header->romsize = xdr_be.get32(&outheader); |
| header->bootblocksize = xdr_be.get32(&outheader); |
| header->align = xdr_be.get32(&outheader); |
| header->offset = xdr_be.get32(&outheader); |
| header->architecture = xdr_be.get32(&outheader); |
| } |
| |
| int cbfs_image_create(struct cbfs_image *image, size_t entries_size) |
| { |
| assert(image); |
| assert(image->buffer.data); |
| |
| size_t empty_header_len = cbfs_calculate_file_header_size(""); |
| uint32_t entries_offset = 0; |
| uint32_t align = CBFS_ALIGNMENT; |
| if (image->has_header) { |
| entries_offset = image->header.offset; |
| |
| if (entries_offset > image->buffer.size) { |
| ERROR("CBFS file entries are located outside CBFS itself\n"); |
| return -1; |
| } |
| |
| align = image->header.align; |
| } |
| |
| // This attribute must be given in order to prove that this module |
| // correctly preserves certain CBFS properties. See the block comment |
| // near the top of this file (and the associated commit message). |
| if (align < empty_header_len) { |
| ERROR("CBFS must be aligned to at least %zu bytes\n", |
| empty_header_len); |
| return -1; |
| } |
| |
| if (entries_size > image->buffer.size - entries_offset) { |
| ERROR("CBFS doesn't have enough space to fit its file entries\n"); |
| return -1; |
| } |
| |
| if (empty_header_len > entries_size) { |
| ERROR("CBFS is too small to fit any header\n"); |
| return -1; |
| } |
| struct cbfs_file *entry_header = |
| (struct cbfs_file *)(image->buffer.data + entries_offset); |
| // This alignment is necessary in order to prove that this module |
| // correctly preserves certain CBFS properties. See the block comment |
| // near the top of this file (and the associated commit message). |
| entries_size -= entries_size % align; |
| |
| size_t capacity = entries_size - empty_header_len; |
| LOG("Created CBFS (capacity = %zu bytes)\n", capacity); |
| return cbfs_create_empty_entry(entry_header, CBFS_TYPE_NULL, |
| capacity, ""); |
| } |
| |
| int cbfs_legacy_image_create(struct cbfs_image *image, |
| uint32_t architecture, |
| uint32_t align, |
| struct buffer *bootblock, |
| uint32_t bootblock_offset, |
| uint32_t header_offset, |
| uint32_t entries_offset) |
| { |
| assert(image); |
| assert(image->buffer.data); |
| assert(bootblock); |
| |
| int32_t *rel_offset; |
| uint32_t cbfs_len; |
| void *header_loc; |
| size_t size = image->buffer.size; |
| |
| DEBUG("cbfs_image_create: bootblock=0x%x+0x%zx, " |
| "header=0x%x+0x%zx, entries_offset=0x%x\n", |
| bootblock_offset, bootblock->size, header_offset, |
| sizeof(image->header), entries_offset); |
| |
| DEBUG("cbfs_create_image: (real offset) bootblock=0x%x, " |
| "header=0x%x, entries_offset=0x%x\n", |
| bootblock_offset, header_offset, entries_offset); |
| |
| // Prepare bootblock |
| if (bootblock_offset + bootblock->size > size) { |
| ERROR("Bootblock (0x%x+0x%zx) exceed ROM size (0x%zx)\n", |
| bootblock_offset, bootblock->size, size); |
| return -1; |
| } |
| if (entries_offset > bootblock_offset && |
| entries_offset < bootblock->size) { |
| ERROR("Bootblock (0x%x+0x%zx) overlap CBFS data (0x%x)\n", |
| bootblock_offset, bootblock->size, entries_offset); |
| return -1; |
| } |
| memcpy(image->buffer.data + bootblock_offset, bootblock->data, |
| bootblock->size); |
| |
| // Prepare header |
| if (header_offset + sizeof(image->header) > size - sizeof(int32_t)) { |
| ERROR("Header (0x%x+0x%zx) exceed ROM size (0x%zx)\n", |
| header_offset, sizeof(image->header), size); |
| return -1; |
| } |
| image->header.magic = CBFS_HEADER_MAGIC; |
| image->header.version = CBFS_HEADER_VERSION; |
| image->header.romsize = size; |
| image->header.bootblocksize = bootblock->size; |
| image->header.align = align; |
| image->header.offset = entries_offset; |
| image->header.architecture = architecture; |
| |
| header_loc = (image->buffer.data + header_offset); |
| cbfs_put_header(header_loc, &image->header); |
| image->has_header = true; |
| |
| // The last 4 byte of the image contain the relative offset from the end |
| // of the image to the master header as a 32-bit signed integer. x86 |
| // relies on this also being its (memory-mapped, top-aligned) absolute |
| // 32-bit address by virtue of how two's complement numbers work. |
| assert(size % sizeof(int32_t) == 0); |
| rel_offset = (int32_t *)(image->buffer.data + size - sizeof(int32_t)); |
| *rel_offset = header_offset - size; |
| |
| // Prepare entries |
| if (align_up(entries_offset, align) != entries_offset) { |
| ERROR("Offset (0x%x) must be aligned to 0x%x.\n", |
| entries_offset, align); |
| return -1; |
| } |
| // To calculate available length, find |
| // e = min(bootblock, header, rel_offset) where e > entries_offset. |
| cbfs_len = size - sizeof(int32_t); |
| if (bootblock_offset > entries_offset && bootblock_offset < cbfs_len) |
| cbfs_len = bootblock_offset; |
| if (header_offset > entries_offset && header_offset < cbfs_len) |
| cbfs_len = header_offset; |
| |
| if (cbfs_image_create(image, cbfs_len - entries_offset)) |
| return -1; |
| return 0; |
| } |
| |
| int cbfs_image_from_buffer(struct cbfs_image *out, struct buffer *in, |
| uint32_t offset) |
| { |
| assert(out); |
| assert(in); |
| assert(in->data); |
| |
| buffer_clone(&out->buffer, in); |
| out->has_header = false; |
| |
| if (cbfs_is_valid_cbfs(out)) { |
| return 0; |
| } |
| |
| void *header_loc = cbfs_find_header(in->data, in->size, offset); |
| if (header_loc) { |
| cbfs_get_header(&out->header, header_loc); |
| out->has_header = true; |
| cbfs_fix_legacy_size(out, header_loc); |
| return 0; |
| } else if (offset != HEADER_OFFSET_UNKNOWN) { |
| ERROR("The -H switch is only valid on legacy images having CBFS master headers.\n"); |
| } |
| ERROR("Selected image region is not a valid CBFS.\n"); |
| return 1; |
| } |
| |
| int cbfs_copy_instance(struct cbfs_image *image, struct buffer *dst) |
| { |
| assert(image); |
| |
| struct cbfs_file *src_entry, *dst_entry; |
| size_t align; |
| ssize_t last_entry_size; |
| |
| size_t copy_end = buffer_size(dst); |
| |
| align = CBFS_ALIGNMENT; |
| |
| dst_entry = (struct cbfs_file *)buffer_get(dst); |
| |
| /* Copy non-empty files */ |
| for (src_entry = cbfs_find_first_entry(image); |
| src_entry && cbfs_is_valid_entry(image, src_entry); |
| src_entry = cbfs_find_next_entry(image, src_entry)) { |
| size_t entry_size; |
| |
| if ((src_entry->type == htobe32(CBFS_TYPE_NULL)) || |
| (src_entry->type == htobe32(CBFS_TYPE_CBFSHEADER)) || |
| (src_entry->type == htobe32(CBFS_TYPE_DELETED))) |
| continue; |
| |
| entry_size = htobe32(src_entry->len) + htobe32(src_entry->offset); |
| memcpy(dst_entry, src_entry, entry_size); |
| dst_entry = (struct cbfs_file *)( |
| (uintptr_t)dst_entry + align_up(entry_size, align)); |
| |
| if ((size_t)((uint8_t *)dst_entry - (uint8_t *)buffer_get(dst)) |
| >= copy_end) { |
| ERROR("Ran out of room in copy region.\n"); |
| return 1; |
| } |
| } |
| |
| /* Last entry size is all the room above it, except for top 4 bytes |
| * which may be used by the master header pointer. This messes with |
| * the ability to stash something "top-aligned" into the region, but |
| * keeps things simpler. */ |
| last_entry_size = copy_end - |
| ((uint8_t *)dst_entry - (uint8_t *)buffer_get(dst)) - |
| cbfs_calculate_file_header_size("") - sizeof(int32_t); |
| |
| if (last_entry_size < 0) |
| WARN("No room to create the last entry!\n"); |
| else |
| return cbfs_create_empty_entry(dst_entry, CBFS_TYPE_NULL, |
| last_entry_size, ""); |
| |
| return 0; |
| } |
| |
| int cbfs_expand_to_region(struct buffer *region) |
| { |
| if (buffer_get(region) == NULL) |
| return 1; |
| |
| struct cbfs_image image; |
| memset(&image, 0, sizeof(image)); |
| if (cbfs_image_from_buffer(&image, region, HEADER_OFFSET_UNKNOWN)) { |
| ERROR("reading CBFS failed!\n"); |
| return 1; |
| } |
| |
| uint32_t region_sz = buffer_size(region); |
| |
| struct cbfs_file *entry; |
| for (entry = buffer_get(region); |
| cbfs_is_valid_entry(&image, entry); |
| entry = cbfs_find_next_entry(&image, entry)) { |
| /* just iterate through */ |
| } |
| |
| /* entry now points to the first aligned address after the last valid |
| * file header. That's either outside the image or exactly the place |
| * where we need to create a new file. |
| */ |
| int last_entry_size = region_sz - |
| ((uint8_t *)entry - (uint8_t *)buffer_get(region)) - |
| cbfs_calculate_file_header_size("") - sizeof(int32_t); |
| |
| if (last_entry_size > 0) { |
| if (cbfs_create_empty_entry(entry, CBFS_TYPE_NULL, |
| last_entry_size, "")) |
| return 1; |
| |
| /* If the last entry was an empty file, merge them. */ |
| cbfs_legacy_walk(&image, cbfs_merge_empty_entry, NULL); |
| } |
| |
| return 0; |
| } |
| |
| int cbfs_truncate_space(struct buffer *region, uint32_t *size) |
| { |
| if (buffer_get(region) == NULL) |
| return 1; |
| |
| struct cbfs_image image; |
| memset(&image, 0, sizeof(image)); |
| if (cbfs_image_from_buffer(&image, region, HEADER_OFFSET_UNKNOWN)) { |
| ERROR("reading CBFS failed!\n"); |
| return 1; |
| } |
| |
| struct cbfs_file *entry, *trailer; |
| for (trailer = entry = buffer_get(region); |
| cbfs_is_valid_entry(&image, entry); |
| trailer = entry, |
| entry = cbfs_find_next_entry(&image, entry)) { |
| /* just iterate through */ |
| } |
| |
| /* trailer now points to the last valid CBFS entry's header. |
| * If that file is empty, remove it and report its header's offset as |
| * maximum size. |
| */ |
| if ((strlen(trailer->filename) != 0) && |
| (trailer->type != htobe32(CBFS_TYPE_NULL)) && |
| (trailer->type != htobe32(CBFS_TYPE_DELETED))) { |
| /* nothing to truncate. Return de-facto CBFS size in case it |
| * was already truncated. */ |
| *size = (uint8_t *)entry - (uint8_t *)buffer_get(region); |
| return 0; |
| } |
| *size = (uint8_t *)trailer - (uint8_t *)buffer_get(region); |
| memset(trailer, 0xff, buffer_size(region) - *size); |
| |
| return 0; |
| } |
| |
| static size_t cbfs_file_entry_metadata_size(const struct cbfs_file *f) |
| { |
| return be32toh(f->offset); |
| } |
| |
| static size_t cbfs_file_entry_data_size(const struct cbfs_file *f) |
| { |
| return be32toh(f->len); |
| } |
| |
| static size_t cbfs_file_entry_size(const struct cbfs_file *f) |
| { |
| return cbfs_file_entry_metadata_size(f) + cbfs_file_entry_data_size(f); |
| } |
| |
| int cbfs_compact_instance(struct cbfs_image *image) |
| { |
| assert(image); |
| |
| struct cbfs_file *prev; |
| struct cbfs_file *cur; |
| |
| /* The prev entry will always be an empty entry. */ |
| prev = NULL; |
| |
| /* |
| * Note: this function does not honor alignment or fixed location files. |
| * It's behavior is akin to cbfs_copy_instance() in that it expects |
| * the caller to understand the ramifications of compacting a |
| * fragmented CBFS image. |
| */ |
| |
| for (cur = cbfs_find_first_entry(image); |
| cur && cbfs_is_valid_entry(image, cur); |
| cur = cbfs_find_next_entry(image, cur)) { |
| size_t prev_size; |
| size_t cur_size; |
| size_t empty_metadata_size; |
| size_t spill_size; |
| |
| /* Current entry is empty. Kepp track of it. */ |
| if (cur->type == CBFS_TYPE_NULL || cur->type == CBFS_TYPE_DELETED) { |
| prev = cur; |
| continue; |
| } |
| |
| /* Need to ensure the previous entry is an empty one. */ |
| if (prev == NULL) |
| continue; |
| |
| /* At this point prev is an empty entry. Put the non-empty |
| * file in prev's location. Then add a new empty entry. This |
| * essentialy bubbles empty entries towards the end. */ |
| |
| prev_size = cbfs_file_entry_size(prev); |
| cur_size = cbfs_file_entry_size(cur); |
| |
| /* |
| * Adjust the empty file size by the actual space occupied |
| * bewtween the beginning of the empty file and the non-empty |
| * file. |
| */ |
| prev_size += (cbfs_get_entry_addr(image, cur) - |
| cbfs_get_entry_addr(image, prev)) - prev_size; |
| |
| /* Move the non-empty file over the empty file. */ |
| memmove(prev, cur, cur_size); |
| |
| /* |
| * Get location of the empty file. Note that since prev was |
| * overwritten with the non-empty file the previously moved |
| * file needs to be used to calculate the empty file's location. |
| */ |
| cur = cbfs_find_next_entry(image, prev); |
| |
| /* |
| * The total space to work with for swapping the 2 entries |
| * consists of the 2 files' sizes combined. However, the |
| * cbfs_file entries start on CBFS_ALIGNMENT boundaries. |
| * Because of this the empty file size may end up smaller |
| * because of the non-empty file's metadata and data length. |
| * |
| * Calculate the spill size which is the amount of data lost |
| * due to the alignment constraints after moving the non-empty |
| * file. |
| */ |
| spill_size = (cbfs_get_entry_addr(image, cur) - |
| cbfs_get_entry_addr(image, prev)) - cur_size; |
| |
| empty_metadata_size = cbfs_calculate_file_header_size(""); |
| |
| /* Check if new empty size can contain the metadata. */ |
| if (empty_metadata_size + spill_size > prev_size) { |
| ERROR("Unable to swap '%s' with prev empty entry.\n", |
| prev->filename); |
| return 1; |
| } |
| |
| /* Update the empty file's size. */ |
| prev_size -= spill_size + empty_metadata_size; |
| |
| /* Create new empty file. */ |
| if (cbfs_create_empty_entry(cur, CBFS_TYPE_NULL, |
| prev_size, "")) |
| return 1; |
| |
| /* Merge any potential empty entries together. */ |
| cbfs_legacy_walk(image, cbfs_merge_empty_entry, NULL); |
| |
| /* |
| * Since current switched to an empty file keep track of it. |
| * Even if any empty files were merged the empty entry still |
| * starts at previously calculated location. |
| */ |
| prev = cur; |
| } |
| |
| return 0; |
| } |
| |
| int cbfs_image_delete(struct cbfs_image *image) |
| { |
| if (image == NULL) |
| return 0; |
| |
| buffer_delete(&image->buffer); |
| return 0; |
| } |
| |
| /* Tries to add an entry with its data (CBFS_SUBHEADER) at given offset. */ |
| static int cbfs_add_entry_at(struct cbfs_image *image, |
| struct cbfs_file *entry, |
| const void *data, |
| uint32_t content_offset, |
| const struct cbfs_file *header, |
| const size_t len_align) |
| { |
| struct cbfs_file *next = cbfs_find_next_entry(image, entry); |
| uint32_t addr = cbfs_get_entry_addr(image, entry), |
| addr_next = cbfs_get_entry_addr(image, next); |
| uint32_t min_entry_size = cbfs_calculate_file_header_size(""); |
| uint32_t len, header_offset; |
| uint32_t align = image->has_header ? image->header.align : |
| CBFS_ALIGNMENT; |
| uint32_t header_size = be32toh(header->offset); |
| |
| header_offset = content_offset - header_size; |
| if (header_offset % align) |
| header_offset -= header_offset % align; |
| if (header_offset < addr) { |
| ERROR("No space to hold cbfs_file header."); |
| return -1; |
| } |
| |
| // Process buffer BEFORE content_offset. |
| if (header_offset - addr > min_entry_size) { |
| DEBUG("|min|...|header|content|... <create new entry>\n"); |
| len = header_offset - addr - min_entry_size; |
| if (cbfs_create_empty_entry(entry, CBFS_TYPE_NULL, len, "")) |
| return -1; |
| if (verbose > 1) cbfs_print_entry_info(image, entry, stderr); |
| entry = cbfs_find_next_entry(image, entry); |
| addr = cbfs_get_entry_addr(image, entry); |
| } |
| |
| len = content_offset - addr - header_size; |
| memcpy(entry, header, header_size); |
| if (len != 0) { |
| /* |
| * The header moved backwards a bit to accommodate cbfs_file |
| * alignment requirements, so patch up ->offset to still point |
| * to file data. Move attributes forward so the end of the |
| * attribute list still matches the end of the metadata. |
| */ |
| uint32_t offset = be32toh(entry->offset); |
| uint32_t attrs = be32toh(entry->attributes_offset); |
| DEBUG("|..|header|content|... <use offset to create entry>\n"); |
| DEBUG("before: attr_offset=0x%x, offset=0x%x\n", attrs, offset); |
| if (attrs == 0) { |
| memset((uint8_t *)entry + offset, 0, len); |
| } else { |
| uint8_t *p = (uint8_t *)entry + attrs; |
| memmove(p + len, p, offset - attrs); |
| memset(p, 0, len); |
| attrs += len; |
| entry->attributes_offset = htobe32(attrs); |
| } |
| offset += len; |
| entry->offset = htobe32(offset); |
| DEBUG("after: attr_offset=0x%x, offset=0x%x\n", attrs, offset); |
| } |
| |
| // Ready to fill data into entry. |
| DEBUG("content_offset: 0x%x, entry location: %x\n", |
| content_offset, (int)((char*)CBFS_SUBHEADER(entry) - |
| image->buffer.data)); |
| assert((char*)CBFS_SUBHEADER(entry) - image->buffer.data == |
| (ptrdiff_t)content_offset); |
| memcpy(CBFS_SUBHEADER(entry), data, be32toh(entry->len)); |
| if (verbose > 1) cbfs_print_entry_info(image, entry, stderr); |
| |
| // Align the length to a multiple of len_align |
| if (len_align && |
| ((be32toh(entry->offset) + be32toh(entry->len)) % len_align)) { |
| size_t off = (be32toh(entry->offset) + be32toh(entry->len)) % len_align; |
| entry->len = htobe32(be32toh(entry->len) + len_align - off); |
| } |
| |
| // Process buffer AFTER entry. |
| entry = cbfs_find_next_entry(image, entry); |
| addr = cbfs_get_entry_addr(image, entry); |
| if (addr == addr_next) |
| return 0; |
| |
| assert(addr < addr_next); |
| if (addr_next - addr < min_entry_size) { |
| DEBUG("No need for new \"empty\" entry\n"); |
| /* No need to increase the size of the just |
| * stored file to extend to next file. Alignment |
| * of next file takes care of this. |
| */ |
| return 0; |
| } |
| |
| len = addr_next - addr - min_entry_size; |
| /* keep space for master header pointer */ |
| if ((uint8_t *)entry + min_entry_size + len > |
| (uint8_t *)buffer_get(&image->buffer) + |
| buffer_size(&image->buffer) - sizeof(int32_t)) { |
| len -= sizeof(int32_t); |
| } |
| if (cbfs_create_empty_entry(entry, CBFS_TYPE_NULL, len, "")) |
| return -1; |
| if (verbose > 1) cbfs_print_entry_info(image, entry, stderr); |
| return 0; |
| } |
| |
| int cbfs_add_entry(struct cbfs_image *image, struct buffer *buffer, |
| uint32_t content_offset, |
| struct cbfs_file *header, |
| const size_t len_align) |
| { |
| assert(image); |
| assert(buffer); |
| assert(buffer->data); |
| assert(!IS_HOST_SPACE_ADDRESS(content_offset)); |
| |
| const char *name = header->filename; |
| |
| /* This is so special rows in cbfstool print -k -v output stay unambiguous. */ |
| if (name[0] == '[') { |
| ERROR("CBFS file name `%s` must not start with `[`\n", name); |
| return -1; |
| } |
| |
| uint32_t entry_type; |
| uint32_t addr, addr_next; |
| struct cbfs_file *entry, *next; |
| uint32_t need_size; |
| uint32_t header_size = be32toh(header->offset); |
| |
| need_size = header_size + buffer->size; |
| DEBUG("cbfs_add_entry('%s'@0x%x) => need_size = %u+%zu=%u\n", |
| name, content_offset, header_size, buffer->size, need_size); |
| |
| // Merge empty entries. |
| DEBUG("(trying to merge empty entries...)\n"); |
| cbfs_legacy_walk(image, cbfs_merge_empty_entry, NULL); |
| |
| for (entry = cbfs_find_first_entry(image); |
| entry && cbfs_is_valid_entry(image, entry); |
| entry = cbfs_find_next_entry(image, entry)) { |
| |
| entry_type = be32toh(entry->type); |
| if (entry_type != CBFS_TYPE_NULL) |
| continue; |
| |
| addr = cbfs_get_entry_addr(image, entry); |
| next = cbfs_find_next_entry(image, entry); |
| addr_next = cbfs_get_entry_addr(image, next); |
| |
| DEBUG("cbfs_add_entry: space at 0x%x+0x%x(%d) bytes\n", |
| addr, addr_next - addr, addr_next - addr); |
| |
| /* Will the file fit? Don't yet worry if we have space for a new |
| * "empty" entry. We take care of that later. |
| */ |
| if (addr + need_size > addr_next) |
| continue; |
| |
| // Test for complicated cases |
| if (content_offset > 0) { |
| if (addr_next < content_offset) { |
| DEBUG("Not for specified offset yet"); |
| continue; |
| } else if (addr > content_offset) { |
| DEBUG("Exceed specified content_offset."); |
| break; |
| } else if (addr + header_size > content_offset) { |
| ERROR("Not enough space for header.\n"); |
| break; |
| } else if (content_offset + buffer->size > addr_next) { |
| ERROR("Not enough space for content.\n"); |
| break; |
| } |
| } |
| |
| // TODO there are more few tricky cases that we may |
| // want to fit by altering offset. |
| |
| if (content_offset == 0) { |
| // we tested every condition earlier under which |
| // placing the file there might fail |
| content_offset = addr + header_size; |
| } |
| |
| DEBUG("section 0x%x+0x%x for content_offset 0x%x.\n", |
| addr, addr_next - addr, content_offset); |
| |
| if (cbfs_add_entry_at(image, entry, buffer->data, |
| content_offset, header, len_align) == 0) { |
| return 0; |
| } |
| break; |
| } |
| |
| ERROR("Could not add [%s, %zd bytes (%zd KB)@0x%x]; too big?\n", |
| buffer->name, buffer->size, buffer->size / 1024, content_offset); |
| return -1; |
| } |
| |
| struct cbfs_file *cbfs_get_entry(struct cbfs_image *image, const char *name) |
| { |
| struct cbfs_file *entry; |
| for (entry = cbfs_find_first_entry(image); |
| entry && cbfs_is_valid_entry(image, entry); |
| entry = cbfs_find_next_entry(image, entry)) { |
| if (strcasecmp(entry->filename, name) == 0) { |
| DEBUG("cbfs_get_entry: found %s\n", name); |
| return entry; |
| } |
| } |
| return NULL; |
| } |
| |
| static int cbfs_payload_decompress(struct cbfs_payload_segment *segments, |
| struct buffer *buff, int num_seg) |
| { |
| struct buffer new_buffer; |
| struct buffer seg_buffer; |
| size_t new_buff_sz; |
| char *in_ptr; |
| char *out_ptr; |
| size_t new_offset; |
| decomp_func_ptr decompress; |
| |
| new_offset = num_seg * sizeof(*segments); |
| new_buff_sz = num_seg * sizeof(*segments); |
| |
| /* Find out and allocate the amount of memory occupied |
| * by the binary data */ |
| for (int i = 0; i < num_seg; i++) |
| new_buff_sz += segments[i].mem_len; |
| |
| if (buffer_create(&new_buffer, new_buff_sz, "decompressed_buff")) |
| return -1; |
| |
| in_ptr = buffer_get(buff) + new_offset; |
| out_ptr = buffer_get(&new_buffer) + new_offset; |
| |
| for (int i = 0; i < num_seg; i++) { |
| struct buffer tbuff; |
| size_t decomp_size; |
| |
| /* Segments BSS and ENTRY do not have binary data. */ |
| if (segments[i].type == PAYLOAD_SEGMENT_BSS || |
| segments[i].type == PAYLOAD_SEGMENT_ENTRY) { |
| continue; |
| } else if (segments[i].type == PAYLOAD_SEGMENT_PARAMS) { |
| memcpy(out_ptr, in_ptr, segments[i].len); |
| segments[i].offset = new_offset; |
| new_offset += segments[i].len; |
| in_ptr += segments[i].len; |
| out_ptr += segments[i].len; |
| segments[i].compression = CBFS_COMPRESS_NONE; |
| continue; |
| } |
| |
| /* The payload uses an unknown compression algorithm. */ |
| decompress = decompression_function(segments[i].compression); |
| if (decompress == NULL) { |
| ERROR("Unknown decompression algorithm: %u\n", |
| segments[i].compression); |
| return -1; |
| } |
| |
| if (buffer_create(&tbuff, segments[i].mem_len, "segment")) { |
| buffer_delete(&new_buffer); |
| return -1; |
| } |
| |
| if (decompress(in_ptr, segments[i].len, buffer_get(&tbuff), |
| (int) buffer_size(&tbuff), |
| &decomp_size)) { |
| ERROR("Couldn't decompress payload segment %u\n", i); |
| buffer_delete(&new_buffer); |
| buffer_delete(&tbuff); |
| return -1; |
| } |
| |
| memcpy(out_ptr, buffer_get(&tbuff), decomp_size); |
| |
| in_ptr += segments[i].len; |
| |
| /* Update the offset of the segment. */ |
| segments[i].offset = new_offset; |
| /* True decompressed size is just the data size. No metadata */ |
| segments[i].len = decomp_size; |
| /* Segment is not compressed. */ |
| segments[i].compression = CBFS_COMPRESS_NONE; |
| |
| /* Update the offset and output buffer pointer. */ |
| new_offset += decomp_size; |
| out_ptr += decomp_size; |
| |
| buffer_delete(&tbuff); |
| } |
| |
| buffer_splice(&seg_buffer, &new_buffer, 0, 0); |
| xdr_segs(&seg_buffer, segments, num_seg); |
| |
| buffer_delete(buff); |
| *buff = new_buffer; |
| |
| return 0; |
| } |
| |
| static int init_elf_from_arch(Elf64_Ehdr *ehdr, uint32_t cbfs_arch) |
| { |
| int endian; |
| int nbits; |
| int machine; |
| |
| switch (cbfs_arch) { |
| case CBFS_ARCHITECTURE_X86: |
| endian = ELFDATA2LSB; |
| nbits = ELFCLASS32; |
| machine = EM_386; |
| break; |
| case CBFS_ARCHITECTURE_ARM: |
| endian = ELFDATA2LSB; |
| nbits = ELFCLASS32; |
| machine = EM_ARM; |
| break; |
| case CBFS_ARCHITECTURE_AARCH64: |
| endian = ELFDATA2LSB; |
| nbits = ELFCLASS64; |
| machine = EM_AARCH64; |
| break; |
| case CBFS_ARCHITECTURE_MIPS: |
| endian = ELFDATA2LSB; |
| nbits = ELFCLASS32; |
| machine = EM_MIPS; |
| break; |
| case CBFS_ARCHITECTURE_RISCV: |
| endian = ELFDATA2LSB; |
| nbits = ELFCLASS32; |
| machine = EM_RISCV; |
| break; |
| default: |
| ERROR("Unsupported arch: %x\n", cbfs_arch); |
| return -1; |
| } |
| |
| elf_init_eheader(ehdr, machine, nbits, endian); |
| return 0; |
| } |
| |
| static int cbfs_stage_make_elf(struct buffer *buff, uint32_t arch, |
| struct cbfs_file *entry) |
| { |
| Elf64_Ehdr ehdr; |
| Elf64_Shdr shdr; |
| struct elf_writer *ew; |
| struct buffer elf_out; |
| size_t empty_sz; |
| int rmod_ret; |
| |
| if (arch == CBFS_ARCHITECTURE_UNKNOWN) { |
| ERROR("You need to specify -m ARCH.\n"); |
| return -1; |
| } |
| |
| struct cbfs_file_attr_stageheader *stage = NULL; |
| for (struct cbfs_file_attribute *attr = cbfs_file_first_attr(entry); |
| attr != NULL; attr = cbfs_file_next_attr(entry, attr)) { |
| if (be32toh(attr->tag) == CBFS_FILE_ATTR_TAG_STAGEHEADER) { |
| stage = (struct cbfs_file_attr_stageheader *)attr; |
| break; |
| } |
| } |
| |
| if (stage == NULL) { |
| ERROR("Stage header not found for %s\n", entry->filename); |
| return -1; |
| } |
| |
| if (init_elf_from_arch(&ehdr, arch)) |
| return -1; |
| |
| /* Attempt rmodule translation first. */ |
| rmod_ret = rmodule_stage_to_elf(&ehdr, buff); |
| |
| if (rmod_ret < 0) { |
| ERROR("rmodule parsing failed\n"); |
| return -1; |
| } else if (rmod_ret == 0) |
| return 0; |
| |
| /* Rmodule couldn't do anything with the data. Continue on with SELF. */ |
| |
| ehdr.e_entry = be64toh(stage->loadaddr) + be32toh(stage->entry_offset); |
| |
| ew = elf_writer_init(&ehdr); |
| if (ew == NULL) { |
| ERROR("Unable to init ELF writer.\n"); |
| return -1; |
| } |
| |
| memset(&shdr, 0, sizeof(shdr)); |
| shdr.sh_type = SHT_PROGBITS; |
| shdr.sh_flags = SHF_WRITE | SHF_ALLOC | SHF_EXECINSTR; |
| shdr.sh_addr = be64toh(stage->loadaddr); |
| shdr.sh_size = buffer_size(buff); |
| empty_sz = be32toh(stage->memlen) - buffer_size(buff); |
| |
| if (elf_writer_add_section(ew, &shdr, buff, ".program")) { |
| ERROR("Unable to add ELF section: .program\n"); |
| elf_writer_destroy(ew); |
| return -1; |
| } |
| |
| if (empty_sz != 0) { |
| struct buffer b; |
| |
| buffer_init(&b, NULL, NULL, 0); |
| memset(&shdr, 0, sizeof(shdr)); |
| shdr.sh_type = SHT_NOBITS; |
| shdr.sh_flags = SHF_WRITE | SHF_ALLOC; |
| shdr.sh_addr = be64toh(stage->loadaddr) + buffer_size(buff); |
| shdr.sh_size = empty_sz; |
| if (elf_writer_add_section(ew, &shdr, &b, ".empty")) { |
| ERROR("Unable to add ELF section: .empty\n"); |
| elf_writer_destroy(ew); |
| return -1; |
| } |
| } |
| |
| if (elf_writer_serialize(ew, &elf_out)) { |
| ERROR("Unable to create ELF file from stage.\n"); |
| elf_writer_destroy(ew); |
| return -1; |
| } |
| |
| /* Flip buffer with the created ELF one. */ |
| buffer_delete(buff); |
| *buff = elf_out; |
| |
| elf_writer_destroy(ew); |
| |
| return 0; |
| } |
| |
| static int cbfs_payload_make_elf(struct buffer *buff, uint32_t arch, |
| unused struct cbfs_file *entry) |
| { |
| Elf64_Ehdr ehdr; |
| Elf64_Shdr shdr; |
| struct cbfs_payload_segment *segs = NULL; |
| struct elf_writer *ew = NULL; |
| struct buffer elf_out; |
| int segments = 0; |
| int retval = -1; |
| |
| if (arch == CBFS_ARCHITECTURE_UNKNOWN) { |
| ERROR("You need to specify -m ARCH.\n"); |
| goto out; |
| } |
| |
| /* Count the number of segments inside buffer */ |
| while (true) { |
| uint32_t payload_type = 0; |
| |
| struct cbfs_payload_segment *seg; |
| |
| seg = buffer_get(buff); |
| payload_type = read_be32(&seg[segments].type); |
| |
| if (payload_type == PAYLOAD_SEGMENT_CODE) { |
| segments++; |
| } else if (payload_type == PAYLOAD_SEGMENT_DATA) { |
| segments++; |
| } else if (payload_type == PAYLOAD_SEGMENT_BSS) { |
| segments++; |
| } else if (payload_type == PAYLOAD_SEGMENT_PARAMS) { |
| segments++; |
| } else if (payload_type == PAYLOAD_SEGMENT_ENTRY) { |
| /* The last segment in a payload is always ENTRY as |
| * specified by the parse_elf_to_payload() function. |
| * Therefore there is no need to continue looking for |
| * segments.*/ |
| segments++; |
| break; |
| } else { |
| ERROR("Unknown payload segment type: %x\n", |
| payload_type); |
| goto out; |
| } |
| } |
| |
| segs = malloc(segments * sizeof(*segs)); |
| |
| /* Decode xdr segments */ |
| for (int i = 0; i < segments; i++) { |
| struct cbfs_payload_segment *serialized_seg = buffer_get(buff); |
| xdr_get_seg(&segs[i], &serialized_seg[i]); |
| } |
| |
| if (cbfs_payload_decompress(segs, buff, segments)) { |
| ERROR("Failed to decompress payload.\n"); |
| goto out; |
| } |
| |
| if (init_elf_from_arch(&ehdr, arch)) |
| goto out; |
| |
| ehdr.e_entry = segs[segments-1].load_addr; |
| |
| ew = elf_writer_init(&ehdr); |
| if (ew == NULL) { |
| ERROR("Unable to init ELF writer.\n"); |
| goto out; |
| } |
| |
| for (int i = 0; i < segments; i++) { |
| struct buffer tbuff; |
| size_t empty_sz = 0; |
| |
| memset(&shdr, 0, sizeof(shdr)); |
| char *name = NULL; |
| |
| if (segs[i].type == PAYLOAD_SEGMENT_CODE) { |
| shdr.sh_type = SHT_PROGBITS; |
| shdr.sh_flags = SHF_WRITE | SHF_ALLOC | SHF_EXECINSTR; |
| shdr.sh_addr = segs[i].load_addr; |
| shdr.sh_size = segs[i].len; |
| empty_sz = segs[i].mem_len - segs[i].len; |
| name = strdup(".text"); |
| buffer_splice(&tbuff, buff, segs[i].offset, |
| segs[i].len); |
| } else if (segs[i].type == PAYLOAD_SEGMENT_DATA) { |
| shdr.sh_type = SHT_PROGBITS; |
| shdr.sh_flags = SHF_ALLOC | SHF_WRITE; |
| shdr.sh_addr = segs[i].load_addr; |
| shdr.sh_size = segs[i].len; |
| empty_sz = segs[i].mem_len - segs[i].len; |
| name = strdup(".data"); |
| buffer_splice(&tbuff, buff, segs[i].offset, |
| segs[i].len); |
| } else if (segs[i].type == PAYLOAD_SEGMENT_BSS) { |
| shdr.sh_type = SHT_NOBITS; |
| shdr.sh_flags = SHF_ALLOC | SHF_WRITE; |
| shdr.sh_addr = segs[i].load_addr; |
| shdr.sh_size = segs[i].len; |
| name = strdup(".bss"); |
| buffer_splice(&tbuff, buff, 0, 0); |
| } else if (segs[i].type == PAYLOAD_SEGMENT_PARAMS) { |
| shdr.sh_type = SHT_NOTE; |
| shdr.sh_flags = 0; |
| shdr.sh_size = segs[i].len; |
| name = strdup(".note.pinfo"); |
| buffer_splice(&tbuff, buff, segs[i].offset, |
| segs[i].len); |
| } else if (segs[i].type == PAYLOAD_SEGMENT_ENTRY) { |
| break; |
| } else { |
| ERROR("unknown ELF segment type\n"); |
| goto out; |
| } |
| |
| if (!name) { |
| ERROR("out of memory\n"); |
| goto out; |
| } |
| |
| if (elf_writer_add_section(ew, &shdr, &tbuff, name)) { |
| ERROR("Unable to add ELF section: %s\n", name); |
| free(name); |
| goto out; |
| } |
| free(name); |
| |
| if (empty_sz != 0) { |
| struct buffer b; |
| |
| buffer_init(&b, NULL, NULL, 0); |
| memset(&shdr, 0, sizeof(shdr)); |
| shdr.sh_type = SHT_NOBITS; |
| shdr.sh_flags = SHF_WRITE | SHF_ALLOC; |
| shdr.sh_addr = segs[i].load_addr + segs[i].len; |
| shdr.sh_size = empty_sz; |
| name = strdup(".empty"); |
| if (!name) { |
| ERROR("out of memory\n"); |
| goto out; |
| } |
| if (elf_writer_add_section(ew, &shdr, &b, name)) { |
| ERROR("Unable to add ELF section: %s\n", name); |
| free(name); |
| goto out; |
| } |
| free(name); |
| } |
| } |
| |
| if (elf_writer_serialize(ew, &elf_out)) { |
| ERROR("Unable to create ELF file from payload.\n"); |
| goto out; |
| } |
| |
| /* Flip buffer with the created ELF one. */ |
| buffer_delete(buff); |
| *buff = elf_out; |
| retval = 0; |
| |
| out: |
| free(segs); |
| elf_writer_destroy(ew); |
| return retval; |
| } |
| |
| int cbfs_export_entry(struct cbfs_image *image, const char *entry_name, |
| const char *filename, uint32_t arch, bool do_processing) |
| { |
| struct cbfs_file *entry = cbfs_get_entry(image, entry_name); |
| struct buffer buffer; |
| if (!entry) { |
| ERROR("File not found: %s\n", entry_name); |
| return -1; |
| } |
| |
| unsigned int compressed_size = be32toh(entry->len); |
| unsigned int decompressed_size = 0; |
| unsigned int compression = cbfs_file_get_compression_info(entry, |
| &decompressed_size); |
| unsigned int buffer_len; |
| decomp_func_ptr decompress; |
| |
| if (do_processing) { |
| decompress = decompression_function(compression); |
| if (!decompress) { |
| ERROR("looking up decompression routine failed\n"); |
| return -1; |
| } |
| buffer_len = decompressed_size; |
| } else { |
| /* Force nop decompression */ |
| decompress = decompression_function(CBFS_COMPRESS_NONE); |
| buffer_len = compressed_size; |
| } |
| |
| LOG("Found file %.30s at 0x%x, type %.12s, compressed %d, size %d\n", |
| entry_name, cbfs_get_entry_addr(image, entry), |
| get_cbfs_entry_type_name(be32toh(entry->type)), compressed_size, |
| decompressed_size); |
| |
| buffer_init(&buffer, strdup("(cbfs_export_entry)"), NULL, 0); |
| buffer.data = malloc(buffer_len); |
| buffer.size = buffer_len; |
| |
| if (decompress(CBFS_SUBHEADER(entry), compressed_size, |
| buffer.data, buffer.size, NULL)) { |
| ERROR("decompression failed for %s\n", entry_name); |
| buffer_delete(&buffer); |
| return -1; |
| } |
| |
| /* |
| * We want to export stages and payloads as ELFs, not with coreboot's |
| * custom stage/SELF binary formats, so we need to do extra processing |
| * to turn them back into an ELF. |
| */ |
| if (do_processing) { |
| int (*make_elf)(struct buffer *, uint32_t, |
| struct cbfs_file *) = NULL; |
| switch (be32toh(entry->type)) { |
| case CBFS_TYPE_STAGE: |
| make_elf = cbfs_stage_make_elf; |
| break; |
| case CBFS_TYPE_SELF: |
| make_elf = cbfs_payload_make_elf; |
| break; |
| } |
| if (make_elf && make_elf(&buffer, arch, entry)) { |
| ERROR("Failed to write %s into %s.\n", |
| entry_name, filename); |
| buffer_delete(&buffer); |
| return -1; |
| } |
| } |
| |
| if (buffer_write_file(&buffer, filename) != 0) { |
| ERROR("Failed to write %s into %s.\n", |
| entry_name, filename); |
| buffer_delete(&buffer); |
| return -1; |
| } |
| |
| buffer_delete(&buffer); |
| INFO("Successfully dumped the file to: %s\n", filename); |
| return 0; |
| } |
| |
| int cbfs_remove_entry(struct cbfs_image *image, const char *name) |
| { |
| struct cbfs_file *entry; |
| entry = cbfs_get_entry(image, name); |
| if (!entry) { |
| ERROR("CBFS file %s not found.\n", name); |
| return -1; |
| } |
| DEBUG("cbfs_remove_entry: Removed %s @ 0x%x\n", |
| entry->filename, cbfs_get_entry_addr(image, entry)); |
| entry->type = htobe32(CBFS_TYPE_DELETED); |
| cbfs_legacy_walk(image, cbfs_merge_empty_entry, NULL); |
| return 0; |
| } |
| |
| int cbfs_print_header_info(struct cbfs_image *image) |
| { |
| char *name = strdup(image->buffer.name); |
| assert(image); |
| printf("%s: %zd kB, bootblocksize %d, romsize %d, offset 0x%x\n" |
| "alignment: %d bytes, architecture: %s\n\n", |
| basename(name), |
| image->buffer.size / 1024, |
| image->header.bootblocksize, |
| image->header.romsize, |
| image->header.offset, |
| image->header.align, |
| arch_to_string(image->header.architecture)); |
| free(name); |
| return 0; |
| } |
| |
| static int cbfs_print_stage_info(struct cbfs_file *entry, FILE* fp) |
| { |
| |
| struct cbfs_file_attr_stageheader *stage = NULL; |
| for (struct cbfs_file_attribute *attr = cbfs_file_first_attr(entry); |
| attr != NULL; attr = cbfs_file_next_attr(entry, attr)) { |
| if (be32toh(attr->tag) == CBFS_FILE_ATTR_TAG_STAGEHEADER) { |
| stage = (struct cbfs_file_attr_stageheader *)attr; |
| break; |
| } |
| } |
| |
| if (stage == NULL) { |
| fprintf(fp, " ERROR: stage header not found!\n"); |
| return -1; |
| } |
| |
| fprintf(fp, |
| " entry: 0x%" PRIx64 ", load: 0x%" PRIx64 ", " |
| "memlen: %d\n", |
| be64toh(stage->loadaddr) + be32toh(stage->entry_offset), |
| be64toh(stage->loadaddr), |
| be32toh(stage->memlen)); |
| return 0; |
| } |
| |
| static int cbfs_print_decoded_payload_segment_info( |
| struct cbfs_payload_segment *seg, FILE *fp) |
| { |
| /* The input (seg) must be already decoded by |
| * cbfs_decode_payload_segment. |
| */ |
| switch (seg->type) { |
| case PAYLOAD_SEGMENT_CODE: |
| case PAYLOAD_SEGMENT_DATA: |
| fprintf(fp, " %s (%s compression, offset: 0x%x, " |
| "load: 0x%" PRIx64 ", length: %d/%d)\n", |
| (seg->type == PAYLOAD_SEGMENT_CODE ? |
| "code " : "data"), |
| lookup_name_by_type(types_cbfs_compression, |
| seg->compression, |
| "(unknown)"), |
| seg->offset, seg->load_addr, seg->len, |
| seg->mem_len); |
| break; |
| |
| case PAYLOAD_SEGMENT_ENTRY: |
| fprintf(fp, " entry (0x%" PRIx64 ")\n", |
| seg->load_addr); |
| break; |
| |
| case PAYLOAD_SEGMENT_BSS: |
| fprintf(fp, " BSS (address 0x%016" PRIx64 ", " |
| "length 0x%x)\n", |
| seg->load_addr, seg->len); |
| break; |
| |
| case PAYLOAD_SEGMENT_PARAMS: |
| fprintf(fp, " parameters\n"); |
| break; |
| |
| default: |
| fprintf(fp, " 0x%x (%s compression, offset: 0x%x, " |
| "load: 0x%" PRIx64 ", length: %d/%d\n", |
| seg->type, |
| lookup_name_by_type(types_cbfs_compression, |
| seg->compression, |
| "(unknown)"), |
| seg->offset, seg->load_addr, seg->len, |
| seg->mem_len); |
| break; |
| } |
| return 0; |
| } |
| |
| int cbfs_print_entry_info(struct cbfs_image *image, struct cbfs_file *entry, |
| void *arg) |
| { |
| const char *name = entry->filename; |
| struct cbfs_payload_segment *payload; |
| FILE *fp = (FILE *)arg; |
| |
| if (!cbfs_is_valid_entry(image, entry)) { |
| ERROR("cbfs_print_entry_info: Invalid entry at 0x%x\n", |
| cbfs_get_entry_addr(image, entry)); |
| return -1; |
| } |
| if (!fp) |
| fp = stdout; |
| |
| unsigned int decompressed_size = 0; |
| unsigned int compression = cbfs_file_get_compression_info(entry, |
| &decompressed_size); |
| const char *compression_name = lookup_name_by_type( |
| types_cbfs_compression, compression, "????"); |
| |
| if (compression == CBFS_COMPRESS_NONE) |
| fprintf(fp, "%-30s 0x%-8x %-12s %8d %-4s\n", |
| *name ? name : "(empty)", |
| cbfs_get_entry_addr(image, entry), |
| get_cbfs_entry_type_name(be32toh(entry->type)), |
| be32toh(entry->len), |
| compression_name |
| ); |
| else |
| fprintf(fp, "%-30s 0x%-8x %-12s %8d %-4s (%d decompressed)\n", |
| *name ? name : "(empty)", |
| cbfs_get_entry_addr(image, entry), |
| get_cbfs_entry_type_name(be32toh(entry->type)), |
| be32toh(entry->len), |
| compression_name, |
| decompressed_size |
| ); |
| |
| if (!verbose) |
| return 0; |
| |
| struct cbfs_file_attr_hash *attr = NULL; |
| while ((attr = cbfs_file_get_next_hash(entry, attr)) != NULL) { |
| size_t hash_len = vb2_digest_size(attr->hash.algo); |
| if (!hash_len) { |
| fprintf(fp, "invalid/unsupported hash algorithm: %d\n", |
| attr->hash.algo); |
| break; |
| } |
| char *hash_str = bintohex(attr->hash.raw, hash_len); |
| int valid = vb2_hash_verify(false, CBFS_SUBHEADER(entry), |
| be32toh(entry->len), &attr->hash) == VB2_SUCCESS; |
| const char *valid_str = valid ? "valid" : "invalid"; |
| |
| fprintf(fp, " hash %s:%s %s\n", |
| vb2_get_hash_algorithm_name(attr->hash.algo), |
| hash_str, valid_str); |
| free(hash_str); |
| } |
| |
| DEBUG(" cbfs_file=0x%x, offset=0x%x, content_address=0x%x+0x%x\n", |
| cbfs_get_entry_addr(image, entry), be32toh(entry->offset), |
| cbfs_get_entry_addr(image, entry) + be32toh(entry->offset), |
| be32toh(entry->len)); |
| |
| /* note the components of the subheader may be in host order ... */ |
| switch (be32toh(entry->type)) { |
| case CBFS_TYPE_STAGE: |
| cbfs_print_stage_info(entry, fp); |
| break; |
| |
| case CBFS_TYPE_SELF: |
| payload = (struct cbfs_payload_segment *) |
| CBFS_SUBHEADER(entry); |
| while (payload) { |
| struct cbfs_payload_segment seg; |
| cbfs_decode_payload_segment(&seg, payload); |
| cbfs_print_decoded_payload_segment_info( |
| &seg, fp); |
| if (seg.type == PAYLOAD_SEGMENT_ENTRY) |
| break; |
| else |
| payload ++; |
| } |
| break; |
| default: |
| break; |
| } |
| return 0; |
| } |
| |
| /* |
| * The format of this output has been stable for many years. Since it is meant |
| * to be parsed by scripts, we should probably not lightly make changes to it as |
| * that could break older scripts expecting a different format. |
| * |
| * Until CB:41119, the `-v` flag made no difference when `-k` was selected, so |
| * presumably no scripts were using that combination. That's why that patch left |
| * the output for `-k` by itself alone to avoid breaking legacy scripts, and |
| * expanded `-k -v` to allow an arbitrary number of `<key>:<value>` tokens at |
| * the end of each row behind the legacy column output. So the new output format |
| * stability rules should be that `-k` will stay as it is, and `-k -v` may be |
| * expanded to add more `<key>:<value>` tokens to the end of a row. Scripts that |
| * want to parse `-k -v` output should be written to gracefully ignore any extra |
| * such tokens where they don't recognize the key. |
| * |
| * The `-k -v` output may also include extra rows that start with a `[`. These |
| * do not represent a CBFS file and can instead be used to display data that is |
| * associated with the CBFS as a whole and not any single file. Currently |
| * defined are `[FMAP REGION]\t<region name>` and |
| * `[METADATA HASH]\t<hash>:<algo>`. More may be defined in the future and |
| * scripts parsing `-k -v` output should be written to gracefully ignore any |
| * rows starting with `[` that they don't recognize. |
| * |
| * The format for existing `<key:value>` tokens or `[` rows should never be |
| * changed once they are added. |
| */ |
| static int cbfs_print_parseable_entry_info(struct cbfs_image *image, |
| struct cbfs_file *entry, void *arg) |
| { |
| FILE *fp = (FILE *)arg; |
| const char *name; |
| const char *type; |
| size_t offset; |
| size_t metadata_size; |
| size_t data_size; |
| const char *sep = "\t"; |
| |
| if (!cbfs_is_valid_entry(image, entry)) { |
| ERROR("cbfs_print_entry_info: Invalid entry at 0x%x\n", |
| cbfs_get_entry_addr(image, entry)); |
| return -1; |
| } |
| |
| name = entry->filename; |
| if (*name == '\0') |
| name = "(empty)"; |
| type = get_cbfs_entry_type_name(be32toh(entry->type)), |
| metadata_size = be32toh(entry->offset); |
| data_size = be32toh(entry->len); |
| offset = cbfs_get_entry_addr(image, entry); |
| |
| fprintf(fp, "%s%s", name, sep); |
| fprintf(fp, "0x%zx%s", offset, sep); |
| fprintf(fp, "%s%s", type, sep); |
| fprintf(fp, "0x%zx%s", metadata_size, sep); |
| fprintf(fp, "0x%zx%s", data_size, sep); |
| fprintf(fp, "0x%zx", metadata_size + data_size); |
| |
| if (verbose) { |
| unsigned int decompressed_size = 0; |
| unsigned int compression = cbfs_file_get_compression_info(entry, |
| &decompressed_size); |
| if (compression != CBFS_COMPRESS_NONE) |
| fprintf(fp, "%scomp:%s:0x%x", sep, lookup_name_by_type( |
| types_cbfs_compression, compression, "????"), |
| decompressed_size); |
| |
| struct cbfs_file_attr_hash *attr = NULL; |
| while ((attr = cbfs_file_get_next_hash(entry, attr)) != NULL) { |
| size_t hash_len = vb2_digest_size(attr->hash.algo); |
| if (!hash_len) |
| continue; |
| char *hash_str = bintohex(attr->hash.raw, hash_len); |
| int valid = vb2_hash_verify(false, CBFS_SUBHEADER(entry), |
| be32toh(entry->len), &attr->hash) == VB2_SUCCESS; |
| fprintf(fp, "%shash:%s:%s:%s", sep, |
| vb2_get_hash_algorithm_name(attr->hash.algo), |
| hash_str, valid ? "valid" : "invalid"); |
| free(hash_str); |
| } |
| } |
| fprintf(fp, "\n"); |
| |
| return 0; |
| } |
| |
| void cbfs_print_directory(struct cbfs_image *image) |
| { |
| if (cbfs_is_legacy_cbfs(image)) |
| cbfs_print_header_info(image); |
| printf("%-30s %-10s %-12s Size Comp\n", "Name", "Offset", "Type"); |
| cbfs_legacy_walk(image, cbfs_print_entry_info, NULL); |
| } |
| |
| void cbfs_print_parseable_directory(struct cbfs_image *image) |
| { |
| size_t i; |
| const char *header[] = { |
| "Name", |
| "Offset", |
| "Type", |
| "Metadata Size", |
| "Data Size", |
| "Total Size", |
| }; |
| const char *sep = "\t"; |
| |
| for (i = 0; i < ARRAY_SIZE(header) - 1; i++) |
| fprintf(stdout, "%s%s", header[i], sep); |
| fprintf(stdout, "%s\n", header[i]); |
| cbfs_legacy_walk(image, cbfs_print_parseable_entry_info, stdout); |
| } |
| |
| int cbfs_merge_empty_entry(struct cbfs_image *image, struct cbfs_file *entry, |
| unused void *arg) |
| { |
| struct cbfs_file *next; |
| uint32_t next_addr = 0; |
| |
| /* We don't return here even if this entry is already empty because we |
| want to merge the empty entries following after it. */ |
| |
| /* Loop until non-empty entry is found, starting from the current entry. |
| After the loop, next_addr points to the next non-empty entry. */ |
| next = entry; |
| while (be32toh(next->type) == CBFS_TYPE_DELETED || |
| be32toh(next->type) == CBFS_TYPE_NULL) { |
| next = cbfs_find_next_entry(image, next); |
| if (!next) |
| break; |
| next_addr = cbfs_get_entry_addr(image, next); |
| if (!cbfs_is_valid_entry(image, next)) |
| /* 'next' could be the end of cbfs */ |
| break; |
| } |
| |
| if (!next_addr) |
| /* Nothing to empty */ |
| return 0; |
| |
| /* We can return here if we find only a single empty entry. |
| For simplicity, we just proceed (and make it empty again). */ |
| |
| /* We're creating one empty entry for combined empty spaces */ |
| uint32_t addr = cbfs_get_entry_addr(image, entry); |
| size_t len = next_addr - addr - cbfs_calculate_file_header_size(""); |
| DEBUG("join_empty_entry: [0x%x, 0x%x) len=%zu\n", addr, next_addr, len); |
| return cbfs_create_empty_entry(entry, CBFS_TYPE_NULL, len, ""); |
| } |
| |
| int cbfs_legacy_walk(struct cbfs_image *image, cbfs_entry_callback callback, |
| void *arg) |
| { |
| int count = 0; |
| struct cbfs_file *entry; |
| for (entry = cbfs_find_first_entry(image); |
| entry && cbfs_is_valid_entry(image, entry); |
| entry = cbfs_find_next_entry(image, entry)) { |
| count ++; |
| if (callback(image, entry, arg) != 0) |
| break; |
| } |
| return count; |
| } |
| |
| static int cbfs_header_valid(struct cbfs_header *header) |
| { |
| if ((be32toh(header->magic) == CBFS_HEADER_MAGIC) && |
| ((be32toh(header->version) == CBFS_HEADER_VERSION1) || |
| (be32toh(header->version) == CBFS_HEADER_VERSION2)) && |
| (be32toh(header->offset) < be32toh(header->romsize))) |
| return 1; |
| return 0; |
| } |
| |
| struct cbfs_header *cbfs_find_header(char *data, size_t size, |
| uint32_t forced_offset) |
| { |
| size_t offset; |
| int found = 0; |
| int32_t rel_offset; |
| struct cbfs_header *header, *result = NULL; |
| |
| if (forced_offset < (size - sizeof(struct cbfs_header))) { |
| /* Check if the forced header is valid. */ |
| header = (struct cbfs_header *)(data + forced_offset); |
| if (cbfs_header_valid(header)) |
| return header; |
| return NULL; |
| } |
| |
| // Try finding relative offset of master header at end of file first. |
| rel_offset = *(int32_t *)(data + size - sizeof(int32_t)); |
| offset = size + rel_offset; |
| DEBUG("relative offset: %#zx(-%#zx), offset: %#zx\n", |
| (size_t)rel_offset, (size_t)-rel_offset, offset); |
| |
| if (offset >= size - sizeof(*header) || |
| !cbfs_header_valid((struct cbfs_header *)(data + offset))) { |
| // Some use cases append non-CBFS data to the end of the ROM. |
| DEBUG("relative offset seems wrong, scanning whole image...\n"); |
| offset = 0; |
| } |
| |
| for (; offset + sizeof(*header) < size; offset++) { |
| header = (struct cbfs_header *)(data + offset); |
| if (!cbfs_header_valid(header)) |
| continue; |
| if (!found++) |
| result = header; |
| } |
| if (found > 1) |
| // Top-aligned images usually have a working relative offset |
| // field, so this is more likely to happen on bottom-aligned |
| // ones (where the first header is the "outermost" one) |
| WARN("Multiple (%d) CBFS headers found, using the first one.\n", |
| found); |
| return result; |
| } |
| |
| |
| struct cbfs_file *cbfs_find_first_entry(struct cbfs_image *image) |
| { |
| assert(image); |
| if (image->has_header) |
| /* header.offset is relative to start of flash, not |
| * start of region, so use it with the full image. |
| */ |
| return (struct cbfs_file *) |
| (buffer_get_original_backing(&image->buffer) + |
| image->header.offset); |
| else |
| return (struct cbfs_file *)buffer_get(&image->buffer); |
| } |
| |
| struct cbfs_file *cbfs_find_next_entry(struct cbfs_image *image, |
| struct cbfs_file *entry) |
| { |
| uint32_t addr = cbfs_get_entry_addr(image, entry); |
| int align = image->has_header ? image->header.align : CBFS_ALIGNMENT; |
| assert(entry && cbfs_is_valid_entry(image, entry)); |
| addr += be32toh(entry->offset) + be32toh(entry->len); |
| addr = align_up(addr, align); |
| return (struct cbfs_file *)(image->buffer.data + addr); |
| } |
| |
| uint32_t cbfs_get_entry_addr(struct cbfs_image *image, struct cbfs_file *entry) |
| { |
| assert(image && image->buffer.data && entry); |
| return (int32_t)((char *)entry - image->buffer.data); |
| } |
| |
| int cbfs_is_valid_cbfs(struct cbfs_image *image) |
| { |
| return buffer_check_magic(&image->buffer, CBFS_FILE_MAGIC, |
| strlen(CBFS_FILE_MAGIC)); |
| } |
| |
| int cbfs_is_legacy_cbfs(struct cbfs_image *image) |
| { |
| return image->has_header; |
| } |
| |
| int cbfs_is_valid_entry(struct cbfs_image *image, struct cbfs_file *entry) |
| { |
| uint32_t offset = cbfs_get_entry_addr(image, entry); |
| |
| if (offset >= image->buffer.size) |
| return 0; |
| |
| struct buffer entry_data; |
| buffer_clone(&entry_data, &image->buffer); |
| buffer_seek(&entry_data, offset); |
| return buffer_check_magic(&entry_data, CBFS_FILE_MAGIC, |
| strlen(CBFS_FILE_MAGIC)); |
| } |
| |
| struct cbfs_file *cbfs_create_file_header(int type, |
| size_t len, const char *name) |
| { |
| size_t header_size = cbfs_calculate_file_header_size(name); |
| if (header_size > CBFS_METADATA_MAX_SIZE) { |
| ERROR("'%s' name too long to fit in CBFS header\n", name); |
| return NULL; |
| } |
| |
| struct cbfs_file *entry = malloc(CBFS_METADATA_MAX_SIZE); |
| memset(entry, CBFS_CONTENT_DEFAULT_VALUE, CBFS_METADATA_MAX_SIZE); |
| memcpy(entry->magic, CBFS_FILE_MAGIC, sizeof(entry->magic)); |
| entry->type = htobe32(type); |
| entry->len = htobe32(len); |
| entry->attributes_offset = 0; |
| entry->offset = htobe32(header_size); |
| memset(entry->filename, 0, be32toh(entry->offset) - sizeof(*entry)); |
| strcpy(entry->filename, name); |
| return entry; |
| } |
| |
| int cbfs_create_empty_entry(struct cbfs_file *entry, int type, |
| size_t len, const char *name) |
| { |
| struct cbfs_file *tmp = cbfs_create_file_header(type, len, name); |
| if (!tmp) |
| return -1; |
| |
| memcpy(entry, tmp, be32toh(tmp->offset)); |
| free(tmp); |
| memset(CBFS_SUBHEADER(entry), CBFS_CONTENT_DEFAULT_VALUE, len); |
| return 0; |
| } |
| |
| struct cbfs_file_attribute *cbfs_file_first_attr(struct cbfs_file *file) |
| { |
| /* attributes_offset should be 0 when there is no attribute, but all |
| * values that point into the cbfs_file header are invalid, too. */ |
| if (be32toh(file->attributes_offset) <= sizeof(*file)) |
| return NULL; |
| |
| /* There needs to be enough space for the file header and one |
| * attribute header for this to make sense. */ |
| if (be32toh(file->offset) <= |
| sizeof(*file) + sizeof(struct cbfs_file_attribute)) |
| return NULL; |
| |
| return (struct cbfs_file_attribute *) |
| (((uint8_t *)file) + be32toh(file->attributes_offset)); |
| } |
| |
| struct cbfs_file_attribute *cbfs_file_next_attr(struct cbfs_file *file, |
| struct cbfs_file_attribute *attr) |
| { |
| /* ex falso sequitur quodlibet */ |
| if (attr == NULL) |
| return NULL; |
| |
| /* Is there enough space for another attribute? */ |
| if ((uint8_t *)attr + be32toh(attr->len) + |
| sizeof(struct cbfs_file_attribute) > |
| (uint8_t *)file + be32toh(file->offset)) |
| return NULL; |
| |
| struct cbfs_file_attribute *next = (struct cbfs_file_attribute *) |
| (((uint8_t *)attr) + be32toh(attr->len)); |
| /* If any, "unused" attributes must come last. */ |
| if (be32toh(next->tag) == CBFS_FILE_ATTR_TAG_UNUSED) |
| return NULL; |
| if (be32toh(next->tag) == CBFS_FILE_ATTR_TAG_UNUSED2) |
| return NULL; |
| |
| return next; |
| } |
| |
| struct cbfs_file_attribute *cbfs_add_file_attr(struct cbfs_file *header, |
| uint32_t tag, |
| uint32_t size) |
| { |
| assert(IS_ALIGNED(size, CBFS_ATTRIBUTE_ALIGN)); |
| struct cbfs_file_attribute *attr, *next; |
| next = cbfs_file_first_attr(header); |
| do { |
| attr = next; |
| next = cbfs_file_next_attr(header, attr); |
| } while (next != NULL); |
| uint32_t header_size = be32toh(header->offset) + size; |
| if (header_size > CBFS_METADATA_MAX_SIZE) { |
| DEBUG("exceeding allocated space for cbfs_file headers"); |
| return NULL; |
| } |
| /* attr points to the last valid attribute now. |
| * If NULL, we have to create the first one. */ |
| if (attr == NULL) { |
| /* New attributes start where the header ends. |
| * header->offset is later set to accommodate the |
| * additional structure. |
| * No endianness translation necessary here, because both |
| * fields are encoded the same way. */ |
| header->attributes_offset = header->offset; |
| attr = (struct cbfs_file_attribute *) |
| (((uint8_t *)header) + |
| be32toh(header->attributes_offset)); |
| } else { |
| attr = (struct cbfs_file_attribute *) |
| (((uint8_t *)attr) + |
| be32toh(attr->len)); |
| } |
| header->offset = htobe32(header_size); |
| /* Attributes are expected to be small (much smaller than a flash page) |
| and not really meant to be overwritten in-place. To avoid surprising |
| values in reserved fields of attribute structures, initialize them to |
| 0, not 0xff. */ |
| memset(attr, 0, size); |
| attr->tag = htobe32(tag); |
| attr->len = htobe32(size); |
| return attr; |
| } |
| |
| int cbfs_add_file_hash(struct cbfs_file *header, struct buffer *buffer, |
| enum vb2_hash_algorithm alg) |
| { |
| if (!vb2_digest_size(alg)) |
| return -1; |
| |
| struct cbfs_file_attr_hash *attr = |
| (struct cbfs_file_attr_hash *)cbfs_add_file_attr(header, |
| CBFS_FILE_ATTR_TAG_HASH, cbfs_file_attr_hash_size(alg)); |
| |
| if (attr == NULL) |
| return -1; |
| |
| if (vb2_hash_calculate(false, buffer_get(buffer), buffer_size(buffer), |
| alg, &attr->hash) != VB2_SUCCESS) |
| return -1; |
| |
| return 0; |
| } |
| |
| /* Finds a place to hold whole data in same memory page. */ |
| static int is_in_same_page(uint32_t start, uint32_t size, uint32_t page) |
| { |
| if (!page) |
| return 1; |
| return (start / page) == (start + size - 1) / page; |
| } |
| |
| /* Tests if data can fit in a range by given offset: |
| * start ->| metadata_size | offset (+ size) |<- end |
| */ |
| static int is_in_range(size_t start, size_t end, size_t metadata_size, |
| size_t offset, size_t size) |
| { |
| return (offset >= start + metadata_size && offset + size <= end); |
| } |
| |
| static size_t absolute_align(const struct cbfs_image *image, size_t val, |
| size_t align) |
| { |
| const size_t region_offset = buffer_offset(&image->buffer); |
| /* To perform alignment on absolute address, take the region offset */ |
| /* of the image into account. */ |
| return align_up(val + region_offset, align) - region_offset; |
| |
| } |
| |
| int32_t cbfs_locate_entry(struct cbfs_image *image, size_t size, |
| size_t page_size, size_t align, size_t metadata_size) |
| { |
| struct cbfs_file *entry; |
| size_t need_len; |
| size_t addr, addr_next, addr2, addr3, offset; |
| |
| /* Default values: allow fitting anywhere in ROM. */ |
| if (!page_size) |
| page_size = image->has_header ? image->header.romsize : |
| image->buffer.size; |
| if (!align) |
| align = 1; |
| |
| if (size > page_size) |
| ERROR("Input file size (%zd) greater than page size (%zd).\n", |
| size, page_size); |
| |
| size_t image_align = image->has_header ? image->header.align : |
| CBFS_ALIGNMENT; |
| if (page_size % image_align) |
| WARN("%s: Page size (%#zx) not aligned with CBFS image (%#zx).\n", |
| __func__, page_size, image_align); |
| |
| need_len = metadata_size + size; |
| |
| // Merge empty entries to build get max available space. |
| cbfs_legacy_walk(image, cbfs_merge_empty_entry, NULL); |
| |
| /* Three cases of content location on memory page: |
| * case 1. |
| * | PAGE 1 | PAGE 2 | |
| * | <header><content>| Fit. Return start of content. |
| * |
| * case 2. |
| * | PAGE 1 | PAGE 2 | |
| * | <header><content> | Fits when we shift content to align |
| * shift-> | <header>|<content> | at starting of PAGE 2. |
| * |
| * case 3. (large content filling whole page) |
| * | PAGE 1 | PAGE 2 | PAGE 3 | |
| * | <header>< content > | Can't fit. If we shift content to |
| * |trial-> <header>< content > | PAGE 2, header can't fit in free |
| * | shift-> <header><content> space, so we must use PAGE 3. |
| * |
| * The returned address can be then used as "base-address" (-b) in add-* |
| * commands (will be re-calculated and positioned by cbfs_add_entry_at). |
| * For stage targets, the address is also used to re-link stage before |
| * being added into CBFS. |
| */ |
| for (entry = cbfs_find_first_entry(image); |
| entry && cbfs_is_valid_entry(image, entry); |
| entry = cbfs_find_next_entry(image, entry)) { |
| |
| uint32_t type = be32toh(entry->type); |
| if (type != CBFS_TYPE_NULL) |
| continue; |
| |
| addr = cbfs_get_entry_addr(image, entry); |
| addr_next = cbfs_get_entry_addr(image, cbfs_find_next_entry( |
| image, entry)); |
| if (addr_next - addr < need_len) |
| continue; |
| |
| offset = absolute_align(image, addr + metadata_size, align); |
| if (is_in_same_page(offset, size, page_size) && |
| is_in_range(addr, addr_next, metadata_size, offset, size)) { |
| DEBUG("cbfs_locate_entry: FIT (PAGE1)."); |
| return offset; |
| } |
| |
| addr2 = align_up(addr, page_size); |
| offset = absolute_align(image, addr2, align); |
| if (is_in_range(addr, addr_next, metadata_size, offset, size)) { |
| DEBUG("cbfs_locate_entry: OVERLAP (PAGE2)."); |
| return offset; |
| } |
| |
| /* Assume page_size >= metadata_size so adding one page will |
| * definitely provide the space for header. */ |
| assert(page_size >= metadata_size); |
| addr3 = addr2 + page_size; |
| offset = absolute_align(image, addr3, align); |
| if (is_in_range(addr, addr_next, metadata_size, offset, size)) { |
| DEBUG("cbfs_locate_entry: OVERLAP+ (PAGE3)."); |
| return offset; |
| } |
| } |
| return -1; |
| } |