blob: 84e7ab6f46d9e01f997addc8194e30153e92a977 [file] [log] [blame]
/* $NoKeywords:$ */
/**
* @file
*
* mrtthrc.c
*
* Phy assisted DQS receiver enable training
*
* @xrefitem bom "File Content Label" "Release Content"
* @e project: AGESA
* @e sub-project: (Proc/Recovery/Mem)
* @e \$Revision: 50454 $ @e \$Date: 2011-04-10 21:20:37 -0600 (Sun, 10 Apr 2011) $
*
**/
/*****************************************************************************
*
* Copyright (C) 2012 Advanced Micro Devices, Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of Advanced Micro Devices, Inc. nor the names of
* its contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL ADVANCED MICRO DEVICES, INC. BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* ***************************************************************************
*
*/
/*
*----------------------------------------------------------------------------
* MODULES USED
*
*----------------------------------------------------------------------------
*/
#include "AGESA.h"
#include "OptionMemory.h"
#include "amdlib.h"
#include "Ids.h"
#include "mm.h"
#include "mn.h"
#include "mru.h"
#include "mt.h"
#include "PlatformMemoryConfiguration.h"
#include "Filecode.h"
CODE_GROUP (G2_PEI)
RDATA_GROUP (G2_PEI)
#define FILECODE PROC_RECOVERY_MEM_TECH_MRTTHRC_FILECODE
/*----------------------------------------------------------------------------
* DEFINITIONS AND MACROS
*
*----------------------------------------------------------------------------
*/
#define MAX_BYTELANES 8 /* Max Bytelanes per channel */
/*----------------------------------------------------------------------------
* TYPEDEFS AND STRUCTURES
*
*----------------------------------------------------------------------------
*/
/*----------------------------------------------------------------------------
* PROTOTYPES OF LOCAL FUNCTIONS
*
*----------------------------------------------------------------------------
*/
VOID
STATIC
MemRecTPrepareRcvrEnDlySeed (
IN OUT MEM_TECH_BLOCK *TechPtr,
IN UINT8 ChipSel
);
UINT16
STATIC
MemRecTProgramRcvrEnDly (
IN OUT MEM_TECH_BLOCK *TechPtr,
IN UINT8 ChipSel
);
/*----------------------------------------------------------------------------
* EXPORTED FUNCTIONS
*
*----------------------------------------------------------------------------
*/
/* -----------------------------------------------------------------------------*/
/**
*
* This function executes Phy assisted receiver enable training for current node.
*
* @param[in,out] *TechPtr - Pointer to the MEM_TECH_BLOCK
*
* @pre Auto refresh and ZQCL must be disabled
*
*/
VOID
MemRecTTrainRcvrEnHw (
IN OUT MEM_TECH_BLOCK *TechPtr
)
{
UINT8 TempBuffer[64];
UINT8 Count;
UINT32 TestAddr;
UINT8 ChipSel;
UINT16 MaxRcvrDly;
MEM_NB_BLOCK *NBPtr;
NBPtr = TechPtr->NBPtr;
AGESA_TESTPOINT (TpProcMemReceiverEnableTraining , &(NBPtr->MemPtr->StdHeader));
IDS_HDT_CONSOLE (MEM_STATUS, "\nStart HW RxEn training\n");
// Set environment settings before training
MemRecTBeginTraining (TechPtr);
ChipSel = NBPtr->DimmToBeUsed << 1;
TestAddr = 1 << 21;
IDS_HDT_CONSOLE (MEM_STATUS, "\tDct %d\n", TechPtr->NBPtr->Dct);
IDS_HDT_CONSOLE (MEM_STATUS, "\t\tCS %d\n", ChipSel);
IDS_HDT_CONSOLE (MEM_FLOW, "\t\tTestAddr %x\n", TestAddr);
IDS_HDT_CONSOLE (MEM_FLOW, "\t\t\t Byte: 00 01 02 03 04 05 06 07 ECC\n");
// 1.Prepare the DIMMs for training
NBPtr->SetBitField (NBPtr, BFTrDimmSel, ChipSel >> 1);
// 2.Prepare the phy for DQS receiver enable training.
MemRecTPrepareRcvrEnDlySeed (TechPtr, ChipSel);
// 3.BIOS initiates the phy assisted receiver enable training
NBPtr->SetBitField (NBPtr, BFDqsRcvTrEn, 1);
// 4.BIOS begins sending out of back-to-back reads to create
// a continuous stream of DQS edges on the DDR interface.
for (Count = 0; Count < 3; Count++) {
NBPtr->ReadPattern (NBPtr, TempBuffer, TestAddr, 64);
}
// 6.Wait 200 MEMCLKs.
MemRecUWait10ns (200, NBPtr->MemPtr);
// 7.Program [DqsRcvTrEn]=0 to stop the DQS receive enable training.
NBPtr->SetBitField (NBPtr, BFDqsRcvTrEn, 0);
// 8.Get the gross and fine delay values.
// 9.Calculate the corresponding final delay values
MaxRcvrDly = MemRecTProgramRcvrEnDly (TechPtr, ChipSel);
// Set Max Latency for both channels
NBPtr->SetMaxLatency (NBPtr, MaxRcvrDly);
// Restore environment settings after training
MemRecTEndTraining (TechPtr);
IDS_HDT_CONSOLE (MEM_FLOW, "End HW RxEn training\n\n");
}
/* -----------------------------------------------------------------------------*/
/**
*
* This function calculates RcvEn seed value for each rank
*
* @param[in,out] *TechPtr - Pointer to the MEM_TECH_BLOCK
* @param[in] ChipSel - rank to be trained
*
*/
VOID
STATIC
MemRecTPrepareRcvrEnDlySeed (
IN OUT MEM_TECH_BLOCK *TechPtr,
IN UINT8 ChipSel
)
{
MEM_NB_BLOCK *NBPtr;
CH_DEF_STRUCT *ChannelPtr;
UINT16 SeedTotal;
UINT16 SeedFine;
UINT16 SeedGross;
UINT16 SeedPreGross;
UINT16 DiffSeedGrossSeedPreGross;
UINT8 ByteLane;
UINT16 PlatEst;
UINT16 *PlatEstSeed;
UINT16 SeedValue[8];
UINT16 SeedTtl[8];
UINT16 SeedPre[8];
NBPtr = TechPtr->NBPtr;
ChannelPtr = TechPtr->NBPtr->ChannelPtr;
// Get platform override seed
PlatEstSeed = (UINT16 *) MemRecFindPSOverrideEntry (NBPtr->RefPtr->PlatformMemoryConfiguration, PSO_RXEN_SEED, NBPtr->MCTPtr->SocketId, ChannelPtr->ChannelID, ChipSel >> 1);
for (ByteLane = 0; ByteLane < 8; ByteLane++) {
// For Pass1, BIOS starts with the delay value obtained from the first pass of write
// levelization training that was done in DDR3 Training and add a delay value of 3Bh.
PlatEst = 0x3B;
NBPtr->FamilySpecificHook[OverrideRcvEnSeed] (NBPtr, &PlatEst);
PlatEst = ((PlatEstSeed != NULL) ? PlatEstSeed[ByteLane] : PlatEst);
SeedTotal = ChannelPtr->WrDqsDlys[((ChipSel >> 1) * MAX_BYTELANES) + ByteLane] + PlatEst;
SeedValue[ByteLane] = PlatEst;
SeedTtl[ByteLane] = SeedTotal;
// SeedGross = SeedTotal DIV 32.
SeedGross = SeedTotal >> 5;
// SeedFine = SeedTotal MOD 32.
SeedFine = SeedTotal & 0x1F;
// Next, determine the gross component of SeedTotal. SeedGrossPass1=SeedTotal DIV 32.
// Then, determine the fine delay component of SeedTotal. SeedFinePass1=SeedTotal MOD 32.
// Use SeedGrossPass1 to determine SeedPreGrossPass1:
if ((SeedGross & 0x1) != 0) {
//if SeedGross is odd
SeedPreGross = 1;
} else {
//if SeedGross is even
SeedPreGross = 2;
}
// (SeedGross - SeedPreGross)
DiffSeedGrossSeedPreGross = SeedGross - SeedPreGross;
ChannelPtr->RcvEnDlys[(ChipSel * MAX_BYTELANES) + ByteLane] = DiffSeedGrossSeedPreGross << 5;
//BIOS programs registers F2x[1, 0]9C_x[51:50] and F2x[1, 0]9C_x52) with SeedPreGrossPass1
//and SeedFinePass1 from the preceding steps.
NBPtr->SetTrainDly (NBPtr, AccessPhRecDly, DIMM_BYTE_ACCESS (ChipSel >> 1, ByteLane), (SeedPreGross << 5) | SeedFine);
SeedPre[ByteLane] = (SeedPreGross << 5) | SeedFine;
// 202688: Program seed value to RcvEnDly also.
NBPtr->SetTrainDly (NBPtr, AccessRcvEnDly, DIMM_BYTE_ACCESS (ChipSel >> 1, ByteLane), SeedGross << 5);
}
IDS_HDT_CONSOLE_DEBUG_CODE (
IDS_HDT_CONSOLE (MEM_FLOW, "\t\t\tSeedValue: ");
for (ByteLane = 0; ByteLane < 8; ByteLane++) {
IDS_HDT_CONSOLE (MEM_FLOW, "%03x ", SeedValue[ByteLane]);
}
IDS_HDT_CONSOLE (MEM_FLOW, "\n");
IDS_HDT_CONSOLE (MEM_FLOW, "\t\t\tSeedTotal: ");
for (ByteLane = 0; ByteLane < 8; ByteLane++) {
IDS_HDT_CONSOLE (MEM_FLOW, "%03x ", SeedTtl[ByteLane]);
}
IDS_HDT_CONSOLE (MEM_FLOW, "\n\t\t\t SeedPRE: ");
for (ByteLane = 0; ByteLane < 8; ByteLane++) {
IDS_HDT_CONSOLE (MEM_FLOW, "%03x ", SeedPre[ByteLane]);
}
IDS_HDT_CONSOLE (MEM_FLOW, "\n");
);
}
/* -----------------------------------------------------------------------------*/
/**
*
* This function calculates final RcvrEnDly for each rank
*
* @param[in,out] *TechPtr - Pointer to the MEM_TECH_BLOCK
* @param[in] ChipSel - Rank to be trained
*
* @return MaxDly - The largest delay value
*
*/
UINT16
STATIC
MemRecTProgramRcvrEnDly (
IN OUT MEM_TECH_BLOCK *TechPtr,
IN UINT8 ChipSel
)
{
MEM_NB_BLOCK *NBPtr;
CH_DEF_STRUCT *ChannelPtr;
UINT16 DiffSeedGrossSeedPreGross;
UINT8 ByteLane;
UINT16 RcvEnDly;
UINT16 MaxDly;
UINT16 RankRcvEnDly[8];
NBPtr = TechPtr->NBPtr;
ChannelPtr = TechPtr->NBPtr->ChannelPtr;
IDS_HDT_CONSOLE (MEM_FLOW, "\t\t\t PRE: ");
MaxDly = 0;
for (ByteLane = 0; ByteLane < 8; ByteLane++) {
DiffSeedGrossSeedPreGross = (ChannelPtr->RcvEnDlys[(ChipSel * MAX_BYTELANES) + ByteLane]) & 0x1E0;
RcvEnDly = (UINT8) NBPtr->GetTrainDly (NBPtr, AccessPhRecDly, DIMM_BYTE_ACCESS (ChipSel >> 1, ByteLane));
IDS_HDT_CONSOLE (MEM_FLOW, "%03x ", RcvEnDly);
RcvEnDly = RcvEnDly + DiffSeedGrossSeedPreGross;
// Add 1 UI to get to the midpoint of preamble
RcvEnDly += 0x20;
RankRcvEnDly[ByteLane] = RcvEnDly;
if (RcvEnDly > MaxDly) {
MaxDly = RcvEnDly;
}
NBPtr->SetTrainDly (NBPtr, AccessRcvEnDly, DIMM_BYTE_ACCESS ((ChipSel >> 1), ByteLane), RcvEnDly);
}
IDS_HDT_CONSOLE_DEBUG_CODE (
IDS_HDT_CONSOLE (MEM_FLOW, "\n\t\t\t RxEn: ");
for (ByteLane = 0; ByteLane < 8; ByteLane++) {
IDS_HDT_CONSOLE (MEM_FLOW, "%03x ", RankRcvEnDly[ByteLane]);
}
IDS_HDT_CONSOLE (MEM_FLOW, "\n\n");
);
return MaxDly;
}