blob: 787a62b2eebce348c0121bc61e67fa4c40a76003 [file] [log] [blame]
/*
* This file is part of the coreboot project.
*
* Copyright (C) 2007-2009 coresystems GmbH
* Copyright (C) 2014 Google Inc.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include <console/console.h>
#include <arch/acpi.h>
#include <arch/io.h>
#include <stdint.h>
#include <delay.h>
#include <device/device.h>
#include <device/pci.h>
#include <device/pci_ids.h>
#include <stdlib.h>
#include <string.h>
#include <cbmem.h>
#include <romstage_handoff.h>
#include <vendorcode/google/chromeos/chromeos.h>
#include <broadwell/cpu.h>
#include <broadwell/iomap.h>
#include <broadwell/pci_devs.h>
#include <broadwell/ramstage.h>
#include <broadwell/systemagent.h>
static int get_pcie_bar(device_t dev, unsigned int index, u32 *base, u32 *len)
{
u32 pciexbar_reg;
*base = 0;
*len = 0;
pciexbar_reg = pci_read_config32(dev, index);
if (!(pciexbar_reg & (1 << 0)))
return 0;
switch ((pciexbar_reg >> 1) & 3) {
case 0: // 256MB
*base = pciexbar_reg & ((1 << 31)|(1 << 30)|(1 << 29)|
(1 << 28));
*len = 256 * 1024 * 1024;
return 1;
case 1: // 128M
*base = pciexbar_reg & ((1 << 31)|(1 << 30)|(1 << 29)|
(1 << 28)|(1 << 27));
*len = 128 * 1024 * 1024;
return 1;
case 2: // 64M
*base = pciexbar_reg & ((1 << 31)|(1 << 30)|(1 << 29)|
(1 << 28)|(1 << 27)|(1 << 26));
*len = 64 * 1024 * 1024;
return 1;
}
return 0;
}
static int get_bar(device_t dev, unsigned int index, u32 *base, u32 *len)
{
u32 bar;
bar = pci_read_config32(dev, index);
/* If not enabled don't report it. */
if (!(bar & 0x1))
return 0;
/* Knock down the enable bit. */
*base = bar & ~1;
return 1;
}
/* There are special BARs that actually are programmed in the MCHBAR. These
* Intel special features, but they do consume resources that need to be
* accounted for. */
static int get_bar_in_mchbar(device_t dev, unsigned int index, u32 *base,
u32 *len)
{
u32 bar;
bar = MCHBAR32(index);
/* If not enabled don't report it. */
if (!(bar & 0x1))
return 0;
/* Knock down the enable bit. */
*base = bar & ~1;
return 1;
}
struct fixed_mmio_descriptor {
unsigned int index;
u32 size;
int (*get_resource)(device_t dev, unsigned int index,
u32 *base, u32 *size);
const char *description;
};
struct fixed_mmio_descriptor mc_fixed_resources[] = {
{ PCIEXBAR, 0, get_pcie_bar, "PCIEXBAR" },
{ MCHBAR, MCH_BASE_SIZE, get_bar, "MCHBAR" },
{ DMIBAR, DMI_BASE_SIZE, get_bar, "DMIBAR" },
{ EPBAR, EP_BASE_SIZE, get_bar, "EPBAR" },
{ GDXCBAR, GDXC_BASE_SIZE, get_bar_in_mchbar, "GDXCBAR" },
{ EDRAMBAR, EDRAM_BASE_SIZE, get_bar_in_mchbar, "EDRAMBAR" },
};
/*
* Add all known fixed MMIO ranges that hang off the host bridge/memory
* controller device.
*/
static void mc_add_fixed_mmio_resources(device_t dev)
{
int i;
for (i = 0; i < ARRAY_SIZE(mc_fixed_resources); i++) {
u32 base;
u32 size;
struct resource *resource;
unsigned int index;
size = mc_fixed_resources[i].size;
index = mc_fixed_resources[i].index;
if (!mc_fixed_resources[i].get_resource(dev, index,
&base, &size))
continue;
resource = new_resource(dev, mc_fixed_resources[i].index);
resource->flags = IORESOURCE_MEM | IORESOURCE_FIXED |
IORESOURCE_STORED | IORESOURCE_RESERVE |
IORESOURCE_ASSIGNED;
resource->base = base;
resource->size = size;
printk(BIOS_DEBUG, "%s: Adding %s @ %x 0x%08lx-0x%08lx.\n",
__func__, mc_fixed_resources[i].description, index,
(unsigned long)base, (unsigned long)(base + size - 1));
}
}
/* Host Memory Map:
*
* +--------------------------+ TOUUD
* | |
* +--------------------------+ 4GiB
* | PCI Address Space |
* +--------------------------+ TOLUD (also maps into MC address space)
* | iGD |
* +--------------------------+ BDSM
* | GTT |
* +--------------------------+ BGSM
* | TSEG |
* +--------------------------+ TSEGMB
* | Usage DRAM |
* +--------------------------+ 0
*
* Some of the base registers above can be equal making the size of those
* regions 0. The reason is because the memory controller internally subtracts
* the base registers from each other to determine sizes of the regions. In
* other words, the memory map is in a fixed order no matter what.
*/
struct map_entry {
int reg;
int is_64_bit;
int is_limit;
const char *description;
};
static void read_map_entry(device_t dev, struct map_entry *entry,
uint64_t *result)
{
uint64_t value;
uint64_t mask;
/* All registers are on a 1MiB granularity. */
mask = ((1ULL<<20)-1);
mask = ~mask;
value = 0;
if (entry->is_64_bit) {
value = pci_read_config32(dev, entry->reg + 4);
value <<= 32;
}
value |= pci_read_config32(dev, entry->reg);
value &= mask;
if (entry->is_limit)
value |= ~mask;
*result = value;
}
#define MAP_ENTRY(reg_, is_64_, is_limit_, desc_) \
{ \
.reg = reg_, \
.is_64_bit = is_64_, \
.is_limit = is_limit_, \
.description = desc_, \
}
#define MAP_ENTRY_BASE_64(reg_, desc_) \
MAP_ENTRY(reg_, 1, 0, desc_)
#define MAP_ENTRY_LIMIT_64(reg_, desc_) \
MAP_ENTRY(reg_, 1, 1, desc_)
#define MAP_ENTRY_BASE_32(reg_, desc_) \
MAP_ENTRY(reg_, 0, 0, desc_)
enum {
TOM_REG,
TOUUD_REG,
MESEG_BASE_REG,
MESEG_LIMIT_REG,
REMAP_BASE_REG,
REMAP_LIMIT_REG,
TOLUD_REG,
BGSM_REG,
BDSM_REG,
TSEG_REG,
// Must be last.
NUM_MAP_ENTRIES
};
static struct map_entry memory_map[NUM_MAP_ENTRIES] = {
[TOM_REG] = MAP_ENTRY_BASE_64(TOM, "TOM"),
[TOUUD_REG] = MAP_ENTRY_BASE_64(TOUUD, "TOUUD"),
[MESEG_BASE_REG] = MAP_ENTRY_BASE_64(MESEG_BASE, "MESEG_BASE"),
[MESEG_LIMIT_REG] = MAP_ENTRY_LIMIT_64(MESEG_LIMIT, "MESEG_LIMIT"),
[REMAP_BASE_REG] = MAP_ENTRY_BASE_64(REMAPBASE, "REMAP_BASE"),
[REMAP_LIMIT_REG] = MAP_ENTRY_LIMIT_64(REMAPLIMIT, "REMAP_LIMIT"),
[TOLUD_REG] = MAP_ENTRY_BASE_32(TOLUD, "TOLUD"),
[BDSM_REG] = MAP_ENTRY_BASE_32(BDSM, "BDSM"),
[BGSM_REG] = MAP_ENTRY_BASE_32(BGSM, "BGSM"),
[TSEG_REG] = MAP_ENTRY_BASE_32(TSEG, "TESGMB"),
};
static void mc_read_map_entries(device_t dev, uint64_t *values)
{
int i;
for (i = 0; i < NUM_MAP_ENTRIES; i++) {
read_map_entry(dev, &memory_map[i], &values[i]);
}
}
static void mc_report_map_entries(device_t dev, uint64_t *values)
{
int i;
for (i = 0; i < NUM_MAP_ENTRIES; i++) {
printk(BIOS_DEBUG, "MC MAP: %s: 0x%llx\n",
memory_map[i].description, values[i]);
}
/* One can validate the BDSM and BGSM against the GGC. */
printk(BIOS_DEBUG, "MC MAP: GGC: 0x%x\n", pci_read_config16(dev, GGC));
}
static void mc_add_dram_resources(device_t dev)
{
unsigned long base_k, size_k;
unsigned long touud_k;
unsigned long index;
struct resource *resource;
uint64_t mc_values[NUM_MAP_ENTRIES];
unsigned long dpr_size = 0;
u32 dpr_reg;
/* Read in the MAP registers and report their values. */
mc_read_map_entries(dev, &mc_values[0]);
mc_report_map_entries(dev, &mc_values[0]);
/*
* DMA Protected Range can be reserved below TSEG for PCODE patch
* or TXT/BootGuard related data. Rather than report a base address
* the DPR register reports the TOP of the region, which is the same
* as TSEG base. The region size is reported in MiB in bits 11:4.
*/
dpr_reg = pci_read_config32(SA_DEV_ROOT, DPR);
if (dpr_reg & DPR_EPM) {
dpr_size = (dpr_reg & DPR_SIZE_MASK) << 16;
printk(BIOS_INFO, "DPR SIZE: 0x%lx\n", dpr_size);
}
/*
* These are the host memory ranges that should be added:
* - 0 -> 0xa0000: cacheable
* - 0xc0000 -> TSEG : cacheable
* - TESG -> BGSM: cacheable with standard MTRRs and reserved
* - BGSM -> TOLUD: not cacheable with standard MTRRs and reserved
* - 4GiB -> TOUUD: cacheable
*
* The default SMRAM space is reserved so that the range doesn't
* have to be saved during S3 Resume. Once marked reserved the OS
* cannot use the memory. This is a bit of an odd place to reserve
* the region, but the CPU devices don't have dev_ops->read_resources()
* called on them.
*
* The range 0xa0000 -> 0xc0000 does not have any resources
* associated with it to handle legacy VGA memory. If this range
* is not omitted the mtrr code will setup the area as cacheable
* causing VGA access to not work.
*
* The TSEG region is mapped as cacheable so that one can perform
* SMRAM relocation faster. Once the SMRR is enabled the SMRR takes
* precedence over the existing MTRRs covering this region.
*
* It should be noted that cacheable entry types need to be added in
* order. The reason is that the current MTRR code assumes this and
* falls over itself if it isn't.
*
* The resource index starts low and should not meet or exceed
* PCI_BASE_ADDRESS_0.
*/
index = 0;
/* 0 - > 0xa0000 */
base_k = 0;
size_k = (0xa0000 >> 10) - base_k;
ram_resource(dev, index++, base_k, size_k);
/* 0xc0000 -> TSEG - DPR */
base_k = 0xc0000 >> 10;
size_k = (unsigned long)(mc_values[TSEG_REG] >> 10) - base_k;
size_k -= dpr_size >> 10;
ram_resource(dev, index++, base_k, size_k);
/* TSEG - DPR -> BGSM */
resource = new_resource(dev, index++);
resource->base = mc_values[TSEG_REG] - dpr_size;
resource->size = mc_values[BGSM_REG] - resource->base;
resource->flags = IORESOURCE_MEM | IORESOURCE_FIXED |
IORESOURCE_STORED | IORESOURCE_RESERVE |
IORESOURCE_ASSIGNED | IORESOURCE_CACHEABLE;
/* BGSM -> TOLUD */
resource = new_resource(dev, index++);
resource->base = mc_values[BGSM_REG];
resource->size = mc_values[TOLUD_REG] - resource->base;
resource->flags = IORESOURCE_MEM | IORESOURCE_FIXED |
IORESOURCE_STORED | IORESOURCE_RESERVE |
IORESOURCE_ASSIGNED;
/* 4GiB -> TOUUD */
base_k = 4096 * 1024; /* 4GiB */
touud_k = mc_values[TOUUD_REG] >> 10;
size_k = touud_k - base_k;
if (touud_k > base_k)
ram_resource(dev, index++, base_k, size_k);
/* Reserve everything between A segment and 1MB:
*
* 0xa0000 - 0xbffff: legacy VGA
* 0xc0000 - 0xfffff: RAM
*/
mmio_resource(dev, index++, (0xa0000 >> 10), (0xc0000 - 0xa0000) >> 10);
reserved_ram_resource(dev, index++, (0xc0000 >> 10),
(0x100000 - 0xc0000) >> 10);
chromeos_reserve_ram_oops(dev, index++);
}
static void systemagent_read_resources(device_t dev)
{
/* Read standard PCI resources. */
pci_dev_read_resources(dev);
/* Add all fixed MMIO resources. */
mc_add_fixed_mmio_resources(dev);
/* Calculate and add DRAM resources. */
mc_add_dram_resources(dev);
}
static void systemagent_init(struct device *dev)
{
u8 bios_reset_cpl, pair;
/* Enable Power Aware Interrupt Routing */
pair = MCHBAR8(MCH_PAIR);
pair &= ~0x7; /* Clear 2:0 */
pair |= 0x4; /* Fixed Priority */
MCHBAR8(MCH_PAIR) = pair;
/*
* Set bits 0+1 of BIOS_RESET_CPL to indicate to the CPU
* that BIOS has initialized memory and power management
*/
bios_reset_cpl = MCHBAR8(BIOS_RESET_CPL);
bios_reset_cpl |= 3;
MCHBAR8(BIOS_RESET_CPL) = bios_reset_cpl;
printk(BIOS_DEBUG, "Set BIOS_RESET_CPL\n");
/* Configure turbo power limits 1ms after reset complete bit */
mdelay(1);
set_power_limits(28);
}
static void systemagent_enable(device_t dev)
{
#if CONFIG_HAVE_ACPI_RESUME
struct romstage_handoff *handoff;
handoff = cbmem_find(CBMEM_ID_ROMSTAGE_INFO);
if (handoff == NULL) {
printk(BIOS_DEBUG, "Unknown boot method, assuming normal.\n");
acpi_slp_type = 0;
} else if (handoff->s3_resume) {
printk(BIOS_DEBUG, "S3 Resume.\n");
acpi_slp_type = 3;
} else {
printk(BIOS_DEBUG, "Normal boot.\n");
acpi_slp_type = 0;
}
#endif
}
static struct device_operations systemagent_ops = {
.read_resources = &systemagent_read_resources,
.set_resources = &pci_dev_set_resources,
.enable_resources = &pci_dev_enable_resources,
.init = &systemagent_init,
.enable = &systemagent_enable,
.ops_pci = &broadwell_pci_ops,
};
static const unsigned short systemagent_ids[] = {
0x0a04, /* Haswell ULT */
0x1604, /* Broadwell-U/Y */
0x1610, /* Broadwell-H Desktop */
0x1614, /* Broadwell-H Mobile */
0
};
static const struct pci_driver systemagent_driver __pci_driver = {
.ops = &systemagent_ops,
.vendor = PCI_VENDOR_ID_INTEL,
.devices = systemagent_ids
};