blob: def21eee36166a8486b151dd0049833cb8f8c819 [file] [log] [blame]
/* $NoKeywords:$ */
/**
* @file
*
* mnmcttn.c
*
* Northbridge TN MCT supporting functions
*
* @xrefitem bom "File Content Label" "Release Content"
* @e project: AGESA
* @e sub-project: (Mem/NB/TN)
* @e \$Revision: 63425 $ @e \$Date: 2011-12-22 11:24:10 -0600 (Thu, 22 Dec 2011) $
*
**/
/*****************************************************************************
*
* Copyright 2008 - 2012 ADVANCED MICRO DEVICES, INC. All Rights Reserved.
*
* AMD is granting you permission to use this software (the Materials)
* pursuant to the terms and conditions of your Software License Agreement
* with AMD. This header does *NOT* give you permission to use the Materials
* or any rights under AMD's intellectual property. Your use of any portion
* of these Materials shall constitute your acceptance of those terms and
* conditions. If you do not agree to the terms and conditions of the Software
* License Agreement, please do not use any portion of these Materials.
*
* CONFIDENTIALITY: The Materials and all other information, identified as
* confidential and provided to you by AMD shall be kept confidential in
* accordance with the terms and conditions of the Software License Agreement.
*
* LIMITATION OF LIABILITY: THE MATERIALS AND ANY OTHER RELATED INFORMATION
* PROVIDED TO YOU BY AMD ARE PROVIDED "AS IS" WITHOUT ANY EXPRESS OR IMPLIED
* WARRANTY OF ANY KIND, INCLUDING BUT NOT LIMITED TO WARRANTIES OF
* MERCHANTABILITY, NONINFRINGEMENT, TITLE, FITNESS FOR ANY PARTICULAR PURPOSE,
* OR WARRANTIES ARISING FROM CONDUCT, COURSE OF DEALING, OR USAGE OF TRADE.
* IN NO EVENT SHALL AMD OR ITS LICENSORS BE LIABLE FOR ANY DAMAGES WHATSOEVER
* (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS
* INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF AMD'S NEGLIGENCE,
* GROSS NEGLIGENCE, THE USE OF OR INABILITY TO USE THE MATERIALS OR ANY OTHER
* RELATED INFORMATION PROVIDED TO YOU BY AMD, EVEN IF AMD HAS BEEN ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGES. BECAUSE SOME JURISDICTIONS PROHIBIT THE
* EXCLUSION OR LIMITATION OF LIABILITY FOR CONSEQUENTIAL OR INCIDENTAL DAMAGES,
* THE ABOVE LIMITATION MAY NOT APPLY TO YOU.
*
* AMD does not assume any responsibility for any errors which may appear in
* the Materials or any other related information provided to you by AMD, or
* result from use of the Materials or any related information.
*
* You agree that you will not reverse engineer or decompile the Materials.
*
* NO SUPPORT OBLIGATION: AMD is not obligated to furnish, support, or make any
* further information, software, technical information, know-how, or show-how
* available to you. Additionally, AMD retains the right to modify the
* Materials at any time, without notice, and is not obligated to provide such
* modified Materials to you.
*
* U.S. GOVERNMENT RESTRICTED RIGHTS: The Materials are provided with
* "RESTRICTED RIGHTS." Use, duplication, or disclosure by the Government is
* subject to the restrictions as set forth in FAR 52.227-14 and
* DFAR252.227-7013, et seq., or its successor. Use of the Materials by the
* Government constitutes acknowledgement of AMD's proprietary rights in them.
*
* EXPORT ASSURANCE: You agree and certify that neither the Materials, nor any
* direct product thereof will be exported directly or indirectly, into any
* country prohibited by the United States Export Administration Act and the
* regulations thereunder, without the required authorization from the U.S.
* government nor will be used for any purpose prohibited by the same.
* ***************************************************************************
*
*/
/*
*----------------------------------------------------------------------------
* MODULES USED
*
*----------------------------------------------------------------------------
*/
#include "AGESA.h"
#include "amdlib.h"
#include "Ids.h"
#include "mport.h"
#include "GnbRegistersTN.h"
#include "GnbRegisterAccTN.h"
#include "mm.h"
#include "mn.h"
#include "OptionMemory.h"
#include "mntn.h"
#include "cpuFeatures.h"
#include "Filecode.h"
#include "mftds.h"
#include "mu.h"
CODE_GROUP (G3_DXE)
RDATA_GROUP (G3_DXE)
#define FILECODE PROC_MEM_NB_TN_MNMCTTN_FILECODE
/*----------------------------------------------------------------------------
* DEFINITIONS AND MACROS
*
*----------------------------------------------------------------------------
*/
#define _16MB_RJ16 0x0100
/*----------------------------------------------------------------------------
* TYPEDEFS AND STRUCTURES
*
*----------------------------------------------------------------------------
*/
/*----------------------------------------------------------------------------
* PROTOTYPES OF LOCAL FUNCTIONS
*
*----------------------------------------------------------------------------
*/
/*----------------------------------------------------------------------------
* EXPORTED FUNCTIONS
*
*----------------------------------------------------------------------------
*/
extern BUILD_OPT_CFG UserOptions;
/* -----------------------------------------------------------------------------*/
/**
*
*
* This function force memory Pstate to M0
*
* @param[in,out] *NBPtr - Pointer to the MEM_NB_BLOCK
*
* @return TRUE - No fatal error occurs.
* @return FALSE - Fatal error occurs.
*/
BOOLEAN
MemNInitializeMctTN (
IN OUT MEM_NB_BLOCK *NBPtr
)
{
MemNSetBitFieldNb (NBPtr, BFMemPsSel, 0);
MemNSetBitFieldNb (NBPtr, BFEnSplitMctDatBuffers, 1);
MemUMFenceInstr ();
MemNSetBitFieldNb (NBPtr, BFMctEccDisLatOptEn, 1);
MemUMFenceInstr ();
MemNBrdcstSetUnConditionalNb (NBPtr, BFPStateToAccess, 0);
MemNForcePhyToM0Unb (NBPtr);
return (BOOLEAN) (NBPtr->MCTPtr->ErrCode < AGESA_FATAL);
}
/* -----------------------------------------------------------------------------*/
/**
*
*
* This function sets final values for specific registers.
*
* @param[in,out] *NBPtr - Pointer to the MEM_NB_BLOCK
*
* @return TRUE - No fatal error occurs.
* @return FALSE - Fatal error occurs.
*/
BOOLEAN
MemNFinalizeMctTN (
IN OUT MEM_NB_BLOCK *NBPtr
)
{
MEM_DATA_STRUCT *MemPtr;
MEM_PARAMETER_STRUCT *RefPtr;
DRAM_PREFETCH_MODE DramPrefetchMode;
UINT16 Speed;
UINT32 Value32;
UINT8 DcqBwThrotWm1;
UINT8 DcqBwThrotWm2;
UINT8 Dct;
MemPtr = NBPtr->MemPtr;
RefPtr = MemPtr->ParameterListPtr;
DramPrefetchMode = MemPtr->PlatFormConfig->PlatformProfile.AdvancedPerformanceProfile.DramPrefetchMode;
Speed = NBPtr->DCTPtr->Timings.Speed;
//
// F2x11C
//
MemNSetBitFieldNb (NBPtr, BFMctCfgHiReg, 0x0CE00F31);
if (DramPrefetchMode == DISABLE_DRAM_PREFETCH_FOR_IO || DramPrefetchMode == DISABLE_DRAM_PREFETCHER) {
MemNSetBitFieldNb (NBPtr, BFPrefIoDis, 1);
}
if (DramPrefetchMode == DISABLE_DRAM_PREFETCH_FOR_CPU || DramPrefetchMode == DISABLE_DRAM_PREFETCHER) {
MemNSetBitFieldNb (NBPtr, BFPrefCpuDis, 1);
}
if (Speed == DDR667_FREQUENCY) {
DcqBwThrotWm1 = 3;
DcqBwThrotWm2 = 4;
} else if (Speed == DDR800_FREQUENCY) {
DcqBwThrotWm1 = 3;
DcqBwThrotWm2 = 5;
} else if (Speed == DDR1066_FREQUENCY) {
DcqBwThrotWm1 = 4;
DcqBwThrotWm2 = 6;
} else if (Speed == DDR1333_FREQUENCY) {
DcqBwThrotWm1 = 5;
DcqBwThrotWm2 = 8;
} else if (Speed == DDR1600_FREQUENCY) {
DcqBwThrotWm1 = 6;
DcqBwThrotWm2 = 9;
} else if (Speed == DDR1866_FREQUENCY) {
DcqBwThrotWm1 = 7;
DcqBwThrotWm2 = 10;
} else {
DcqBwThrotWm1 = 8;
DcqBwThrotWm2 = 12;
}
//
// F2x1B0
//
Value32 = MemNGetBitFieldNb (NBPtr, BFExtMctCfgLoReg);
Value32 &= 0x003FE8C0;
Value32 |= 0x0FC01001;
MemNSetBitFieldNb (NBPtr, BFExtMctCfgLoReg, Value32);
//
// F2x1B4
//
Value32 = MemNGetBitFieldNb (NBPtr, BFExtMctCfgHiReg);
Value32 &= 0xFFFFFC00;
Value32 |= (((UINT32) DcqBwThrotWm2 << 5) | (UINT32) DcqBwThrotWm1);
MemNSetBitFieldNb (NBPtr, BFExtMctCfgHiReg, Value32);
for (Dct = 0; Dct < MAX_DCTS_PER_NODE_TN; Dct++) {
MemNSwitchDCTNb (NBPtr, Dct);
if (NBPtr->DCTPtr->Timings.DctMemSize != 0) {
//
// Phy Power Saving
//
MemNPhyPowerSavingMPstateUnb (NBPtr);
if (NBPtr->MemPstateStage == MEMORY_PSTATE_3RD_STAGE) {
MemNChangeMemPStateContextNb (NBPtr, 1);
MemNPhyPowerSavingMPstateUnb (NBPtr);
MemFInitTableDrive (NBPtr, MTAfterSettingMemoryPstate1);
MemNChangeMemPStateContextNb (NBPtr, 0);
}
//
// Power Down Enable
//
if (NBPtr->RefPtr->EnablePowerDown) {
MemNSetBitFieldNb (NBPtr, BFPowerDownEn, 1);
}
}
}
// Set LockDramCfg
if (IsFeatureEnabled (C6Cstate, NBPtr->MemPtr->PlatFormConfig, &(NBPtr->MemPtr->StdHeader))) {
IDS_SKIP_HOOK (IDS_LOCK_DRAM_CFG, NBPtr, &NBPtr->MemPtr->StdHeader) {
MemNSetBitFieldNb (NBPtr, BFLockDramCfg, 1);
}
}
return (BOOLEAN) (NBPtr->MCTPtr->ErrCode < AGESA_FATAL);
}
/* -----------------------------------------------------------------------------*/
/**
*
* This function create the HT memory map for TN
*
* @param[in,out] *NBPtr - Pointer to the MEM_NB_BLOCK
*
* @return TRUE - No fatal error occurs.
* @return FALSE - Fatal error occurs.
*/
BOOLEAN
MemNHtMemMapInitTN (
IN OUT MEM_NB_BLOCK *NBPtr
)
{
UINT8 WeReMask;
UINT32 BottomIo;
UINT32 HoleOffset;
UINT32 DctSelBaseAddr;
UINT32 NodeSysBase;
UINT32 NodeSysLimit;
MEM_PARAMETER_STRUCT *RefPtr;
DIE_STRUCT *MCTPtr;
RefPtr = NBPtr->RefPtr;
MCTPtr = NBPtr->MCTPtr;
//
// Physical addresses in this function are right adjusted by 16 bits ([47:16])
// They are BottomIO, HoleOffset, DctSelBaseAddr, NodeSysBase, NodeSysLimit.
//
// Enforce bottom of IO be be 128MB aligned
BottomIo = (RefPtr->BottomIo & 0xF8) << 8;
if (MCTPtr->NodeMemSize != 0) {
NodeSysBase = 0;
NodeSysLimit = MCTPtr->NodeMemSize - 1;
DctSelBaseAddr = MCTPtr->DctData[0].Timings.DctMemSize;
if (NodeSysLimit >= BottomIo) {
// HW Dram Remap
MCTPtr->Status[SbHWHole] = TRUE;
RefPtr->GStatus[GsbHWHole] = TRUE;
MCTPtr->NodeHoleBase = BottomIo;
RefPtr->HoleBase = BottomIo;
HoleOffset = _4GB_RJ16 - BottomIo;
NodeSysLimit += HoleOffset;
if ((DctSelBaseAddr > 0) && (DctSelBaseAddr < BottomIo)) {
HoleOffset += DctSelBaseAddr;
} else {
if (DctSelBaseAddr >= BottomIo) {
DctSelBaseAddr += HoleOffset;
}
HoleOffset += NodeSysBase;
}
MemNSetBitFieldNb (NBPtr, BFDramHoleBase, BottomIo >> 8);
MemNSetBitFieldNb (NBPtr, BFDramHoleOffset, HoleOffset >> 7);
MemNSetBitFieldNb (NBPtr, BFDramHoleValid, 1);
MemNSetBitFieldNb (NBPtr, BFDramMemHoistValid, 1);
} else {
// No Remapping. Normal Contiguous mapping
}
MCTPtr->NodeSysBase = NodeSysBase;
MCTPtr->NodeSysLimit = NodeSysLimit;
RefPtr->SysLimit = MCTPtr->NodeSysLimit;
WeReMask = 3;
// Set the Dram base and set the WE and RE flags in the base.
MemNSetBitFieldNb (NBPtr, BFDramBaseReg0, (NodeSysBase << 8) | WeReMask);
MemNSetBitFieldNb (NBPtr, BFDramBaseHiReg0, NodeSysBase >> 24);
// Set the Dram limit and set DstNode.
MemNSetBitFieldNb (NBPtr, BFDramLimitReg0, ((NodeSysLimit << 8) & 0xFFFF0000));
MemNSetBitFieldNb (NBPtr, BFDramLimitHiReg0, NodeSysLimit >> 24);
MemNSetBitFieldNb (NBPtr, BFDramBaseAddr, NodeSysBase >> (27 - 16));
MemNSetBitFieldNb (NBPtr, BFDramLimitAddr, NodeSysLimit >> (27 - 16));
if ((MCTPtr->DctData[1].Timings.DctMemSize != 0) && (!NBPtr->Ganged)) {
MemNSetBitFieldNb (NBPtr, BFDctSelBaseAddr, DctSelBaseAddr >> 11);
MemNSetBitFieldNb (NBPtr, BFDctSelHiRngEn, 1);
MemNSetBitFieldNb (NBPtr, BFDctSelHi, 1);
MemNSetBitFieldNb (NBPtr, BFDctSelBaseOffset, DctSelBaseAddr >> 10);
}
}
return (BOOLEAN) (NBPtr->MCTPtr->ErrCode < AGESA_FATAL);
}
/* -----------------------------------------------------------------------------*/
/**
*
*
* Report the Uma size that is going to be allocated.
* Total system memory UMASize
* >= 2G 512M
* >=1G 256M
* <1G 64M
*
* @param[in,out] *NBPtr - Pointer to the MEM_NB_BLOCK
*
* @return Uma size [31:0] = Addr [47:16]
*/
UINT32
MemNGetUmaSizeTN (
IN OUT MEM_NB_BLOCK *NBPtr
)
{
UINT32 SysMemSize;
UINT32 SizeOfUma;
SysMemSize = NBPtr->RefPtr->SysLimit + 1;
SysMemSize = (SysMemSize + 0x100) & 0xFFFFF000; // Ignore 16MB allocated for C6 when finding UMA size
if (SysMemSize >= 0x8000) {
SizeOfUma = 512 << (20 - 16);
} else if (SysMemSize >= 0x4000) {
SizeOfUma = 256 << (20 - 16);
} else {
SizeOfUma = 64 << (20 - 16);
}
return SizeOfUma;
}
/* -----------------------------------------------------------------------------*/
/**
*
* This function allocates 16MB of memory for C6 storage when it is requested to be enabled
*
* @param[in,out] *NBPtr - Pointer to the MEM_NB_BLOCK
*
*/
VOID
MemNAllocateC6StorageTN (
IN OUT MEM_NB_BLOCK *NBPtr
)
{
UINT32 SysLimit;
UINT32 DramLimitReg;
if (NBPtr->SharedPtr->C6Enabled || IsFeatureEnabled (C6Cstate, NBPtr->MemPtr->PlatFormConfig, &(NBPtr->MemPtr->StdHeader))) {
SysLimit = NBPtr->RefPtr->SysLimit;
// Calculate new SysLimit
if (!NBPtr->SharedPtr->C6Enabled) {
// System memory available is reduced by 16MB
SysLimit -= _16MB_RJ16;
NBPtr->MCTPtr->NodeSysLimit = SysLimit;
NBPtr->RefPtr->SysLimit = SysLimit;
NBPtr->SharedPtr->C6Enabled = TRUE;
// Set TOPMEM and MTRRs (only need to be done once for BSC)
MemNC6AdjustMSRs (NBPtr);
}
// Set Dram Limit
DramLimitReg = MemNGetBitFieldNb (NBPtr, BFDramLimitReg0) & 0x0000FFFF;
MemNSetBitFieldNb (NBPtr, BFDramLimitReg0, ((SysLimit << 8) & 0xFFFF0000) | DramLimitReg);
MemNSetBitFieldNb (NBPtr, BFDramLimitHiReg0, SysLimit >> 24);
MemNSetBitFieldNb (NBPtr, BFCoreStateSaveDestNode, 0);
// Set BFCC6SaveEn
MemNSetBitFieldNb (NBPtr, BFCC6SaveEn, 1);
// LockDramCfg will be set in FinalizeMCT
}
}
/* -----------------------------------------------------------------------------*/
/**
*
* This function adjusts NB pstate norbridge voltage for TN
*
* @param[in,out] *NBPtr - Pointer to the MEM_NB_BLOCK
*
*/
VOID
MemNAdjustNBPstateVolTN (
IN OUT MEM_NB_BLOCK *NBPtr
)
{
D0F0xBC_xE0104168_STRUCT D0F0xBC_xE0104168;
D0F0xBC_xE010416C_STRUCT D0F0xBC_xE010416C;
D0F0xBC_xE0104170_STRUCT D0F0xBC_xE0104170;
UINT8 MemClkVidHi;
UINT8 MemClkVidLo;
UINT8 MemPstate;
UINT8 NbVid;
UINT8 NbPs;
UINT8 NbPstateMaxVal;
IDS_HDT_CONSOLE (MEM_FLOW, "\nStart NB Pstate voltage adjustment.\n");
GnbRegisterReadTN (TYPE_D0F0xBC, D0F0xBC_xE0104168_ADDRESS, &D0F0xBC_xE0104168.Value, 0, &(NBPtr->MemPtr->StdHeader));
GnbRegisterReadTN (TYPE_D0F0xBC, D0F0xBC_xE010416C_ADDRESS, &D0F0xBC_xE010416C.Value, 0, &(NBPtr->MemPtr->StdHeader));
GnbRegisterReadTN (TYPE_D0F0xBC, D0F0xBC_xE0104170_ADDRESS, &D0F0xBC_xE0104170.Value, 0, &(NBPtr->MemPtr->StdHeader));
IDS_HDT_CONSOLE (MEM_FLOW, "\t\tD0F0xBC_xE0104168: %08x\n", D0F0xBC_xE0104168.Value);
IDS_HDT_CONSOLE (MEM_FLOW, "\t\tD0F0xBC_xE010416C: %08x\n", D0F0xBC_xE010416C.Value);
IDS_HDT_CONSOLE (MEM_FLOW, "\t\tD0F0xBC_xE0104170: %08x\n", D0F0xBC_xE0104170.Value);
// MemClkVidHi = read D0F0xBC_xE0104168 through D0F0xBC_xE0104170 to find the VID code corresponding
// to the M0 MEMCLK. If the M0 MEMCLK is not found, use the next higher defined MEMCLK as the target.
switch (NBPtr->DCTPtr->Timings.TargetSpeed) {
case DDR667_FREQUENCY:
MemClkVidHi = (UINT8) D0F0xBC_xE0104168.Field.MemClkVid0_7_0;
break;
case DDR800_FREQUENCY:
MemClkVidHi = (UINT8) D0F0xBC_xE0104168.Field.MemClkVid1_7_0;
break;
case DDR1066_FREQUENCY:
MemClkVidHi = (UINT8) D0F0xBC_xE0104168.Field.MemClkVid2_7_0;
break;
case DDR1333_FREQUENCY:
MemClkVidHi = (UINT8) D0F0xBC_xE0104168.Field.MemClkVid3_1_0 | ((UINT8) D0F0xBC_xE010416C.Field.MemClkVid3_7_2 << 2);
break;
case DDR1600_FREQUENCY:
MemClkVidHi = (UINT8) D0F0xBC_xE010416C.Field.MemClkVid4_7_0;
break;
case DDR1866_FREQUENCY:
MemClkVidHi = (UINT8) D0F0xBC_xE010416C.Field.MemClkVid5_7_0;
break;
case DDR2100_FREQUENCY:
MemClkVidHi = (UINT8) D0F0xBC_xE010416C.Field.MemClkVid6_7_0;
break;
case DDR2133_FREQUENCY:
MemClkVidHi = (UINT8) D0F0xBC_xE010416C.Field.MemClkVid7_1_0 | ((UINT8) D0F0xBC_xE0104170.Field.MemClkVid7_7_2 << 2);
break;
case DDR2400_FREQUENCY:
MemClkVidHi = (UINT8) D0F0xBC_xE0104170.Field.MemClkVid8_7_0;
break;
default:
// If the M0 MEMCLK is greater than MemClkVid8, use the MemClkVid8 VID as the target
MemClkVidHi = (UINT8) D0F0xBC_xE0104170.Field.MemClkVid8_7_0;
}
// MemClkVidLo = read D0F0xBC_xE0104168 through D0F0xBC_xE0104170 to find the VID code corresponding
// to the M1 MEMCLK. If the M1 MEMCLK is not found, use the next higher defined MEMCLK as the target.
MemClkVidLo = (UINT8) D0F0xBC_xE0104168.Field.MemClkVid0_7_0;
IDS_HDT_CONSOLE (MEM_FLOW, "\t\tOriginal MemClkVidLo: %02x\n", MemClkVidLo);
IDS_HDT_CONSOLE (MEM_FLOW, "\t\tOriginal MemClkVidHi: %02x\n", MemClkVidHi);
// If D18F5x188[NbOffsetTrim] == 01b, MemClkVid = Fuse[MemClkVid] - 4 (-25mV offset so add 25mV to VID)
// Else if D18F5x188[NbOffsetTrim] == 11b, MemClkVid = Fuse[MemClkVid] + 4 (+25mV offset so decrease 25mV from VID)
// Else MemClkVid = Fuse[MemClkVid]
if (MemNGetBitFieldNb (NBPtr, BFNbOffsetTrim) == 1) {
MemClkVidLo -= 4;
MemClkVidHi -= 4;
IDS_HDT_CONSOLE (MEM_FLOW, "\t\tAdd 25mV\n");
} else if (MemNGetBitFieldNb (NBPtr, BFNbOffsetTrim) == 3) {
MemClkVidLo += 4;
MemClkVidHi += 4;
IDS_HDT_CONSOLE (MEM_FLOW, "\t\tDecrease 25mV\n");
}
IDS_HDT_CONSOLE (MEM_FLOW, "\t\tAdjusted MemClkVidLo: %02x\n", MemClkVidLo);
IDS_HDT_CONSOLE (MEM_FLOW, "\t\tAdjusted MemClkVidHi: %02x\n", MemClkVidHi);
// For each NB P-state from NBP0 through D18F5x170[NbPstateMaxVal]:
// If ((D18F5x1[6C:60][MemPstate] == 0) && (MemClkVidHi voltage > D18F5x1[6C:60][NbVid] voltage)):
// Program D18F5x1[6C:60][NbVid] == MemClkVidHi.
// If ((D18F5x1[6C:60][MemPstate] == 1) && (MemClkVidLo voltage > D18F5x1[6C:60][NbVid] voltage)):
// Program D18F5x1[6C:60][NbVid] == MemClkVidLo.
IDS_HDT_CONSOLE (MEM_FLOW, "\t\tNBPs\tNbVid\tMemPstate\tOverride\n");
NbPstateMaxVal = (UINT8) MemNGetBitFieldNb (NBPtr, BFNbPstateMaxVal);
for (NbPs = 0; NbPs <= NbPstateMaxVal; NbPs ++) {
NbVid = (UINT8) MemNGetBitFieldNb (NBPtr, BFNbVid0 + (NbPs << 1));
MemPstate = (UINT8) MemNGetBitFieldNb (NBPtr, BFMemPstate0 + NbPs);
IDS_HDT_CONSOLE (MEM_FLOW, "\t\t %01d \t %02x \t %01d \t", NbPs, NbVid, MemPstate);
// higher voltage correspond to smaller VID
if ((MemPstate == 0) && (MemClkVidHi < NbVid)) {
MemNSetBitFieldNb (NBPtr, BFNbVid0 + (NbPs << 1), MemClkVidHi);
IDS_HDT_CONSOLE (MEM_FLOW, "MemClkVidHi\n");
} else if ((MemPstate == 1) && (MemClkVidLo < NbVid)) {
MemNSetBitFieldNb (NBPtr, BFNbVid0 + (NbPs << 1), MemClkVidLo);
IDS_HDT_CONSOLE (MEM_FLOW, "MemClkVidLo\n");
} else {
IDS_HDT_CONSOLE (MEM_FLOW, "No change\n");
}
}
}
/*----------------------------------------------------------------------------
* LOCAL FUNCTIONS
*
*----------------------------------------------------------------------------
*/