blob: b269423095a2514e86d9b16a30decbb4ed190284 [file] [log] [blame]
/* $NoKeywords:$ */
/**
* @file
*
* mp.c
*
* Common platform specific configuration.
*
* @xrefitem bom "File Content Label" "Release Content"
* @e project: AGESA
* @e sub-project: (Mem/Ps)
* @e \$Revision: 63425 $ @e \$Date: 2011-12-22 11:24:10 -0600 (Thu, 22 Dec 2011) $
*
**/
/*****************************************************************************
*
* Copyright 2008 - 2012 ADVANCED MICRO DEVICES, INC. All Rights Reserved.
*
* AMD is granting you permission to use this software (the Materials)
* pursuant to the terms and conditions of your Software License Agreement
* with AMD. This header does *NOT* give you permission to use the Materials
* or any rights under AMD's intellectual property. Your use of any portion
* of these Materials shall constitute your acceptance of those terms and
* conditions. If you do not agree to the terms and conditions of the Software
* License Agreement, please do not use any portion of these Materials.
*
* CONFIDENTIALITY: The Materials and all other information, identified as
* confidential and provided to you by AMD shall be kept confidential in
* accordance with the terms and conditions of the Software License Agreement.
*
* LIMITATION OF LIABILITY: THE MATERIALS AND ANY OTHER RELATED INFORMATION
* PROVIDED TO YOU BY AMD ARE PROVIDED "AS IS" WITHOUT ANY EXPRESS OR IMPLIED
* WARRANTY OF ANY KIND, INCLUDING BUT NOT LIMITED TO WARRANTIES OF
* MERCHANTABILITY, NONINFRINGEMENT, TITLE, FITNESS FOR ANY PARTICULAR PURPOSE,
* OR WARRANTIES ARISING FROM CONDUCT, COURSE OF DEALING, OR USAGE OF TRADE.
* IN NO EVENT SHALL AMD OR ITS LICENSORS BE LIABLE FOR ANY DAMAGES WHATSOEVER
* (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS
* INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF AMD'S NEGLIGENCE,
* GROSS NEGLIGENCE, THE USE OF OR INABILITY TO USE THE MATERIALS OR ANY OTHER
* RELATED INFORMATION PROVIDED TO YOU BY AMD, EVEN IF AMD HAS BEEN ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGES. BECAUSE SOME JURISDICTIONS PROHIBIT THE
* EXCLUSION OR LIMITATION OF LIABILITY FOR CONSEQUENTIAL OR INCIDENTAL DAMAGES,
* THE ABOVE LIMITATION MAY NOT APPLY TO YOU.
*
* AMD does not assume any responsibility for any errors which may appear in
* the Materials or any other related information provided to you by AMD, or
* result from use of the Materials or any related information.
*
* You agree that you will not reverse engineer or decompile the Materials.
*
* NO SUPPORT OBLIGATION: AMD is not obligated to furnish, support, or make any
* further information, software, technical information, know-how, or show-how
* available to you. Additionally, AMD retains the right to modify the
* Materials at any time, without notice, and is not obligated to provide such
* modified Materials to you.
*
* U.S. GOVERNMENT RESTRICTED RIGHTS: The Materials are provided with
* "RESTRICTED RIGHTS." Use, duplication, or disclosure by the Government is
* subject to the restrictions as set forth in FAR 52.227-14 and
* DFAR252.227-7013, et seq., or its successor. Use of the Materials by the
* Government constitutes acknowledgement of AMD's proprietary rights in them.
*
* EXPORT ASSURANCE: You agree and certify that neither the Materials, nor any
* direct product thereof will be exported directly or indirectly, into any
* country prohibited by the United States Export Administration Act and the
* regulations thereunder, without the required authorization from the U.S.
* government nor will be used for any purpose prohibited by the same.
* ***************************************************************************
*
*/
/*
*----------------------------------------------------------------------------
* MODULES USED
*
*----------------------------------------------------------------------------
*/
#include "AGESA.h"
#include "AdvancedApi.h"
#include "amdlib.h"
#include "Ids.h"
#include "cpuFamRegisters.h"
#include "cpuRegisters.h"
#include "OptionMemory.h"
#include "PlatformMemoryConfiguration.h"
#include "mu.h"
#include "ma.h"
#include "mp.h"
#include "merrhdl.h"
#include "GeneralServices.h"
#include "Filecode.h"
CODE_GROUP (G2_PEI)
RDATA_GROUP (G2_PEI)
#define FILECODE PROC_MEM_PS_MP_FILECODE
/*----------------------------------------------------------------------------
* DEFINITIONS AND MACROS
*
*----------------------------------------------------------------------------
*/
#define PSO_TYPE 0
#define PSO_LENGTH 1
#define PSO_DATA 2
/*----------------------------------------------------------------------------
* TYPEDEFS AND STRUCTURES
*
*----------------------------------------------------------------------------
*/
/*----------------------------------------------------------------------------
* PROTOTYPES OF LOCAL FUNCTIONS
*
*----------------------------------------------------------------------------
*/
BOOLEAN
STATIC
MemPPSCGen (
IN OUT MEM_NB_BLOCK *NBPtr,
IN MEM_PSC_TABLE_BLOCK *EntryOfTables
);
BOOLEAN
STATIC
MemPCheckTblDrvOverrideConfig (
IN OUT MEM_NB_BLOCK *NBPtr,
IN UINT8 *Buffer
);
BOOLEAN
STATIC
MemPCheckTblDrvOverrideConfigSpeedLimit (
IN OUT MEM_NB_BLOCK *NBPtr,
IN UINT8 *Buffer
);
VOID
STATIC
MemPTblDrvOverrideSpeedLimit (
IN OUT MEM_NB_BLOCK *NBPtr,
IN UINT8 *Buffer
);
UINT8
STATIC
MemPTblDrvOverrideODT (
IN OUT MEM_NB_BLOCK *NBPtr,
IN UINT8 *Buffer
);
VOID
STATIC
MemPTblDrvOverrideODTPattern (
IN OUT MEM_NB_BLOCK *NBPtr,
IN UINT8 *Buffer
);
UINT8
STATIC
MemPTblDrvOverrideRC2IBT (
IN OUT MEM_NB_BLOCK *NBPtr,
IN UINT8 *Buffer,
IN UINT8 NumOfReg
);
BOOLEAN
STATIC
MemPTblDrvOverrideMR0WR (
IN OUT MEM_NB_BLOCK *NBPtr,
IN UINT8 *Buffer
);
BOOLEAN
STATIC
MemPTblDrvOverrideMR0CL (
IN OUT MEM_NB_BLOCK *NBPtr,
IN UINT8 *Buffer
);
BOOLEAN
STATIC
MemPTblDrvOverrideMR10OpSpeed (
IN OUT MEM_NB_BLOCK *NBPtr,
IN UINT8 *Buffer
);
/*----------------------------------------------------------------------------
* EXPORTED FUNCTIONS
*
*----------------------------------------------------------------------------
*/
extern MEM_PSC_FLOW_BLOCK* memPlatSpecFlowArray[];
/* -----------------------------------------------------------------------------*/
/**
*
* This is the default return function of the Platform Specific block. The function always
* returns AGESA_UNSUPPORTED
*
* @param[in,out] *MemPtr Pointer to MEM_DATA_STRUCTURE
* @param[in] *ChannelPtr Pointer to CH_DEF_STRUCT
* @param[in] *PsPtr Pointer to MEM_PS_BLOCK
*
* @return AGESA_UNSUPPORTED AGESA status indicating that default is unsupported
*
*/
AGESA_STATUS
MemPConstructPsUDef (
IN OUT MEM_DATA_STRUCT *MemPtr,
IN OUT CH_DEF_STRUCT *ChannelPtr,
IN OUT MEM_PS_BLOCK *PsPtr
)
{
return AGESA_UNSUPPORTED;
}
/* -----------------------------------------------------------------------------*/
/**
*
* This function will set the DramTerm and DramTermDyn in the structure of a channel.
*
* @param[in,out] *NBPtr Pointer to MEM_NB_BLOCK
* @param[in] ArraySize Size of the array of DramTerm
* @param[in] *DramTermPtr Address the array of DramTerm
*
* @return TRUE - Find DramTerm and DramTermDyn for corresponding platform and dimm population.
* @return FALSE - Fail to find DramTerm and DramTermDyn for corresponding platform and dimm population.
*
*/
BOOLEAN
MemPGetDramTerm (
IN OUT MEM_NB_BLOCK *NBPtr,
IN UINT8 ArraySize,
IN CONST DRAM_TERM_ENTRY *DramTermPtr
)
{
UINT8 Dimms;
UINT8 QR_Dimms;
UINT8 i;
Dimms = NBPtr->ChannelPtr->Dimms;
QR_Dimms = 0;
for (i = 0; i < MAX_DIMMS_PER_CHANNEL; i ++) {
if (((NBPtr->ChannelPtr->DimmQrPresent & (UINT16) (1 << i)) != 0) && (i < 2)) {
QR_Dimms ++;
}
}
for (i = 0; i < ArraySize; i ++) {
if ((DramTermPtr[i].Speed & ((UINT32) 1 << (NBPtr->DCTPtr->Timings.Speed / 66))) != 0) {
if ((((UINT8) (1 << (Dimms - 1)) & DramTermPtr[i].Dimms) != 0) || (DramTermPtr[i].Dimms == ANY_NUM)) {
if (((QR_Dimms == 0) && (DramTermPtr[i].QR_Dimms == NO_DIMM)) ||
((QR_Dimms > 0) && (((UINT8) (1 << (QR_Dimms - 1)) & DramTermPtr[i].QR_Dimms) != 0)) ||
(DramTermPtr[i].QR_Dimms == ANY_NUM)) {
NBPtr->PsPtr->DramTerm = DramTermPtr[i].DramTerm;
NBPtr->PsPtr->QR_DramTerm = DramTermPtr[i].QR_DramTerm;
NBPtr->PsPtr->DynamicDramTerm = DramTermPtr[i].DynamicDramTerm;
break;
}
}
}
}
return TRUE;
}
/* -----------------------------------------------------------------------------*/
/**
*
* This function gets the highest POR supported speed.
*
* @param[in,out] *NBPtr Pointer to MEM_NB_BLOCK
* @param[in] FreqLimitSize Size of the array of Frequency Limit
* @param[in] *FreqLimitPtr Address the array of Frequency Limit
*
* @return UINT8 - frequency limit
*
*/
UINT16
MemPGetPorFreqLimit (
IN OUT MEM_NB_BLOCK *NBPtr,
IN UINT8 FreqLimitSize,
IN CONST POR_SPEED_LIMIT *FreqLimitPtr
)
{
UINT8 i;
UINT8 j;
UINT8 DimmTpMatch;
UINT16 SpeedLimit;
UINT16 DIMMRankType;
UINT16 _DIMMRankType;
SpeedLimit = 0;
DIMMRankType = MemAGetPsRankType (NBPtr->ChannelPtr);
for (i = 0; i < FreqLimitSize; i++, FreqLimitPtr++) {
if (NBPtr->ChannelPtr->Dimms != FreqLimitPtr->Dimms) {
continue;
}
DimmTpMatch = 0;
_DIMMRankType = DIMMRankType & FreqLimitPtr->DIMMRankType;
for (j = 0; j < MAX_DIMMS_PER_CHANNEL; j ++) {
if ((_DIMMRankType & (UINT16) 0x0F << (j << 2)) != 0) {
DimmTpMatch++;
}
}
if (DimmTpMatch == FreqLimitPtr->Dimms) {
if (NBPtr->RefPtr->DDR3Voltage == VOLT1_5) {
SpeedLimit = FreqLimitPtr->SpeedLimit_1_5V;
break;
} else if (NBPtr->RefPtr->DDR3Voltage == VOLT1_25) {
SpeedLimit = FreqLimitPtr->SpeedLimit_1_25V;
break;
} else {
SpeedLimit = FreqLimitPtr->SpeedLimit_1_35V;
break;
}
}
}
return SpeedLimit;
}
/* -----------------------------------------------------------------------------*/
/**
*
* This function is the default function for getting POR speed limit. When a
* package does not need to cap the speed, it should use this function to initialize
* the corresponding function pointer.
*
* @param[in,out] *NBPtr Pointer to MEM_NB_BLOCK
*
*/
VOID
MemPGetPORFreqLimitDef (
IN OUT MEM_NB_BLOCK *NBPtr
)
{
}
/* -----------------------------------------------------------------------------*/
/**
*
* This function gets the seed value of WL and HW RxEn pass 1 training.
*
* @param[in,out] *NBPtr Pointer to MEM_NB_BLOCK
*
* @return TRUE - Entries are found
* @return FALSE - Entries are not found
*
*/
BOOLEAN
MemPGetPSCPass1Seed (
IN OUT MEM_NB_BLOCK *NBPtr
)
{
UINT8 i;
UINT8 Dct;
for (Dct = 0; Dct < NBPtr->DctCount; Dct++) {
NBPtr->SwitchDCT (NBPtr, Dct);
i = 0;
while (memPlatSpecFlowArray[i] != NULL) {
if (!(memPlatSpecFlowArray[i])->TrainingSeedVal (NBPtr, (memPlatSpecFlowArray[i])->EntryOfTables)) {
return FALSE;
}
i++;
}
}
return TRUE;
}
/* -----------------------------------------------------------------------------*/
/**
*
* This function gets platform specific configuration such as Max Freq., Slow Mode, Dram Term,
* and so on.
*
* @param[in,out] *NBPtr - Pointer to the MEM_NB_BLOCK
*
* @return TRUE - Successfully execute platform specific configuration flow.
* @return FALSE - Fail to execute platform specific configuration flow.
*
*/
BOOLEAN
MemPPSCFlow (
IN OUT MEM_NB_BLOCK *NBPtr
)
{
UINT8 i;
BOOLEAN Result;
Result = TRUE;
i = 0;
while (memPlatSpecFlowArray[i] != NULL) {
if ((memPlatSpecFlowArray[i])->DramTerm (NBPtr, (memPlatSpecFlowArray[i])->EntryOfTables)) {
if ((memPlatSpecFlowArray[i])->ODTPattern (NBPtr, (memPlatSpecFlowArray[i])->EntryOfTables)) {
if ((memPlatSpecFlowArray[i])->SAO (NBPtr, (memPlatSpecFlowArray[i])->EntryOfTables)) {
if ((memPlatSpecFlowArray[i])->MR0WrCL (NBPtr, (memPlatSpecFlowArray[i])->EntryOfTables)) {
if ((memPlatSpecFlowArray[i])->RC2IBT (NBPtr, (memPlatSpecFlowArray[i])->EntryOfTables)) {
if ((memPlatSpecFlowArray[i])->RC10OpSpeed (NBPtr, (memPlatSpecFlowArray[i])->EntryOfTables)) {
if ((memPlatSpecFlowArray[i])->LRIBT (NBPtr, (memPlatSpecFlowArray[i])->EntryOfTables)) {
if ((memPlatSpecFlowArray[i])->LRNPR (NBPtr, (memPlatSpecFlowArray[i])->EntryOfTables)) {
if ((memPlatSpecFlowArray[i])->LRNLR (NBPtr, (memPlatSpecFlowArray[i])->EntryOfTables)) {
if (MemPPSCGen (NBPtr, (memPlatSpecFlowArray[i])->EntryOfTables)) {
break;
}
}
}
}
}
}
}
}
}
}
i++;
}
IDS_SKIP_HOOK (IDS_ENFORCE_PLAT_TABLES, NBPtr, &(NBPtr->MemPtr->StdHeader)) {
if (memPlatSpecFlowArray[i] == NULL) {
Result = FALSE;
}
}
return Result;
}
/* -----------------------------------------------------------------------------*/
/**
*
* This function constructs the rank type map of Dimm0, Dimm1, Dimm2. Also it counts the number
* of dimm in the table.
*
* @param[in] Dimm0 Rank type of Dimm0
* @param[in] Dimm1 Rank type of Dimm1
* @param[in] Dimm2 Rank type of Dimm2
* @param[in, out] *RankTypeInTable Pointer to RankTypeInTable variable
*
*
*/
VOID
MemPConstructRankTypeMap (
IN UINT16 Dimm0,
IN UINT16 Dimm1,
IN UINT16 Dimm2,
IN OUT UINT16 *RankTypeInTable
)
{
UINT8 i;
UINT16 RT;
UINT8 BitShift;
*RankTypeInTable = 0;
RT = 0;
BitShift = 0;
for (i = 0; i < MAX_DIMMS_PER_CHANNEL; i++) {
switch (i) {
case 0:
RT = (Dimm0 == 0) ? NP : Dimm0;
BitShift = 0;
break;
case 1:
RT = (Dimm1 == 0) ? NP : Dimm1;
BitShift = 4;
break;
case 2:
RT = (Dimm2 == 0) ? NP : Dimm2;
BitShift = 8;
break;
default:
// dimm3 is not used, fills nibble3 with "NP"
RT = NP;
BitShift = 12;
}
*RankTypeInTable |= RT << BitShift;
}
}
/*-----------------------------------------------------------------------------*/
/**
* MemPIsIdSupported
* This function matches the CPU_LOGICAL_ID and PackageType with certain criteria to
* determine if it is supported by this NB type.
*
* @param[in,out] *NBPtr - Pointer to the MEM_NB_BLOCK
* @param[in] LogicalId - CPU_LOGICAL_ID
* @param[in] PackageType - Package Type
*
* @return TRUE - NB type is matched !
* @return FALSE - NB type is not matched !
*
*/
BOOLEAN
MemPIsIdSupported (
IN OUT MEM_NB_BLOCK *NBPtr,
IN CPU_LOGICAL_ID LogicalId,
IN UINT8 PackageType
)
{
CPUID_DATA CpuId;
UINT8 PkgType;
LibAmdCpuidRead (AMD_CPUID_FMF, &CpuId, &(NBPtr->MemPtr->StdHeader));
PkgType = (UINT8) (CpuId.EBX_Reg >> 28) & 0xF; // bit 31:28
if (((NBPtr->MCTPtr->LogicalCpuid.Family & LogicalId.Family) != 0)
&& ((NBPtr->MCTPtr->LogicalCpuid.Revision & LogicalId.Revision) != 0)) {
if ((PackageType == PT_DONT_CARE) || (PackageType == PkgType)) {
return TRUE;
}
}
return FALSE;
}
/* -----------------------------------------------------------------------------*/
/**
*
* This function returns the rank type map of a channel.
*
* @param[in] *CurrentChannel Pointer to CH_DEF_STRUCT
*
* @return UINT16 - The map of rank type.
*
*/
UINT16
MemPGetPsRankType (
IN CH_DEF_STRUCT *CurrentChannel
)
{
UINT8 i;
UINT16 DIMMRankType;
DIMMRankType = 0;
for (i = 0; i < MAX_DIMMS_PER_CHANNEL; i++) {
if (CurrentChannel->MCTPtr->Status[SbLrdimms]) {
// For LrDimm, we construct the map according to Dimm present bits rather than rank type bits
if ((CurrentChannel->LrDimmPresent & (UINT8) 1 << i) != 0) {
DIMMRankType |= (UINT16) DIMM_LR << (i << 2);
} else {
DIMMRankType |= (UINT16) NP << (i << 2);
}
} else {
if ((CurrentChannel->DimmQrPresent & (UINT8) 1 << i) != 0) {
if (i < 2) {
DIMMRankType |= (UINT16) DIMM_QR << (i << 2);
}
} else if ((CurrentChannel->DimmDrPresent & (UINT8) 1 << i) != 0) {
DIMMRankType |= (UINT16) DIMM_DR << (i << 2);
} else if ((CurrentChannel->DimmSRPresent & (UINT8) 1 << i) != 0) {
DIMMRankType |= (UINT16) DIMM_SR << (i << 2);
} else {
DIMMRankType |= (UINT16) NP << (i << 2);
}
}
}
return DIMMRankType;
}
/* -----------------------------------------------------------------------------*/
/**
*
* This function performs the action for the rest of platform specific configuration such as
* tri-state stuff
*
* @param[in,out] *NBPtr - Pointer to the MEM_NB_BLOCK
* @param[in] *EntryOfTables Pointer to MEM_PSC_TABLE_BLOCK
*
* @return TRUE - No error occurred.
* @return FALSE - Error occurred.
*
*/
BOOLEAN
STATIC
MemPPSCGen (
IN OUT MEM_NB_BLOCK *NBPtr,
IN MEM_PSC_TABLE_BLOCK *EntryOfTables
)
{
UINT8 i;
PSCFG_TYPE PSCType;
DIMM_TYPE DimmType;
UINT8 MaxDimmPerCh;
UINT8 NOD;
CPU_LOGICAL_ID LogicalCpuid;
UINT8 PackageType;
CH_DEF_STRUCT *CurrentChannel;
UINT32 EventInfo;
CurrentChannel = NBPtr->ChannelPtr;
PackageType = 0;
LogicalCpuid.Family = AMD_FAMILY_UNKNOWN;
MaxDimmPerCh = GetMaxDimmsPerChannel (NBPtr->RefPtr->PlatformMemoryConfiguration, NBPtr->MCTPtr->SocketId, CurrentChannel->ChannelID);
NOD = (UINT8) 1 << (MaxDimmPerCh - 1);
if (CurrentChannel->RegDimmPresent != 0) {
DimmType = RDIMM_TYPE;
} else if (CurrentChannel->SODimmPresent != 0) {
DimmType = SODIMM_TYPE;
} else if (CurrentChannel->LrDimmPresent != 0) {
DimmType = LRDIMM_TYPE;
} else {
DimmType = UDIMM_TYPE;
}
for (PSCType = PSCFG_GEN_START + 1; PSCType < PSCFG_GEN_END; PSCType++) {
i = 0;
while (EntryOfTables->TblEntryOfGen[i] != NULL) {
if ((EntryOfTables->TblEntryOfGen[i])->Header.PSCType == PSCType) {
if (((EntryOfTables->TblEntryOfGen[i])->Header.DimmType & DimmType) != 0) {
if (((EntryOfTables->TblEntryOfGen[i])->Header.NumOfDimm & NOD) != 0) {
//
// Determine if this is the expected NB Type
//
LogicalCpuid = (EntryOfTables->TblEntryOfGen[i])->Header.LogicalCpuid;
PackageType = (EntryOfTables->TblEntryOfGen[i])->Header.PackageType;
if (MemPIsIdSupported (NBPtr, LogicalCpuid, PackageType)) {
break;
}
}
}
}
i++;
}
// Check whether no table entry is found.
if (EntryOfTables->TblEntryOfGen[i] == NULL) {
IDS_HDT_CONSOLE (MEM_FLOW, "\nNo %s Table\n", (PSCType == PSCFG_CLKDIS) ? "ClkDis" : ((PSCType == PSCFG_CKETRI) ? "CkeTri" : ((PSCType == PSCFG_ODTTRI) ? "OdtTri" : "CsTri")));
EventInfo = (PSCType == PSCFG_CLKDIS) ? MEM_ERROR_CLK_DIS_MAP_NOT_FOUND : ((PSCType == PSCFG_CKETRI) ? MEM_ERROR_CKE_TRI_MAP_NOT_FOUND : ((PSCType == PSCFG_ODTTRI) ? MEM_ERROR_ODT_TRI_MAP_NOT_FOUND : MEM_ERROR_CS_TRI_MAP_NOT_FOUND));
PutEventLog (AGESA_ERROR, EventInfo, NBPtr->Node, NBPtr->Dct, NBPtr->Channel, 0, &NBPtr->MemPtr->StdHeader);
SetMemError (AGESA_ERROR, NBPtr->MCTPtr);
if (!NBPtr->MemPtr->ErrorHandling (NBPtr->MCTPtr, NBPtr->Dct, EXCLUDE_ALL_CHIPSEL, &NBPtr->MemPtr->StdHeader)) {
ASSERT (FALSE);
}
return FALSE;
}
// Perform the action for specific PSCType.
if (PSCType == PSCFG_CLKDIS) {
CurrentChannel->MemClkDisMap = (UINT8 *) (EntryOfTables->TblEntryOfGen[i])->TBLPtr;
} else if (PSCType == PSCFG_CKETRI) {
CurrentChannel->CKETriMap = (UINT8 *) (EntryOfTables->TblEntryOfGen[i])->TBLPtr;
} else if (PSCType == PSCFG_ODTTRI) {
CurrentChannel->ODTTriMap = (UINT8 *) (EntryOfTables->TblEntryOfGen[i])->TBLPtr;
} else if (PSCType == PSCFG_CSTRI) {
CurrentChannel->ChipSelTriMap = (UINT8 *) (EntryOfTables->TblEntryOfGen[i])->TBLPtr;
}
}
CurrentChannel->DctEccDqsLike = 0x0403;
CurrentChannel->DctEccDqsScale = 0x70;
return TRUE;
}
/* -----------------------------------------------------------------------------*/
/**
*
* This function proceeds Table Driven Overriding.
*
* @param[in,out] *NBPtr - Pointer to the MEM_NB_BLOCK
* @param[in] PlatformMemoryConfiguration - Pointer to Platform config table
* @param[in] ProceededPSOType - Proceeded PSO type
*
* @return bit0 ~ bit7 - Overriding CS or DIMM map.
* @return bit15 - Invalid entry found if set.
*
*/
UINT16
MemPProceedTblDrvOverride (
IN OUT MEM_NB_BLOCK *NBPtr,
IN PSO_TABLE *PlatformMemoryConfiguration,
IN UINT8 ProceededPSOType
)
{
UINT8 *Buffer;
UINT8 *PSOStartPtr;
UINT8 NumOfReg;
UINT8 RetVal;
UINT16 RetVal16;
BOOLEAN ConfigMatched;
BOOLEAN FirstGoThrough;
BOOLEAN FindNewConfig;
BOOLEAN InvertRetVal;
BOOLEAN InvalidConfigDetected;
ASSERT (PlatformMemoryConfiguration != NULL);
ASSERT ((ProceededPSOType >= PSO_TBLDRV_START) && (ProceededPSOType <= PSO_TBLDRV_END));
NumOfReg = 0;
RetVal = 0;
RetVal16 = 0;
FirstGoThrough = TRUE;
InvertRetVal = FALSE;
InvalidConfigDetected = FALSE;
//
// << P E R S P E C T I V E >>
//
// PlatformMemoryConfiguration [] = {
// . . . . . . . . . . . . . . . . . . .
// . . . . . . . . . . . . . . . . . . .
// TBLDRV_CONFIG_TO_OVERRIDE (2, DDR1600, VOLT1_5_ + VOLT1_35_, SR_DIMM0 + DR_DIMM1),
// TBLDRV_CONFIG_ENTRY_RTTNOM (CS2_ + CS3_, 2),
// TBLDRV_CONFIG_ENTRY_RTTWR (CS2_, 2),
// TBLDRV_CONFIG_ENTRY_RTTWR (CS3_, 1),
// TBLDRV_CONFIG_ENTRY_ADDRTMG (0x003C3C3C),
// TBLDRV_CONFIG_ENTRY_ODCCTRL (0x20112222),
//
// TBLDRV_SPEEDLIMIT_CONFIG_TO_OVERRIDE (2, 2, 0, 0)
// TBLDRV_CONFIG_ENTRY_SPEEDLIMIT (DDR1600_FREQUENCY, DDR1333_FREQUENCY, DDR1066_FREQUENCY),
//
// TBLDRV_CONFIG_TO_OVERRIDE (2, DDR1333, VOLT1_5_ + VOLT1_35_, SR_DIMM0 + DR_DIMM1),
// TBLDRV_CONFIG_ENTRY_RTTNOM (CS2_ + CS3_, 3),
// TBLDRV_CONFIG_ENTRY_RTTWR (CS2_ + CS3_, 0),
//
// TBLDRV_OVERRIDE_MR0_WR (3, 5)
// TBLDRV_OVERRIDE_MR0_WR (4, 6)
//
// TBLDRV_OVERRIDE_MR0_CL (3, 5)
// TBLDRV_OVERRIDE_MR0_CL (4, 6)
// . . . . . . . . . . . . . . . . . . .
// . . . . . . . . . . . . . . . . . . .
//
// PSO_END
// }
//
Buffer = PlatformMemoryConfiguration;
// Look for configuration descriptor and its sub-descriptor.
while (Buffer[PSO_TYPE] != PSO_END) {
FindNewConfig = FALSE;
ConfigMatched = FALSE;
if (Buffer[PSO_TYPE] == PSO_TBLDRV_CONFIG) {
//
// Config. descriptor is found, check its sub-descriptor to execute different checking routine.
//
if ((Buffer[PSO_DATA] == CONFIG_SPEEDLIMIT) && (ProceededPSOType == PSO_TBLDRV_SPEEDLIMIT)) {
if (MemPCheckTblDrvOverrideConfigSpeedLimit (NBPtr, &Buffer[PSO_DATA + 1])) {
ConfigMatched = TRUE;
}
} else if (Buffer[PSO_DATA] == CONFIG_DONT_CARE) {
ConfigMatched = TRUE;
} else {
if (MemPCheckTblDrvOverrideConfig (NBPtr, &Buffer[PSO_DATA + 1])) {
ConfigMatched = TRUE;
if ((Buffer[PSO_DATA] == CONFIG_RC2IBT) && (ProceededPSOType == PSO_TBLDRV_RC2_IBT)) {
NumOfReg = Buffer[PSO_DATA + 9];
}
}
}
}
if (ConfigMatched) {
//
// If config. is matched, parsing "Table Driven PSO" macros behinds this config. macro until PSO_END is reached.
//
PSOStartPtr = Buffer + (Buffer[PSO_LENGTH] + 2);
// Look for the current proceeded PSO type in PlatformMemoryConfiguration array.
while ((PSOStartPtr[PSO_TYPE] != PSO_END)) {
if (PSOStartPtr[PSO_TYPE] == PSO_TBLDRV_CONFIG) {
//
// If there is an additional config. macro existed, break this while loop,
// then check its content with real platform config. again.
// If matched, parsing "Table Driven PSO" macros behind it.
//
Buffer = PSOStartPtr;
FindNewConfig = TRUE;
break;
} else if (PSOStartPtr[PSO_TYPE] == PSO_TBLDRV_INVALID_TYPE) {
InvalidConfigDetected = TRUE;
break;
}
if (PSOStartPtr[PSO_TYPE] == ProceededPSOType) {
//
// Pre-set overriding Cs/Dimm map to "0xFF" for the types which are regardless of Cs/Dimm
// for the first time going through the overriding routines.
//
if (FirstGoThrough) {
RetVal = 0xFF;
}
switch (ProceededPSOType) {
case PSO_TBLDRV_SPEEDLIMIT :
MemPTblDrvOverrideSpeedLimit (NBPtr, &PSOStartPtr[PSO_DATA]);
break;
case PSO_TBLDRV_ODT_RTTNOM :
case PSO_TBLDRV_ODT_RTTWR :
// Mask off Cs overridng map to record which Cs has been overridden.
RetVal &= ~ MemPTblDrvOverrideODT (NBPtr, &PSOStartPtr[PSO_TYPE]);
// Indicate RetVal is inverted.
InvertRetVal = TRUE;
break;
case PSO_TBLDRV_ODTPATTERN :
MemPTblDrvOverrideODTPattern (NBPtr, &PSOStartPtr[PSO_DATA]);
break;
case PSO_TBLDRV_ADDRTMG :
NBPtr->ChannelPtr->DctAddrTmg = *(UINT32 *)&PSOStartPtr[PSO_DATA];
IDS_HDT_CONSOLE (MEM_FLOW, "\nTable Driven Platform Override: AddrTmg = 0x%x for Dct%d\n\n", *(UINT32 *)&PSOStartPtr[PSO_DATA], NBPtr->Dct);
break;
case PSO_TBLDRV_ODCCTRL :
NBPtr->ChannelPtr->DctOdcCtl = *(UINT32 *)&PSOStartPtr[PSO_DATA];
IDS_HDT_CONSOLE (MEM_FLOW, "\nTable Driven Platform Override: OdcCtl = 0x%x for Dct%d\n\n", *(UINT32 *)&PSOStartPtr[PSO_DATA], NBPtr->Dct);
break;
case PSO_TBLDRV_SLOWACCMODE :
NBPtr->ChannelPtr->SlowMode = (PSOStartPtr[PSO_DATA] == 1) ? TRUE : FALSE;
IDS_HDT_CONSOLE (MEM_FLOW, "\nTable Driven Platform Override: Slow Access Mode = %d for Dct%d\n\n", PSOStartPtr[PSO_DATA], NBPtr->Dct);
break;
case PSO_TBLDRV_RC2_IBT :
// Mask off Dimm overridng map to record which Dimm has been overridden.
RetVal &= ~ MemPTblDrvOverrideRC2IBT (NBPtr, &PSOStartPtr[PSO_DATA], NumOfReg);
// Indicate RetVal is inverted.
InvertRetVal = TRUE;
break;
case PSO_TBLDRV_MR0_CL :
RetVal = 0;
if (MemPTblDrvOverrideMR0WR (NBPtr, &PSOStartPtr[PSO_DATA])) {
RetVal = 0xFF;
}
break;
case PSO_TBLDRV_MR0_WR :
RetVal = 0;
if (MemPTblDrvOverrideMR0CL (NBPtr, &PSOStartPtr[PSO_DATA])) {
RetVal = 0xFF;
}
break;
case PSO_TBLDRV_RC10_OPSPEED :
RetVal = 0;
if (MemPTblDrvOverrideMR10OpSpeed (NBPtr, &PSOStartPtr[PSO_DATA])) {
RetVal = 0xFF;
}
break;
case PSO_TBLDRV_LRDIMM_IBT :
NBPtr->PsPtr->F0RC8 = PSOStartPtr[PSO_DATA];
NBPtr->PsPtr->F1RC0 = PSOStartPtr[PSO_DATA + 1];
NBPtr->PsPtr->F1RC1 = PSOStartPtr[PSO_DATA + 2];
NBPtr->PsPtr->F1RC2 = PSOStartPtr[PSO_DATA + 3];
IDS_HDT_CONSOLE (MEM_FLOW, "\nTable Driven Platform Override: LRDIMM IBT for Dct%d\n", NBPtr->Dct);
IDS_HDT_CONSOLE (MEM_FLOW, "\nF0RC8 = %d, F1RC0 = %d, F1RC1 = %d, F1RC2 = %d", PSOStartPtr[PSO_DATA], PSOStartPtr[PSO_DATA + 1], \
PSOStartPtr[PSO_DATA + 2], PSOStartPtr[PSO_DATA + 3]);
break;
default:
ASSERT (FALSE);
}
FirstGoThrough = FALSE;
}
PSOStartPtr += (PSOStartPtr[PSO_LENGTH] + 2);
}
if (FindNewConfig) {
continue;
}
RetVal = (InvertRetVal) ? ~RetVal : RetVal;
RetVal16 = (UINT16) RetVal;
if (InvalidConfigDetected) {
RetVal16 |= INVALID_CONFIG_FLAG;
}
return RetVal16;
}
Buffer += (Buffer[PSO_LENGTH] + 2);
}
RetVal = (InvertRetVal) ? ~RetVal : RetVal;
RetVal16 = (UINT16) RetVal;
if (InvalidConfigDetected) {
RetVal16 |= INVALID_CONFIG_FLAG;
}
return RetVal16;
}
/* -----------------------------------------------------------------------------*/
/**
*
* This function overrides the speed limit.
*
* @param[in,out] *NBPtr - Pointer to the MEM_NB_BLOCK
* @param[in] *Buffer - Pointer to Platform config table
*
*/
VOID
STATIC
MemPTblDrvOverrideSpeedLimit (
IN OUT MEM_NB_BLOCK *NBPtr,
IN UINT8 *Buffer
)
{
UINT8 CurrentVoltage;
IDS_HDT_CONSOLE (MEM_FLOW, "\nTable Driven Platform Override: Max. Memory Speed for Dct%d\n", NBPtr->Dct);
LibAmdMemCopy (NBPtr->PsPtr->SpeedLimit, Buffer, 6, &(NBPtr->MemPtr->StdHeader));
for (CurrentVoltage = VOLT1_5_ENCODED_VAL; CurrentVoltage <= VOLT1_25_ENCODED_VAL; CurrentVoltage ++) {
IDS_HDT_CONSOLE (MEM_FLOW, "%s -> %dMHz\t", (CurrentVoltage == VOLT1_5_ENCODED_VAL) ? "1.5V" : ((CurrentVoltage == VOLT1_35_ENCODED_VAL) ? "1.35V" : "1.25V"), NBPtr->PsPtr->SpeedLimit[CurrentVoltage]);
}
IDS_HDT_CONSOLE (MEM_FLOW, "\n");
}
/* -----------------------------------------------------------------------------*/
/**
*
* This function overrides the ODTs (RttNom and RttWr).
*
* @param[in,out] *NBPtr - Pointer to the MEM_NB_BLOCK
* @param[in] *Buffer - Pointer to Platform config table
*
* @return Target CS overriding bit map
*
*/
UINT8
STATIC
MemPTblDrvOverrideODT (
IN OUT MEM_NB_BLOCK *NBPtr,
IN UINT8 *Buffer
)
{
UINT16 i;
UINT8 TgtCS;
IDS_HDT_CONSOLE_DEBUG_CODE (
IDS_HDT_CONSOLE (MEM_FLOW, "\nTable Driven Platform Override: ODT for Dct%d\n", NBPtr->Dct);
if (Buffer[0] == PSO_TBLDRV_ODT_RTTNOM) {
IDS_HDT_CONSOLE (MEM_FLOW, "RttNom = %d for ", Buffer[3]);
} else {
IDS_HDT_CONSOLE (MEM_FLOW, "RttWr = %d for ", Buffer[3]);
}
);
TgtCS = Buffer[2];
for (i = 0; i < MAX_CS_PER_CHANNEL; i++) {
if ((NBPtr->DCTPtr->Timings.CsEnabled & (UINT16) (1 << i)) != 0) {
if ((TgtCS & (UINT8) 1 << i) != 0) {
IDS_HDT_CONSOLE (MEM_FLOW, "CS%d ", i);
if (Buffer[0] == PSO_TBLDRV_ODT_RTTNOM) {
NBPtr->PsPtr->RttNom[i] = Buffer[3];
} else {
NBPtr->PsPtr->RttWr[i] = Buffer[3];
}
}
}
}
IDS_HDT_CONSOLE (MEM_FLOW, "\n");
return TgtCS;
}
/* -----------------------------------------------------------------------------*/
/**
*
* This function overrides the ODT patterns.
*
* @param[in,out] *NBPtr - Pointer to the MEM_NB_BLOCK
* @param[in] *Buffer - Pointer to Platform config table
*
*/
VOID
STATIC
MemPTblDrvOverrideODTPattern (
IN OUT MEM_NB_BLOCK *NBPtr,
IN UINT8 *Buffer
)
{
CH_DEF_STRUCT *CurrentChannel;
CurrentChannel = NBPtr->ChannelPtr;
IDS_HDT_CONSOLE (MEM_FLOW, "\nTable Driven Platform Override: ODT pattern for Dct%d\n", NBPtr->Dct);
IDS_HDT_CONSOLE (MEM_FLOW, "\nRODTCSHigh = 0x%x\n", *(UINT32 *)&Buffer[0]);
IDS_HDT_CONSOLE (MEM_FLOW, "\nRODTCSLow = 0x%x\n", *(UINT32 *)&Buffer[4]);
IDS_HDT_CONSOLE (MEM_FLOW, "\nWODTCSHigh = 0x%x\n", *(UINT32 *)&Buffer[8]);
IDS_HDT_CONSOLE (MEM_FLOW, "\nWODTCSLow = 0x%x\n", *(UINT32 *)&Buffer[12]);
CurrentChannel->PhyRODTCSHigh = *(UINT32 *)&Buffer[0];
CurrentChannel->PhyRODTCSLow = *(UINT32 *)&Buffer[4];
CurrentChannel->PhyWODTCSHigh = *(UINT32 *)&Buffer[8];
CurrentChannel->PhyWODTCSLow = *(UINT32 *)&Buffer[12];
//WL ODTs need to be modified as well while overriding...
CurrentChannel->PhyWLODT[0] = (UINT8) (CurrentChannel->PhyWODTCSLow & 0x0F);
CurrentChannel->PhyWLODT[1] = (UINT8) ((CurrentChannel->PhyWODTCSLow >> 16) & 0x0F);
CurrentChannel->PhyWLODT[2] = (UINT8) (CurrentChannel->PhyWODTCSHigh & 0x0F);
CurrentChannel->PhyWLODT[3] = (UINT8) ((CurrentChannel->PhyWODTCSHigh >> 16) & 0x0F);
IDS_HDT_CONSOLE (MEM_FLOW, "\n\n");
}
/* -----------------------------------------------------------------------------*/
/**
*
* This function overrides the Ctrl Word 2 and 8.
*
* @param[in,out] *NBPtr - Pointer to the MEM_NB_BLOCK
* @param[in] *Buffer - Pointer to Platform config table
* @param[in] NumOfReg - Number of registers
*
* @return Target DIMM overridng bit map
*
*/
UINT8
STATIC
MemPTblDrvOverrideRC2IBT (
IN OUT MEM_NB_BLOCK *NBPtr,
IN UINT8 *Buffer,
IN UINT8 NumOfReg
)
{
UINT16 i;
UINT8 TgtDimm;
CH_DEF_STRUCT *CurrentChannel;
CurrentChannel = NBPtr->ChannelPtr;
IDS_HDT_CONSOLE (MEM_FLOW, "\nTable Driven Platform Override: RC2[IBT] for Dct%d\n", NBPtr->Dct);
IDS_HDT_CONSOLE (MEM_FLOW, "RC2[IBT] = %d for ", Buffer[1]);
TgtDimm = Buffer[0];
for (i = 0; i < MAX_DIMMS_PER_CHANNEL; i++) {
if ((CurrentChannel->ChDimmValid & (UINT16) (1 << i)) != 0) {
if (((TgtDimm & (UINT8) 1 << i) != 0) && (NBPtr->PsPtr->NumOfReg[i] == NumOfReg)) {
IDS_HDT_CONSOLE (MEM_FLOW, "DIMM%d ", i);
CurrentChannel->CtrlWrd02[i] = (Buffer[1] & 0x1) << 2;
CurrentChannel->CtrlWrd08[i] = (Buffer[1] & 0xE) >> 1;
}
}
}
IDS_HDT_CONSOLE (MEM_FLOW, "\n");
return TgtDimm;
}
/* -----------------------------------------------------------------------------*/
/**
*
* This function overrides MR0[WR].
*
* @param[in,out] *NBPtr - Pointer to the MEM_NB_BLOCK
* @param[in] *Buffer - Pointer to Platform config table
*
* @return TRUE : Overridden
* @return FALSE : Not overriden
*
*/
BOOLEAN
STATIC
MemPTblDrvOverrideMR0WR (
IN OUT MEM_NB_BLOCK *NBPtr,
IN UINT8 *Buffer
)
{
if (Buffer[0] == (UINT8) NBPtr->GetBitField (NBPtr, BFTcl)) {
NBPtr->PsPtr->MR0CL31 = Buffer[1];
NBPtr->PsPtr->MR0CL0 = Buffer[2];
IDS_HDT_CONSOLE (MEM_FLOW, "\nTable Driven Platform Override: MR0[CL][3:1] = %d,\tMR0[CL][0] = %d for Dct%d\n", \
Buffer[1], Buffer[2], NBPtr->Channel);
IDS_HDT_CONSOLE (MEM_FLOW, "Tcl = %d\n\n", (UINT8) NBPtr->GetBitField (NBPtr, BFTcl));
return TRUE;
}
return FALSE;
}
/* -----------------------------------------------------------------------------*/
/**
*
* This function overrides MR0[WR].
*
* @param[in,out] *NBPtr - Pointer to the MEM_NB_BLOCK
* @param[in] *Buffer - Pointer to Platform config table
*
* @return TRUE : Overridden
* @return FALSE : Not overriden
*
*/
BOOLEAN
STATIC
MemPTblDrvOverrideMR0CL (
IN OUT MEM_NB_BLOCK *NBPtr,
IN UINT8 *Buffer
)
{
if (Buffer[0] == (UINT8) NBPtr->GetBitField (NBPtr, BFTwrDDR3)) {
NBPtr->PsPtr->MR0WR = Buffer[1];
IDS_HDT_CONSOLE (MEM_FLOW, "\nTable Driven Platform Override: MR0[WR] = %d for Dct%d\n", Buffer[1], NBPtr->Dct);
IDS_HDT_CONSOLE (MEM_FLOW, "Twr = %d\n\n", (UINT8) NBPtr->GetBitField (NBPtr, BFTwrDDR3));
return TRUE;
}
return FALSE;
}
/* -----------------------------------------------------------------------------*/
/**
*
* This function overrides MR10[OperatingSpeed].
*
* @param[in,out] *NBPtr - Pointer to the MEM_NB_BLOCK
* @param[in] *Buffer - Pointer to Platform config table
*
* @return TRUE : Overridden
* @return FALSE : Not overriden
*
*/
BOOLEAN
STATIC
MemPTblDrvOverrideMR10OpSpeed (
IN OUT MEM_NB_BLOCK *NBPtr,
IN UINT8 *Buffer
)
{
UINT32 CurDDRrate;
CH_DEF_STRUCT *CurrentChannel;
CurrentChannel = NBPtr->ChannelPtr;
CurDDRrate = (UINT32) (1 << (CurrentChannel->DCTPtr->Timings.Speed / 66));
if ((Buffer[0] & CurDDRrate) != 0) {
NBPtr->PsPtr->RC10OpSpd = Buffer[1];
IDS_HDT_CONSOLE (MEM_FLOW, "\nTable Driven Platform Override: MR10[OperatingSpeed] = %d for Dct%d\n", Buffer[1], NBPtr->Dct);
return TRUE;
}
return FALSE;
}
/* -----------------------------------------------------------------------------*/
/**
*
* This function checks if platform configuration is matched or not.
*
* @param[in,out] *NBPtr - Pointer to the MEM_NB_BLOCK
* @param[in] *Buffer - Pointer to Platform config table
*
* @return TRUE : Configuration is matched
* @return FALSE : Configuration is not matched
*
*/
BOOLEAN
STATIC
MemPCheckTblDrvOverrideConfig (
IN OUT MEM_NB_BLOCK *NBPtr,
IN UINT8 *Buffer
)
{
UINT8 MaxDimmPerCh;
UINT32 CurDDRrate;
UINT8 DDR3Voltage;
UINT16 RankTypeOfPopulatedDimm;
CH_DEF_STRUCT *CurrentChannel;
CurrentChannel = NBPtr->ChannelPtr;
// Get platform configuration.
MaxDimmPerCh = GetMaxDimmsPerChannel (NBPtr->RefPtr->PlatformMemoryConfiguration, NBPtr->MCTPtr->SocketId, CurrentChannel->ChannelID);
CurDDRrate = (UINT32) (1 << (CurrentChannel->DCTPtr->Timings.Speed / 66));
DDR3Voltage = (UINT8) (1 << CONVERT_VDDIO_TO_ENCODED (NBPtr->RefPtr->DDR3Voltage));
RankTypeOfPopulatedDimm = MemAGetPsRankType (CurrentChannel);
if ((MaxDimmPerCh == Buffer[0]) && ((DDR3Voltage & Buffer[1]) != 0) &&
((CurDDRrate & *(UINT32 *)&Buffer[2]) != 0) && ((RankTypeOfPopulatedDimm & *(UINT16 *)&Buffer[6]) != 0)) {
return TRUE;
}
return FALSE;
}
/* -----------------------------------------------------------------------------*/
/**
*
* This function checks if platform configuration is matched or not.
*
* @param[in,out] *NBPtr - Pointer to the MEM_NB_BLOCK
* @param[in] *Buffer - Pointer to Platform config table
*
* @return TRUE : Configuration is matched
* @return FALSE : Configuration is not matched
*
*/
BOOLEAN
STATIC
MemPCheckTblDrvOverrideConfigSpeedLimit (
IN OUT MEM_NB_BLOCK *NBPtr,
IN UINT8 *Buffer
)
{
UINT8 MaxDimmPerCh;
UINT8 NumOfSR;
UINT8 NumOfDR;
UINT8 NumOfQR;
UINT8 NumOfLRDimm;
UINT8 i;
CH_DEF_STRUCT *CurrentChannel;
CurrentChannel = NBPtr->ChannelPtr;
NumOfSR = 0;
NumOfDR = 0;
NumOfQR = 0;
NumOfLRDimm = 0;
// Get platform configuration.
MaxDimmPerCh = GetMaxDimmsPerChannel (NBPtr->RefPtr->PlatformMemoryConfiguration, NBPtr->MCTPtr->SocketId, CurrentChannel->ChannelID);
for (i = 0; i < MAX_DIMMS_PER_CHANNEL; i++) {
if ((CurrentChannel->DimmSRPresent & (UINT8) (1 << i)) != 0) {
NumOfSR += 1;
} else if ((CurrentChannel->DimmDrPresent & (UINT16) (1 << i)) != 0) {
NumOfDR += 1;
} else if ((CurrentChannel->DimmQrPresent & (UINT16) (1 << i)) != 0) {
if (i < 2) {
NumOfQR += 1;
}
} else if ((CurrentChannel->LrDimmPresent & (UINT16) (1 << i))) {
NumOfLRDimm += 1;
}
}
if ((Buffer[0] == MaxDimmPerCh) && (Buffer[1] == CurrentChannel->Dimms)) {
if (NBPtr->MCTPtr->Status[SbLrdimms] == TRUE) {
if (Buffer[5] == NumOfLRDimm) {
return TRUE;
}
} else {
if ((Buffer[2] == NumOfSR) && (Buffer[3] == NumOfDR) && (Buffer[4] == NumOfQR)) {
return TRUE;
}
}
}
return FALSE;
}